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1 Introduction

One of the aims of probability theory is to give a formal description of indi-

vidual beliefs and expectations that can be used to explain the processing of

information, resulting changes of beliefs and individually satisfying decisions.

Savage (1972 [1954]) has given an axiomatic foundation of subjective proba-

bility that led him to model beliefs as probability measures in the definition

of Kolmogorov (1933). Information is usually described as knowledge about

the occurrence of events. Changes of beliefs are then modeled as a process

of Bayesian updating so that posterior beliefs are conditional probabilities.

Kolmogorov’s theory of probability has been criticized for its treatment of

null events. While those play a minor role in natural sciences, game theoretic

solution concepts pay special attention to events that occur with probability

zero if the agents follow the proposed strategies. There is an ongoing debate

on how to model the rationality of agents1, and it is an open question, how a

rational agent should decide when decision knots are reached that had an a–

priori–probability of zero under the presumption that all players are rational.

The representation of beliefs by probability measures does not suffice to deal

with these issues.

Rényi (1976 [1955, 1956]) developed the notion of a conditional probabil-

ity space that does not suffer from these shortcomings. Similar structures

have been invented by game theorists: Myerson (1986, 1991), Mc Lennan

(1989), and Battigalli and Veronese (1996) explored conditional probability

systems. Blume, Brandenburger, and Dekel (1991) and Stahl (1995) used

lexicographical probabilities. Kohlberg and Reny (1992), Swinkels (1994),

and Heinemann (1995a,b) applied relative probabilities.

All of these notions have in common that they allow to derive unique con-

1See e.g. Binmore (1992) for an overview, Aumann (1995), or Reny (1995).
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ditional probabilities even when the condition is a null set. The basic trick

is to define a function that assigns a real to any pair of events, while cer-

tain axioms guarantee that these values can be interpreted as conditional or

relative probabilities.

In this paper I propose to describe individual beliefs as relative probability

measures. They assign a non–negative real or infinity to any pair of events.

This number stands for the relative probability of the two events. Relative

probabilities allow to distinguish possible from impossible events and to de-

scribe Bayesian updating on null sets. They give way for a more intuitive

notion of independence and they are a powerful tool to describe various ax-

ioms for the procession of information.

In section 2 we start with probability measures and show in which respects

they are not satisfying. Section 3 introduces relative probability measures.

An axiomatic definition is given, some properties and rules of calculus are

analyzed. In section 4 we compare relative to absolute probability measures.

Section 5 deals with conditional probabilities and section 6 with indepen-

dence. A conclusion is stated in section 7. An appendix contains all proofs.

2 Probablity Measures

Let W be a nonempty abstract space andW a σ–field in W . A subset A ∈ W
is called event, a singular subset {z}, with z ∈ W is called elementary event.

The empty set ∅ is an impossible event, W is a sure event.

Definition 1 A probability measure on W is a function µ obeying to the

following axioms:

1. µ : W → [0, 1].
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2. µ(A) + µ(B) = µ(A ∪B) + µ(A ∩B).

3. If {An} is a sequence of events with An ↘ ∅ then µ(An) ↘ 0 .

4. µ(W ) = 1.

The set of all probability measures on W is denoted by M. A probability

measure µ on W assigns a number µ(A) ∈ [0, 1] to any event A ∈ W . This

number stands for the probability of event A. Axiom 2 describes additivity

of probabilities, Axiom 3 is the monotone continuity and axiom 4 requires

that the sure event has probability 1.

First, note that axiom 3 implies that the impossible event has probability

zero, but an event with probability zero does not need to be impossible. An

event with probability 1 is said to be almost sure, but it need not be a sure

event. A probability measure does neither distinguish between possible and

impossible nor between sure and almost sure events.

Definition 2 Be µ ∈ M and B ∈ W. A conditional probability mea-

sure for µ under condition B is a probability measure µB, with

µB(A) µ(B) = µ(A ∩B) ∀A ∈ W .

If µ(B) > 0 there is a unique conditional probability measure for µ under B.

In this case the conditional probability of event A for µ and B is

µB(A) := µ(A ∩B)/µ(B).

However, if µ(B) = 0 and if the σ–algebra in B induced by W contains

more than two events, there is an infinite number of conditional probability

measures for µ under B. Here, any probability measure µ̃ with µ̃(B) = 1 is a
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conditional probability measure for µ under B. Independence or continuity

assumptions or other considerations can be used to determine conditional

probabilities. But, this sort of information is not contained in the probability

measure itself. It must be stated in addition to probabilities.

Definition 3 Be µ ∈ M. Two events A and B are called independent

of each other, if

µ(A) µ(B) = µ(A ∩B).

If µ(A) = 0, then any event is independent of A, even an event B ⊇ A that is

implied by A. The latter contradicts our intuition about independent events.

3 Relative Probability Measures

A relative probability measure π assigns a number π(A,B) to any ordered

pair of events 〈A, B〉. This number is an expression of the relative frequency

of these two events. In order to interpret the function π in this way, it must

obey to some axioms which are closely related to the properties of probability

measures.

Definition 4 A relative probability measure (RPM) on W is a func-

tion π obeying to the following axioms:

1. π : W ×W → R+ ∪ {∞}.

2. If π(A ∪B, C) ∈ R+ then

π(A,C) + π(B, C) = π(A ∪B, C) + π(A ∩B,C).
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3. If π(A,B) ∈ R+ and π(B,C) ∈ R+ then

π(A,B) π(B, C) = π(A,C).

4. π(A,B) = 0 ⇔ π(B, A) = ∞.

5. If {An} is a sequence of events with An ↘ ∅ then π(An ∩ B,B) ↘
π(∅, B).

6. π(∅, A) ∈ {0, 1}.

7. π(∅,W ) = 0.

The set of all relative probability measures on W is denoted by P .

Interpretation π(A,B) = k is interpreted as “event A is k–times as likely

as event B.” If π(∅, A) = 0 [1] we say that event A is [im]possible.

Axiom 2 guarantees additivity of relative probabilities. It defines a first

rule of calculus. Axioms 3 and 4 define a rule for multiplication. Axiom 4

defines ∞ as the multiplicative inverse of zero. Axiom 5 requires monotone

continuity. Axiom 6 demands that each event is either possible or impossible.

There are no degrees of possibility beyond probability. Axiom 7 is a non–

triviality condition and requires that the sure event is possible.

Note that axioms 3 and 4 imply transitivity of the binary relation “at least

as likely as” that is implicitly defined by π.

Given axioms 1 – 6, axiom 7 excludes exactly one function π∅, defined by

π∅(A,B) = 1 for all A,B ∈ W .

We will refer to π∅ below. Now, let us state some basic properties, helpful in

calculations with relative probabilities:
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Lemma 1 For each π ∈ P and all A,B,C,D ∈ W it is true that

1. π(A,A) = 1,

2. if π(A,B) ∈ R++ then π(A,B) = 1/π(B, A),

3. if An ↗ B then π(An, B) ↗ 1,

4. π(B,W ) > 0 implies π(∅, B) = 0,

5. if π(A,B) = ∞ and π(B, C) 6= 0 or if π(A, B) 6= 0 and π(B, C) = ∞
then π(A,B) π(B, C) = ∞.

Axioms 1 – 7 suffice to interpret the values of π as relative probabilities.

You can calculate with them as intuition suggests. The following section will

show the relation of relative to absolute probability measures.

4 Absolute Probabilities

From any RPM π a probability measure µ[π] can be derived that assigns

absolute probabilities to all events (see proposition 1). Vice versa, each

probability measure can be completed to an RPM (see propositions 2.A and

5).

Proposition 1 For each π ∈ P the function µ[π] : W → R ∪ {∞}, defined

by

µ[π](A) := π(A,W ),

is a probability measure on W.
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Probability measure µ[π] assigns probabilities relative to the sure event to all

events. The probability of event A relative to W is called absolute probability.

Note that an impossible event has an absolute probability of zero, but, an

absolute probability of zero does not imply that the event under consideration

is impossible. An event that is as likely as the sure event does not need to

be sure; it is called almost sure. An event A is called sure if its complement

is impossible, i.e. π(W\A, ∅) = 1.

In consequence of proposition 1 the rules of calculation that we know for

probability measures are also valid for the absolute probabilities described

by an RPM. So, the expected value of a W–measurable function f : W → R
is

E (f(z) | π) = E (f(z) | µ[π]).

Define PM := {π ∈ P | π(A,W ) = 0 ⇒ π(∅, A) = 1}.

PM is the set of RPMs for which events with probability zero are impossi-

ble. The next proposition shows that PM is an isomorphism to the set of

probability measures on W .

Proposition 2.A Be µ ∈ M and let π[µ] : W ×W → R ∪ {∞} be defined

by

π[µ](A,B) =





µ(A)/µ(B) if µ(B) 6= 0
∞ if µ(A) 6= µ(B) = 0
1 if µ(A) = µ(B) = 0.

Then π[µ] ∈ PM and µ[π[µ]] = µ.

Proposition 2.B For each π ∈ PM it is true that π[µ[π]] = π.

The absolute probabilities, given by an RPM π[µ] are the same as the prob-

abilities of these events expressed by µ. A probability measure µ can be
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replaced by an RPM π[µ], like a point expectation ze ∈ W can be expressed

by a Dirac measure µ[ze] ∈M, defined by µ[ze]({ze}) = 1.

5 Conditional Probabilities

The derivation of conditional probabilities is the heart of our considerations,

and therefore, we want to give them an axiomatic foundation. Let the rel-

ative probabilities be measured by an RPM π, and denote the probabilities

conditional to the occurrence of an event B by πB.

Axiom 1 Conditional relative probabilities can be represented by a relative

probability measure, i.e.

πB ∈ P .

Axiom 2 After the occurrence of B the event W\B is impossible, i.e.

πB(W\B, ∅) = 1.

Axiom 3 Relative probabilities of subsets of B do not depend on the occur-

rence of B, i.e.

A,C ⊆ B ⇒ πB(A,C) = π(A,C).

These three axioms suffice to derive unique conditional probabilities whenever

the condition is a possible event.

Proposition 3 If π ∈ P, B ∈ W , and π(∅, B) = 0, then there exists

exactly one function πB that obeys to the axioms 1 to 3 above. This function

is characterized by

πB(A,C) = π(A ∩B, B ∩ C) ∀A,C ∈ W . (1)
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This justifies the following definition of a conditional RPM.

Definition 5 Be π ∈ P and B ∈ W. The conditional relative probabil-

ity measure for π under condition B is the function πB : W×W → R∪{∞},
defined by (1).

Interpretation πB(A,C) = k is interpreted: “Given the occurrence of

event B, event A is k–times as likely as event C.”

RPMs have the convenient property that conditional probabilities are uniquely

defined for all possible conditions, even when the condition is an event with

zero absolute probability. The conditional probability of event A given that

event B occurres is the relative probability π(A ∩B,B).

If conditional probabilities, as defined with a probability measure, are unique

then the conditional probabilities derived from an RPM are the same.

Proposition 4.A If π ∈ P, B ∈ W, and π(B, W ) > 0, then

µB[π] = µ[πB].

Proposition 4.B If µ ∈M, B ∈ W, and µ(B) > 0, then

πB[µ] = π[µB].

Up to now, we have only shown the existence of RPMs contained in PM.

For those, a conditional RPM exists if and only if the conditional probability

measure of the according probability measure is unique. The next proposition

will demonstrate the existence of other RPMs.

Be P0[A] :=

{
π ∈ P

∣∣∣∣
π(∅, B) = 0 falls A ∩B 6= ∅
π(∅, B) = 1 falls A ∩B = ∅

}
.
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P0[A] is the set of RPMs, for which all events B ⊆ A are possible and all

events B ⊆ W\A are impossible.

P0[W ] = {π ∈ P | π(∅, B) = 0 ∀B 6= ∅}

is the set of RPMs, for which ∅ is the only impossible event. The next

proposition says that each probability measure can be completed to an RPM

in P0[W ].

Proposition 5 For each µ ∈ M there exists a relative probability measure

π ∈ P0[W ], such that µ[π] = µ.

The proof of proposition 5 is given in the appendix. It constructs a hierar-

chy of probability measures, starting with µ. The succeeding measures are

describing conditional probabilities for conditions that are null sets for all

preceding measures. This procedure is closely related to the construction

of a system of lexicographic probabilities as introduced by Blume, Branden-

burger and Dekel (1991) for finite sets W , but also to the construction of a

conditional probability space in Rényi (1976 [1956]).

The subset P0[W ] is isomorphic to the systems of conditional probabilities in

the definition by Myerson (1986) and to the systems of lexicographic proba-

bilities defined by Blume, Brandenburger and Dekel (1991). A RPM π is an

isomorphism to the conditional probability measure P : W × B → [0, 1] in

the notion of Rényi (1976 [1955, 1956]) where B is the subset of all possible

events,

B := {A ∈ W | π(∅, A) = 0}.

Proposition 5 shows that the requirement π(∅, B) = 0 is much weaker than

µ[π](B) = π(B, W ) > 0. It directly follows from propositions 3 and 5 that

if priors are modeled as an RPM π ∈ P0[W ] then posteriors are an RPM
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for all possible events. This feature is an advantage to modeling priors as

conditional probability systems, for which posteriors are ordinary probability

measures, so that there are two very distinct mathematical objects used to

describe beliefs.

If an event A is impossible then πA = π∅. We have seen above that π∅ violates

axiom 7 of the definition of an RPM. Relative probabilities conditional on an

impossible event are always one, which makes it difficult to interpret them.

The construction of conditional RPMs is a mathematical operation that knots

an RPM with an event. The sure event W is neutral in this operation, since

πW = π ∀π ∈ P(W).

An RPM that is neutral with regard to this operation does not exist in P .

As we have seen above, πA ∈ P(W) requires π(∅, A) = 0. Hence, the set P
is not closed with regard to the operation πA for all A ∈ W .

Now, instead of P , consider

P̄ := P ∪ {π∅}.

Proposition 6 For all A ∈ W it is true that

π ∈ P̄ ⇒ πA ∈ P̄ and π = π∅ ⇒ πA = π.

Proposition 6 shows that P̄ is closed with regard to the operation πA and π∅
is the neutral element.

The interpretation of possible and impossible events suggests that after the

occurrence of event B, any event C ⊆ W\B is impossible. An event C ⊆ B,

that was possible under π, will also be possible under the condition that B

occurres. This is implied by the next proposition.
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Proposition 7 If A,B ∈ W, A ∩B 6= ∅, and π ∈ P0[A], then πB ∈ P0[A ∩
B].

An immediate corollary is

Corollary 1 If π ∈ P0[W ], B ∈ W, and B 6= ∅, then πB ∈ P0[B].

Consider the following scenario: An agent forms beliefs about the proba-

bilities of events and successively gets the information that events A1, A2,

A3, . . . occurred. An individual that has no information about the occurrence

of events should consider all events as possible. Let us therefore assume that

her a–priori–beliefs are an RPM π ∈ P0[W ]. If we assume that she revises

her beliefs according to the three axioms above, her posterior beliefs after

getting the information A1, . . . , An will be πB, with B =
⋂n

i=1 Ai.

Her beliefs will then be contained in a set P0[B], where B is the intersection

of all proceeded information. Given a posterior πB the contained information

can be extracted by

B = W\
⋃

A
∣∣∣ πB(A, ∅) = 1.

This shows that information, stored in a posterior belief, can be recalled.

However, this requires that priors are taken out of P0[W ], since otherwise

there may be events that had been considered as impossible right from the

start and without respective information.

6 Independent Probabilities

Remember, two events A and B are called independent of each other, if

µ(A ∩B) = µ(A) µ(B).
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What is meant by the phrase “independent events”? An event is a set of

states of the world. The phrase could be interpreted without any reference

to probabilities: Let us define events A := [a, b] and B := [b, c]. Here, A and

B are dependent in the sense that a change in the parameters defining one

event may have an impact on the other. Let A := [a, b] and B := [c, d].

Here, A and B are independent of each other in the sense that a change in

the defining parameters of one event does not influence the other.

In probability theory “independence” of A and B means

1. “the probability of event A is independent of the occurrence of event B”

and

2. “the probability of event B is independent of the occurrence of event A.”

Using probability measures statement 1 [2] can be made only if B [A] is an

event with positive probability:

1. µ(A) = µB(A),

2. µ(B) = µA(B).

But, if µ(B) = 0, then µB(A) is not uniquely defined, and the validity of

statement 1 can not be decided. For an RPM conditional probabilities are

always unique. This allows for a better definition of independence:

Definition 6 Be π ∈ P und B ∈ W. The relative probability of two

events A,C ∈ W is independent of event B if

π(A,C) = πB(A,C).

Using definition 6, we can say that the absolute probability of an event

A ∈ W is independent of event B ∈ W if

π(A,W ) = πB(A,W ).

For two events with positive absolute probability, definition 3 of independent
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events is equivalent to saying that the absolute probability of one event is

independent of the other.

Proposition 8 Be π ∈ P, µ = µ[π], and µ(B) > 0. The absolute probability

of A is independent of B if and only if A and B are independent events in

the sense of definition 3.

If the absolute probability of A is independent of B then the absolute prob-

ability of B does not need to be independent of A.

Example: If A ⊆ B and π(A, B) = π(B,W ) = 0, then

π(A,W ) = πB(A,W ) = π(A,B) = 0 and

π(B, W ) = 0 6= πA(B, W ) = π(A,A) = 1.

However, there still is a symmetry implied by the independence definition,

which is

π(A,C) = πB(A,C) ⇔ π(C, A) = πB(C,A).

Intuitively one would call a series of events pairwise independent of each

other if the probability of every one event is independent of the occurrence

of the others.

Definition 7 Be π ∈ P. Events A1, A2, . . . are pairwise independent of each

other if π(Ai,W ) = πAj
(Ai,W ), for all i, j with i 6= j.

Corollary 2 Be π ∈ P and µ = µ[π]. If events A and B are independent

according to definition 7 then they are independent according to definition 3.

The corollary follows immediately from proposition 8. This narrows the

definition of independent events down to its intuitive meaning.
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7 Conclusion

The paper introduced a theory of relative probability measures (RPMs). We

have shown that one can calculate with relative probabilities as intuition

suggests. This makes RPMs easy to handle. An RPM allows for a clear

distinction between possible and impossible, sure and almost sure events.

Conditional relative probabilities are uniquely defined for all possible con-

ditions, even if the condition is a null–set. Furthermore, RPMs allow for a

definition of independence that captures the intuition of independent events

much better than the traditional definition.

If interpreted as subjective beliefs, an RPM is able to store information in

such a way that it can be recalled from the posteriors.

Acknowledgements: I am indebted to Hartmut Stein and Horst Stenger

for their helpful suggestions.

Appendix: Proofs

Proof of Lemma 1

1. Axiom 4 implies π(A,A) ∈ R++. Then, axiom 3 implies π(A,A) π(A,A) =

π(A,A). Hence, π(A,A) = 1.

2. If 0 < π(A,B) < ∞, axiom 4 implies 0 < π(B,A) < ∞. From axiom

3 and part 1 of this lemma we conclude π(A, B) π(B, A) = π(A,A) = 1.

Hence, π(A,B) = 1/π(B, A).

3. An ↗ B and axiom 5 imply π(B\An, B) ↘ π(∅, B). From axiom 2 and
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part 1 of this lemma we know that π(An, B) = π(B, B) − π(B\An, B) +

π(∅, B). Hence, π(An, B) ↗ π(B, B) = 1.

4. For π(B, W ) > 0 parts 2 and 3 of this lemma imply π(W,B) = 1/π(B, W ) 6=
∞. Using axioms 3 and 7 we get π(∅, B) = π(∅,W ) π(W,B) = 0.

5. If e.g. π(A,B) = ∞ and π(B,C) 6= 0 then axiom 4 implies π(B, A) = 0

and π(C,B) 6= ∞. From axiom 3 we get π(C,A) = π(C,B) π(B, A) = 0 and

hence, π(A,C) = ∞ by axiom 4.

QED

Proof of proposition 1 Because of axiom 7 we have µ[π](∅) = π(∅,W ) =

0. Lemma 1, parts 1 and 3 imply µ[π](W )= π(W,W ) = 1 and µ(A) =

π(A,W ) ∈ [0, 1] ∀A ∈ W . Now, axiom 2 implies

µ[π](A) + µ[π](B) = π(A,W ) + π(B,W )

= π(A ∪B, W )− π(A ∩B, W ) = µ[π](A ∪B)− µ[π](A ∩B).

Finally, axioms 5 and 7 imply that for each sequence of events {An}, with

An ↘ ∅, µ[π](An) = π(An,W ) ↘ 0. QED

Proof of proposition 2.A First, we show that π[µ] obeys to the seven

axioms defining an RPM. Axiom 1 holds trivially.

2. If π[µ](A∪B, C) ∈ R+, we either have µ(A∪B) = µ(C) = 0 or µ(C) > 0.

In the first case µ(A) = µ(B) = µ(A ∩B) = 0 and therefore

π[µ](A,C) + π[µ](B, C) = 2 = π[µ](A ∪B,C) + π[µ](A ∩B, C).

In the second case

π[µ](A,C) + π[µ](B, C) =
µ(A) + µ(B)

µ(C)
=

µ(A ∪B) + µ(A ∩B)

µ(C)
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= π[µ](A ∪B, C) + π[µ](A ∩B,C).

3. If π[µ](A,B) ∈ R+ and π[µ](B, C) ∈ R+, we have either µ(A) = µ(B) =

µ(C) = 0 or µ(A) = µ(B) = 0 < µ(C) or µ(B) > 0 < µ(C). In the first case

π[µ](A,B) π[µ](B,C) = 1 = π[µ](A,C). In the second case

π[µ](A,B) π[µ](B, C) = 0 = π[µ](A, C).

In case three

π[µ](A,B) π[µ](B, C) =
µ(A)

µ(B)

µ(B)

µ(C)
= π[µ](A,C).

4. π[µ](A,B) = 0 ⇔ µ(A) = 0 ∧ µ(B) > 0 ⇔ π[µ](B, A) = ∞.

5. Let An ↘ ∅. If µ(B) > 0, π[µ](An ∩ B, B) = µ(An ∩ B)/µ(B) ↘ 0. If

µ(B) = 0, π[µ](An ∩B, B) = π[µ](∅, B) = 1 ∀n.

6. Obviously, π[µ](∅, A) = 0[1] if µ(A) > [=]0.

7. π[µ](∅,W ) = µ(∅)/µ(W ) = 0.

By definition π[µ](A,B) = 1 whenever µ(A) = µ(B). Hence, π[µ] ∈ PM.

Furthermore,

µ[π[µ]](A) = π[µ](A,W ) = µ(A)/µ(W ) = µ(A).

QED

Proof of proposition 2.B By definition

π[µ[π]](A,B) =





π(A,W )/π(B, W ) if π(B,W ) 6= 0
∞ if π(A,W ) 6= π(B,W ) = 0
1 if π(A,W ) = π(B,W ) = 0,
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If π(B, W ) 6= 0, axiom 3 and lemma 1, parts 2 and 3, imply

π[µ[π]](A,B) = π(A,W ) π(W,B) = π(A,B).

If π(A, W ) 6= π(B, W ) = 0, π[µ[π]](A, B) = ∞. Suppose π(A,B) 6= ∞.

Then axiom 3 would imply π(A,W ) = π(A,B) π(B, W ) = 0.

If π(A,W ) = π(B, W ) = 0, π[µ[π]](A,B) = 1. Since π ∈ PM, axiom 3 and

lemma 1.2 imply π(A,B) = π(A, ∅) π(∅, B) = 1. QED

Proof of proposition 3 It is straightforward to verify that the function πB

as defined by (1) obeys to axioms 1 – 6 in definition 4. Axiom 7 holds if and

only if π(∅, B) = 0. Then, it is obvious that axioms A1 – A3 hold for πB.

It remains to show that this is the only function for which axioms A1 – A3

hold.

Be πB a function that obeys to axioms A1 – A3. Then πB(∅, C\B) = 1 for

all C ∈ W , and

πB(B ∩ C, C) = πB(C,C)− πB(C\B, C) + πB(∅, C)

= 1− πB(∅, C\B) πB(C\B,C) + πB(∅, C) = 1.

Be A ∈ W . If πB(A,C) ∈ R+ then

πB(A,C) = πB(A ∩B,C) + πB(A\B, C)− πB(∅, C)

= πB(A ∩B, C) πB(C, B ∩ C) + πB(∅, A\B) πB(A\B, C)− πB(∅, C)

= πB(A ∩B, B ∩ C) = π(A ∩B, B ∩ C).
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If πB(A,C) = ∞ then πB(C, A) = 0 = π(C∩B, B∩A). Hence, π(A∩B, B∩
C) = ∞. This shows that πB is characterized by (1). QED

Proof of proposition 4.A If π(B, W ) > 0 then µ[π](B) > 0. Hence, µB[π]

is unique, and for all A ∈ W

µB[π](A) =
µ[π](A ∩B)

µ[π](B)
=

π(A ∩B,W )

π(B, W )
= π(A ∩B, B).

Lemma 1.4 and proposition 3 imply that πB ∈ P . Therefore, µ[πB] is defined,

and

µ[πB](A) = πB(A,W ) = π(A ∩B, B).

Proof of proposition 4.B For all A,B, C ∈ W it is true that

πB[µ](A,C) = π[µ](A ∩B, C ∩B)

=





µ(A ∩B)/µ(C ∩B) if µ(C ∩B) 6= 0
∞ if µ(A ∩B) 6= µ(C ∩B) = 0
1 if µ(A ∩B) = µ(C ∩B) = 0.

If µ(B) > 0 then µB is unique and

πB[µ](A,C) =





µB(A)/µB(C) if µB(C) 6= 0
∞ if µB(A) 6= µB(C) = 0
1 if µB(A) = µB(C) = 0

= π[µB](A,C).

QED
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Proof of propostion 5 Be µ ∈ M and “<” a relation that well–orders2

W such that W < A < ∅ for all A ∈ W\{∅,W}. First, we construct two

functions κ : W → Ω and m : Ω →M, where Ω is the class of ordinals.

Set m[0] := µ and κ(A) := 0 for all A with µ(A) > 0. Define

N (µ) := {A ∈ W | µ(A) = 0}.

Be N 1 := N (µ) and N1 the first element of N 1 with respect to the well–

order “<”. Set κ(N1) := 1 and choose a probability measure m[1] with

m[1](N1) = 1. Now, set

κ(A) := 1 for all A ∈ N 1, with m[1](A) > 0.

In general, for any ordinal ω > 0 set

N ω :=
⋂

k<ω

N (m[k]), where N 0 := W ,

Nω := min
<
N ω,

m[ω] ∈ {µ ∈M | µ(Nω) = 1} arbitrary, and

κ(A) = ω ∀A ∈ N ω, with m[ω](A) > 0.

2A well ordering relation on W is a binary relation with the following properties:

1. For all A, B ∈ W , with A 6≡ B, either A < B or B < A.

2. For all A, B,C ∈ W, A < B ∧ B < C implies A < C.

3. For each A ⊆ W there exists an A ∈ A, with A < B ∀B ∈ A\{A}.
The existence of a relation that well–orders W is implied by the Well–Ordering Theorem
of Cantor und Zermelo (see Levy, 1979).
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This definitory process is pursued until an ordinal k∗ is reached, for which

N k∗ = {∅}. Now, set κ(∅) := k∗ and stop the process. Since N k ⊂ N k−1,

the process stops at the latest with the ordinal |W|, i.e. k∗ ≤ |W|.

By construction of κ for all A,B ∈ W ,

κ(A) ≥ κ(A ∪B) (2)

m[κ(A)](B) > 0 ⇒ κ(A) ≥ κ(B). (3)

m[κ(A)](B) = 0 ⇒ κ(A) 6= κ(B). (4)

Be π(A,B) :=





m[κ(B)](A)
m[κ(B)](B)

if κ(A) ≥ κ(B) ∧ B 6= ∅
∞ if κ(A) < κ(B)
1 if A = B = ∅.

Then 1. π : W ×W → R+ ∪ {∞},

2. If π(A ∪ B,C) 6= ∞, then κ(A ∪ B) ≥ κ(C). From (2) we conclude

κ(A) ≥ κ(C) ∧ κ(B) ≥ κ(C) ∧ κ(A ∩B) ≥ κ(C).

If A ∪B = C = ∅, then

π(A,C) + π(B, C) = 2 = π(A ∪B, C) + π(A ∩B, C).

If C 6= ∅, then

π(A,C) + π(B, C)

=
m[κ(C)](A) + m[κ(C)](B)

m[κ(C)](C)
=

m[κ(C)](A ∪B) + m[κ(C)](A ∩B)

m[κ(C)](C)

= π(A ∪B, C) + π(A ∩B, C).
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3. If π(A,B) 6= ∞ and π(B, C) 6= ∞, then κ(A) ≥ κ(B) ≥ κ(C).

If A = B = C = ∅, then π(A,B) π(B,C) = 1 = π(A,C).

If A = B = ∅ 6= C, then π(A,B) π(B,C) = 0 = π(A,C).

If B 6= ∅ 6= C and κ(B) > κ(C), then π(B, C) = π(A,C) = 0, because of (3)

.

If B 6= ∅ 6= C and κ(B) = κ(C), then

π(A,B) π(B,C) =
m[κ(B)](A)

m[κ(B)](B)

m[κ(C)](B)

m[κ(C)](C)
=

m[κ(B)](A)

m[κ(C)](C)
= π(A,C).

4. Because of (4)

π(A,B) = 0 ⇔ κ(A) > κ(B) ⇔ π(B, A) = ∞.

5. Be {An} a sequence of events with An ↘ ∅. Because of (2) κ(An ∩ B) ≥
κ(B). Hence, for B 6= ∅

π(An ∩B, B) =
m[κ(B)](An ∩B)

m[κ(B)](B)
↘ 0 = π(∅, B).

For B = ∅ we get π(An ∩B, B) = 1 = π(∅, B).

6. π(∅, A) =

{
m[κ(A)](∅)
m[κ(A)](A)

= 0 if A 6= ∅
1 if A = ∅.

7. π(∅,W ) = µ(∅)/µ(W ) = 0.

This shows that π ∈ P .

Since m[κ(B)](B) > 0 ∀B 6= ∅, π(∅, B) = m[k](∅)/m[k](B) = 0. Hence,

π ∈ P0[W ]. Since κ(W ) = 0, µ[π](A) = π(A,W ) = µ(A)/µ(W ) = µ(A) for

all A ∈ W . QED
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Proof of proposition 6 Be π ∈ P̄ . Proposition 3 implies that πA ∈ P if

π(∅, A) = 0. If π(∅, A) = 1, then πA(∅, B) = π(∅, A ∩ B) = 1 for all B ∈ W .

Thus πA = π∅ ∈ P̄ .

If π = π∅, then πA(∅, B) = π(∅, A ∩ B) = 1 = π(∅, B) ∀A,B ∈ W . Hence,

πA = π. QED

Proof of proposition 7 Be A ∩ B 6= ∅ and π ∈ P0[A]. Then π(∅, B) = 0.

Thus, proposition 3 implies πB ∈ P . Be C ∈ W . If A ∩ B ∩ C 6= ∅ then

πB(∅, C) = π(∅, B∩C) = 0. If A∩B∩C = ∅ then πB(∅, C) = π(∅, B∩C) = 1.

Therefore, π ∈ P0[A ∩B]. QED

Proof of proposition 8 Be π ∈ P , µ = µ[π], and µ(B) > 0. Using

proposition 1, Lemma 1.2, axiom 3 in definition 4, and equation (1), we get

µ(A ∩B) = µ(A) µ(B) ⇔ π(A ∩B, W ) = π(A,W ) π(B, W )

⇔ π(A ∩B, W ) π((W,B) = π(A ∩B,B) = πB(A,W ) = π(A,W ).

QED
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