Design Dimensions of Challenge-Based Learning

JAN VAN DER VEEN // EINDHOVEN SCHOOL OF EDUCATION

Lunch for Good Teaching Lecture, 30 January 2024, TU Berlin

Agenda

- Challenge-based learning (CBL)
- Interdisciplinarity
- CBL in TU Eindhoven bachelor curriculum
- Design dimensions
- Examples from education research
- Challenge Based Learning implementations
- Questions and discussion

Definition

Challenge-based learning:

CBL takes places through the identification, analysis and design of a solution to a sociotechnical problem. The learning experience is typically multidisciplinary, takes place in an international context and aims to find a collaboratively developed solution, which is environmentally, socially and economically sustainable (Malmqvist et al, 2015).

Challenge-based learning objectives

Real societal problems are starting point for student team projects CBL in new TU Eindhoven curriculum: at least two CBL projects per year Objectives of CBL can be many

- Engaging with the complexity of real societal problems
- Personal and professional skills, incl ethical dimensions
- Application and deepening of foundational knowledge and skills
- Design and maker skills
- Interdisciplinary experience
- Learning to apply system engineering
- Self- and team-regulated learning
- Preparing for complexity of professional setting
- some focus in each CBL project can be helpful

From small to more complex challenges

Design dimensions

- Openness of the task/problem
- Combining different disciplines
- Working with a problem owner
- Involving stakeholders
- Teacher support and coaching
- Assessment format
- Inside or outside curriculum

Solar Car Team Eindhoven [Source: Guardian] Sun-powered off the road car Photograph: Bart van Overbeeke

Engineering Design Course Bart van Esch et al

- Design challenge (CBL)
- Bachelor, 2nd year
 - 1750 students
 - 9 departments, 15 majors
- Group work
 - multidisciplinary groups, 5-6 students
 - meetings 2/wk
 - 。 self-directed, peer-controlled
 - tutor supervision (3rd-yr Ba, or Ma)
- Organization
 - \circ core organizing team
 - 18 teachers, each 4 tutors
 - 72 tutors, each 4 groups
 - 288 student groups
- Tutor tasks
 - coach on process (mainly)
 - $_{\circ}$ $\,$ Input for assessment $\,$

Tutor training and support

Before : two-day training session

- design methodology and timeline
- group coaching:
 - motivating collaboration and decision-making
 - coaching for learning (ask questions, provide feedback, give clues)
 - $_{\circ}~$ preparing and guiding group meetings
 - $_{\circ}~$ guiding groups in giving feedback
 - $_{\circ}$ keeping groups on track / on schedule
- individual assessment
 - $_{\circ}~$ rubrics
 - FeedbackFruits[™]
- community building

During : support

- course page for tutors (Canvas)
- discussion forum
- weekly meeting with teacher
- midterm and final assessment, with teacher supervision

Thermodynamics CBL project

- Cool a can with 2 Bicycle pumps
- Thermodynamics concepts and methods
- Instrumentation, design skills, professional skills
- Introductory lecture thermodynamics & project logistics
- Three introductory experiments:
 - 1. Thermal insulation
 - 2. Heat-exchange in circular tube flow
 - 3. Compression and expansion
- Groups of 5 or 6 students

Source: Marcel ter Brake, Jelle van der Meulen et al 1st yr students Applied Physics & Advanced Technology

UNIVERSITY OF TWENTE.



UNIVERSITY OF TWENTE.

Cooler project at work

- Workplace for constructing, experimenting & team discussions
- Self service workshop: machining, materials & consultancy
- Final event including competition

Student team projects

- Competitions, events
- InnovationSpace facilities
- Workplace, coaching, commercial partners

Credits: Team Polar

Innovation Space facilities

What do they learn in student teams? Eugenio Bravo, Dury Bayram, Jan van der Veen

- What do they learn?
 - Team, leadership and business skills
 - Communication, intra-team and professional
 - How other disciplines work
 - Design and production skills
 - Challenge and role related engineering expertise
- How do they learn?
 - By doing, team interactions, previous team input
 - Coaches, TUE and external experts
 - Design, prototyping, test feedback loop
 - Depends on challenge and specialization

SENSUS event: international biosensor competition

Challenges for Challenge-Based Learning

- Knowledge acquisition and application, integration with CBL
- Synchronising disciplinary programs: time-slots, credits, numbers of students
- Spaces for the student teams to meet
- Workplace access and maker facilities (incl safety and maintenance)
- Most academic teachers are mono-disciplinary specialists
- Availability of experts from all relevant disciplines
- Teachers and tutors need coaching skills
- Sufficient number of staff to coach all teams
- Assessment format
- Team members tend to specialize >> variation in learning outcomes ok?

Thank you for your attention!

Questions & Discussion