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Abstract. Global games are widely used to predict behaviour in games with strategic comple-
mentarities and multiple equilibria. We establish two results on the global game selection. First,
we show that it is independent of the payoff functions of the global game embedding, though (as is
well-known) it may depend on the noise distribution. Second, we give a simple sufficient criterion
for noise independence in many-action games. A many-action game is noise independent if it
can be suitably decomposed into smaller (say, binary action) games, for which there are simple
criteria guaranteeing noise independence. We also delineate the games where noise independence
may be established by counting the number of players or actions.
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1. Introduction

Games with strategic complementarities often have multiple equilibria that give rise to coordin-

ation problems. Economic applications cover a wide range of topics, including poverty traps and

underdevelopment (see for example Ray [25]) or financial crises (see for example Diamond and

Dybvig [8], Obstfeld [21]). A widely used approach to predict behaviour in such games is by

embedding them in a “global game”. A global game extends a complete information game g by

a payoff function u that depends on an additional state parameter θ not directly observable by

agents. The payoff function u coincides with the payoff function g at the true state, say θ∗, but

agents have to rely on noisy private signals about the true state. This leads to uncertainty not just

about their own relevant payoff function, but also—and more importantly—about the beliefs of

opponents.

Frankel, Morris and Pauzner [9] (henceforth “FMP”) show that as the noise in private signals

vanishes, agents coordinate on some action profile that is a Nash equilibrium of the complete

information game g. This global game selection of g may be used as a prediction and to derive

comparative statics results in games with multiple equilibria. Applications include Morris and

Shin [18]; Cukierman, Goldstein and Spiegel [6]; Rochet and Vives [26]; Coresetti, Dasgupta,

Morris and Shin [4]; Goldstein [10]; Corsetti, Guimarães and Roubini [5]; Guimarães and
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Morris [11], among others. The theory has also been corroborated by experimental evidence, see

Heinemann, Nagel and Ockenfels [12] and [13].

Unfortunately, which equilibrium is selected may depend on the fine details of the global

game. A well known problem is that it may depend on the signals’ noise distribution. FMP

discuss the robustness of the global game selection with respect to the signals’ noise distribution

and provide some conditions under which the global game selection is noise independent, that is,

independent of this distribution.

In this paper, we establish two additional positive results on the robustness of global games.

First, we show that the global game selection, though it may depend on the noise distribution, is

always independent of the embedding payoff function u. This may come as a surprise, since the

process of global game selection is often described informally as “infection” from high and low

parameter regions of the payoff function. In fact we show that it does not even matter whether

the embedding payoff function satisfies certain frequently made assumptions, such as continuity.

This strengthens previous results on global game selection (FMP; Mathevet [16]).

Second, we provide new and simple conditions for noise independence in many-action games.

We show that the global game selection in g may be noise independent if g can be suitably

decomposed into smaller noise independent games. For example, we may split up a n-action

game into many binary-action games for which there are simple criteria that guarantee noise

independence and simple rules for deriving the global game selection.

This approach is useful, since the simplest known criteria to establish noise independence are

through counting the number of players and actions. Carlsson and Van Damme [3] show that

two-player binary-action games are noise independent. In this case, the global game selection is

the risk dominant equilibrium. Morris and Shin [19] show how to find the global game selection

in many-player symmetric binary-action games. Here, the global game selection is the best reply

to the belief that the fraction of players choosing either action is uniformly distributed. Up to

now, most applications of global games use these heuristics in binary-action models. Our result

gives a simple tool to extend them to many action games.

But other criteria in terms of players and actions may also be applied. In this paper, we

establish that all two-player 2 × n action games are noise independent. Oyama and Takahashi

[23] show that symmetric two-player 3 × 3 games are noise independent. Conversely, FMP show

that symmetric 4×4 games may not be noise independent. An example by Carlsson [2] shows that

noise independence may fail in three-player binary-action games. And in this paper, we establish

that it may also fail in two-player 3× 3 games and in symmetric three-player, three-action games.

As far as we know, these two minimal counterexamples are novel contributions to the literature.
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It completes the characterisation of games where noise independence can be established simply

by counting the number of players or actions.

Another criterion that guarantees the noise independence of g is the existence of an equilibrium

that is “robust to incomplete information”, as defined by Kajii and Morris [14]. A heuristic

argument may be found in Morris and Shin [19], but in this paper we give a formalisation. Our

result is closely related to a similar theorem of Oury and Tercieux, who introduce a somewhat

stronger, slightly non-standard, notion of robustness to exploit a link with so-called “contagious”

equilibria [22]. Instead, we give a direct and elementary proof based on the standard notion

of robustness. This allows the application of known conditions for robustness to incomplete

information when trying to determine whether some game is noise independent.

Our paper proceeds as follows. Section 2 contains preliminary definitions and results. The rest

of the paper is organised around a characterisation of the global game selection process given

in section 3. Instead of analysing the limit of a series of global games with shrinking noise,

we show that a single incomplete information game with a fixed noise structure allows one to

determine the global game selection in g directly. Moreover, this incomplete information game

does not incorporate the whole range of the payoff function u of the global game, but depends on

the payoff structure of g alone. This establishes that the global game selection in g is independent

of the embedding payoff function u. We also use the characterisation to prove generic uniqueness

of the global game selection. In section 4 we use it to establish our results on noise independence

in many-action games, and to prove that robustness implies noise independence. In section 5 we

conclude. Most proofs are found in the appendix.

2. Setting and Definitions

In this paper we consider games with a finite set of players I, who have finite action sets

Ai∈I = {0, 1, . . . ,mi} which we endow with the natural ordering inherited from N. We define the

joint action space A as
∏

i∈I Ai, and write A−i for
∏

j,i A j. We say that a = (ai)i∈I ∈ A is weakly

greater than a′ = (a′i)i∈I if ai ≥ a′i for all i ∈ I and write a ≥ a′. The greatest and least action

profiles in A are denoted by m and 0. A complete information game g is fully specified by its

real-valued payoff functions gi∈I(ai, a−i), where ai denotes i’s action and a−i denotes the opposing

action profile. A game g is a game of strategic complementarities1 if greater opposing action

profiles make greater actions more appealing, or more precisely, if for all i, ai ≥ a′i , a−i ≥ a′
−i,

(1) gi(ai, a−i) − gi(a′i , a−i) ≥ gi(ai, a′−i) − gi(a′i , a
′
−i).

1Strictly speaking, it would be more correct to say that g is a supermodular game [28, 29]. However, FMP use the
term strategic complementarities in this context, so we stick to it.
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§2.1. Global Games

Following FMP, we now define a global game Gv(u, φ, f ) as follows. It is an incomplete

information game where payoffs depend on a real-valued random variable θ, called the state

parameter, which is distributed according to a continuous density φ, called the prior distribution.

The individual payoffs in the incomplete information game are given by ui(ai, a−i, θ). f is a tuple

of densities, whose support is a subset of [−1
2 ,

1
2], that we refer to as the noise structure. Each

player i ∈ I observes a private signal xi = θ + vηi about θ, where v > 0 is a scale factor and ηi

an error that is distributed according to the density fi. The random variables {θ, η1, . . . , ηI} are

independently distributed.

Moreover, FMP define four conditions that the payoff function u needs to fulfil:

A1 Strategic complementarities: For every value of θ, the complete information game specified

by ui∈I(·, θ) is a game of strategic complementarities.

A2 Dominance regions: Extreme values of θ make the extreme actions dominant choices.

That is, there exist thresholds θ < θ such that [θ − v, θ + v] is contained in the interior of the

support of φ and for all players i and all opposing action profiles a−i we have

ui(0, a−i, θ) > ui(ai, a−i, θ) for all ai > 0 and θ ≤ θ,

and

ui(mi, a−i, θ) > ui(ai, a−i, θ) for all ai < mi and θ ≥ θ.

A3 State monotonicity: Greater states make greater actions more appealing. More precisely,

there exists K > 0 such that for all ai ≥ a′i and θ ≤ θ′ ≤ θ ≤ θ we have(
ui(ai, a−i, θ) − ui(a′i , a−i, θ)

)
−

(
ui(ai, a−i, θ

′) − ui(a′i , a−i, θ
′)
)

≥ K(ai − a′i)(θ − θ
′) ≥ 0.

A4 Payoff continuity: Each ui(ai, a−i, θ) is continuous in the state parameter.

While assumptions A3 and A4 are mathematically convenient, from an applied point of view

they are not always desirable. Indeed, the pioneering speculative attack model of Morris and

Shin [18] satisfies neither A3 nor A4. Further below, we will show that both assumptions may

be weakened without forgoing the existence of a unique equilibrium prediction.

§2.2. Strategies in Global Games

A strategy for player i is a measurable function si : R → Ai and s strategy profile s is a

tuple of such strategies, s = (si)i∈I. If x is a tuple of signals (xi)i∈I, then s(x) denotes the action

profile (si(xi))i∈I . Slightly abusing notation, for x ∈ R we also denote the action profile given by
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(si(x))i∈I by s(x). A strategy profile s is increasing if each component si is weakly increasing and

left (right) continuous if each si is left (right) continuous. We say that the strategy profile s is

weakly greater than the strategy profile s′ if s(x) ≥ s′(x) for all x ∈ R and write s ≥ s′.

Using Bayes’ rule, agents can derive the conditional density of θ given one’s signal xi, hi(θ|xi),

and the conditional density over opponents signals given θ, π−i(x−i|θ). The conditional density of

x−i given xi can then be calculated as

πi(x−i|xi) :=
∫
R

π−i(x−i|θ)hi(θ|xi) dθ.

To refer to probability of the event x−i ∈ E, conditional on the signal xi, we will sometimes use

the notation

P(x−i ∈ E|xi) :=
∫

E
πi(x−i|xi) dx−i.

Given xi and assuming that opponents j , i follow the strategies s j given by some strategy profile

s, the action ai ∈ Ai yields an expected payoff of

ui(ai, s−i|xi) :=
∫
R

∫
x−i∈R|I|−1

ui(ai, s−i(x−i), θ)π−i(x−i|θ) dx−i hi(θ|xi) dθ.

against the induced opposing action distribution. Let BR(s)i(xi) denote the set of best replies of

player i conditional on the signal xi, viz the set of actions that maximise the expected payoff. A

strategy profile s is a (Bayes-Nash) equilibrium strategy profile if it is a best reply to itself, i.e.

∀i∀xi, si(xi) ∈ BR(s)i(xi).

The upper-best reply strategy is defined as the strategy consisting of the greatest best replies:

β(s)i(xi) := max BR(s)i(xi),

and determines the strategy profile β(s). Strategic complementarities imply that if one opposing

action distribution dominates another, the greatest best reply to the former is weakly greater than

to the latter. In particular, β is monotonic, i.e., β(s) ≥ β(s′) if s ≥ s′ (see Topkis [28, 29] and

Vives [30]). We can conduct upper-best reply iterations s, β(s), β(β(s)), β(β(β(s))), . . . starting

at some strategy profile s. If β(s) is weakly greater (smaller) than s, the resulting sequence of

strategy profiles will be monotonically increasing (decreasing). As the action space is bounded,

the resulting sequence will then converge pointwise to an equilibrium strategy profile. If we

choose the greatest strategy profile as the starting point for the iteration, the best reply to it can

only be weakly smaller, so that the iteration will converge pointwise to the (necessarily) greatest

equilibrium strategy profile.

As is usual when dealing with games of strategic complementarities, virtually all of our results

are order-theoretic in nature. By standard order-theoretic duality, each result implies a dual result
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with all order-theoretic notions reversed (see Davey and Priestley [7], p. 15). We will invoke this

duality throughout the text.

§2.3. Summary of FMP’s Results

Assuming (A1)–(A4) above, FMP show that in a global game the least and greatest equilibrium

strategy profiles converge to each other as the noise vanishes.

Theorem. (Theorem 1 in FMP) The global game Gv(u, φ, f ) has an essentially unique equi-

librium strategy profile in the limit as v → 0. More precisely, there exists an increasing pure

strategy profile s f such that if, for each v > 0, sv is an equilibrium strategy profile of Gv(u, φ, f ),

then limv→0sv,i(xi) = s f
i (xi) for all xi, except possibly at the finitely many discontinuities of s f .

Since s f is determined up to its points of discontinuity, we will work with the left and right

continuous versions of s f , which we denote by s f and s f respectively.

FMP’s second result implies that the limit strategy profile s f only selects Nash equilibria.

Theorem. (Theorem 2 in FMP) Let Gv(u, φ, f ) be a global game and s f its essentially unique

limit strategy profile. Then for any state parameter θ∗, s f (θ∗) and s f (θ∗) are Nash equilibria of

the complete information game specified by the payoff function u(·, θ∗).

To prove these results, FMP introduce the notion of a simplified global game Gv(u, f ) that

differs from Gv(u, φ, f ) in that θ is uniformly distributed over a large interval containing [θ−v, θ+

v] and individual payoffs depend directly on the private signal xi rather than on the true state

θ. A simplified global game is much easier to analyse, as there is no uncertainty about payoff

functions, and for signals xi within [θ, θ] the conditional densities of opponents’ signals can be

calculated straightforwardly from the noise structure f due to the uniform prior distribution.

Theorem. (Lemma A1, A3, and A4 in FMP) The simplified global game Gv(u, f ) has an

essentially unique, increasing equilibrium strategy profile s f
v . In the limit as v→ 0, s f

v converges

towards s f in horizontal distance, that is

for all ε > 0 there is v > 0 such that for v satisfying 0 < v < v, we have:

∀i∀xi, s f
v,i(xi + ε) ≥ s f

i (xi) ≥ s f
v,i(xi − ε).

Using this result, the simplified global game can be used to derive the global game selection.

Figure 1 illustrates the notion of convergence. Note that this result also implies that the selection

is independent of the prior distribution φ.
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3. Equilibrium Selection in Global Games

For a given global game Gv(u, φ, f ), we define the embedded game g(θ∗) as the complete

information game that has the same set of players and actions as the global game, and which has

the payoff function given by u(·, θ∗). In this case we also say that Gv(u, φ, f ) is a global game

embedding of g(θ∗).

For g(θ∗), the global game can be viewed as an equilibrium refinement. The limit strategy

profile of the global game, s f , determines an action profile s f (θ∗), which is in fact an equilibrium

of the embedded game. Thus the global game approach generically selects a unique equilibrium

of the game g, to which we refer as the global game selection (following Heinemann et al. [13]).

In this section, we provide a conceptually simple characterisation of this selection process that

implies that the selection depends only on the payoff structure of g(θ∗) and on the noise structure

f .

§3.1. Global Games as an Equilibrium Refinement

Our first aim in this section is to show that this approach can by applied to any game with

strategic complementarities.

Lemma 1. For any game of strategic complementarities g, there exists a global game embedding

of g.

We prove this by constructing a global game Gv(u, φ, f ) such that g = g(0). Let u be given by

ui(ai, a−i, θ) := gi(ai, a−i) + θai, for i ∈ I, ai ∈ Ai and a−i ∈ A−i. Clearly, each ui is continuous in

θ, so u satisfies A4. For any fixed θ and ai ≥ a′i , a−i ≥ a′
−i we have

ui(ai, a−i, θ) − ui(a′i , a−i, θ) = gi(ai, a−i) − gi(a′i , a−i) + θ(ai − a′i)

≥ gi(ai, a′−i) − gi(a′i , a
′
−i) + θ(ai − a′i)

= ui(ai, a′−i, θ) − ui(a′i , a
′
−i, θ),
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as g is a game of strategic complementarities. So u exhibits strategic complementarities as well

and satisfies A1. For ai ≥ a′i and θ ≥ θ′ we have that(
ui(ai, a−i, θ) − ui(a′i , a−i, θ)

)
−

(
ui(ai, a−i, θ

′) − ui(a′i , a−i, θ
′)
)

= gi(ai, a−i) − gi(a′i , a−i) + θ(ai − a′i) − gi(ai, a−i) + gi(a′i , a−i) − θ′(ai − a′i)

= (θ − θ′)(ai − a′i),

that is, u satisfies the state monotonicity assumption A3. For all ai < mi and sufficiently large

θi ≥ 0 we have

u(mi, a−i, θi) − u(ai, a−i, θi) = gi(mi, a−i) − gi(ai, a−i) + θi(mi − ai) > 0,

so mi is the dominant action for θ ≥ θi. Analogously, there exists θi ≤ 0 such that ai = 0 is the

dominant action for θ ≤ θi. Choosing θ = max{θi} and θ = min{θi}, u satisfies A2. As we let θ

be distributed over a large interval containing [θ − v, θ + v] and choose f arbitrarily, we have

constructed a global game Gv(u, φ, f ) in which g is the embedded game g(0).

This shows that, at least technically, global games can be used to derive an equilibrium refine-

ment for all games of strategic complementarities. By constructing a global game embedding

Gv(u, φ, f ) of g, and taking v → 0, we find two distinguished equilibria of g = g(θ∗), namely

s f (θ∗) and s f (θ∗) ∈ A, which generically coincide (proposition 4 below). FMP prove that this

equilibrium selection is independent of the prior distribution φ, but may depend on the noise

structure f . In the following subsection, we will show that it is also independent of the choice of

payoff functions u(·, θ) of the global game embedding of g.

§3.2. Attainability

Let g be a complete information game of strategic complementarities. The following incom-

plete information game, constructed around g, will be central to the rest of our results.2

Definition. A lower- f -elaboration, e(g, f ), of g, is defined as the following incomplete in-

formation game. The state parameter θ is uniformly distributed over an interval [−1
2 ,R], with

R ≥ R :=
∑

i∈I(mi + 1). All individuals receive a noisy signal xi = θ + ηi about the true state,

with each ηi drawn according to the density fi, the support of which is a subset of [−1
2 ,

1
2]. The

random variables {θ, η1, ..., ηI} are independently distributed. Players’ payoffs ui are given by

ui(ai, a−i, xi) =


ũi(ai, a−i) if xi < 0,

gi(ai, a−i) if xi ≥ 0,

2It is inspired by a construction in a proof of FMP [9].
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Figure 2. A lower- f -elaboration such that the greatest equilibrium strategy pro-
file, s∗, attains a(g, f ).

with ũi being an arbitrary payoff function that makes the least action dominant, e.g. for all a−i,

ũi(0, a−i) = 1 and ũi(ai, a−i) = 0 when ai , 0. An upper- f -elaboration, e(g, f ), is defined dually:

θ is distributed over [L, 1
2], where L ≤ L := −R, and for each player i the greatest action is

dominant for all signals xi > 0. �

Just as for global games, we define strategy profiles, expected payoffs ui(ai|s, xi), upper-best

reply strategy profiles β(s), and equilibrium strategy profiles in e(g, f ). In any equilibrium

strategy profile s of e(g, f ) we must have s(x) = 0 for signals x < 0. In equilibrium, the

behaviour of players receiving signals smaller than 0 affects the choices of players receiving

signals greater than 0 by the usual “infection” argument (cf. Morris et al. [17]). As a consequence,

even if the action profile a ∈ A is a Nash equilibrium of the complete information game g, the

action profile a is not necessarily played in any equilibrium strategy profile s of e(g, f ). We

say an equilibrium strategy profile s of the lower- f -elaboration e(g, f ) attains a if s(x) ≥ a for

some x ∈ [−1
2 ,R] (and, dually, an equilibrium strategy profile s of an upper- f -elaboration e(g, f )

attains a if s(x) ≤ a for some x ∈ [L, 1
2 ]).

We can use standard results (e.g. Vives [30]) on games with strategic complementarities to

analyse lower- f -elaborations. The upper-best reply operator β(s) is monotonic, and hence there

is a greatest equilibrium strategy profile s∗, which is increasing.

Definition. An action profile a ∈ A is attained from below under f if in some lower- f -elaboration

of g, the greatest equilibrium strategy profile attains a (see figure 2). In particular, we denote

the greatest action profile that is attained from below under f by a(g, f ). As the action space is

finite, this notion is well defined. We define attained from above under f dually, and in particular

we define a(g, f ) as the least action profile used in the least equilibrium strategy profile of some

upper- f -elaboration. �

We will prove that in order to determine the global game selection in g, it suffices to look

at a(g, f ) and a(g, f ). A first easy but useful observation is that to determine a(g, f ) it actually

suffices to look at any one lower- f -elaboration. (Of course, a dual observation holds for a(g, f )).
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Lemma 2. Let e(g, f ) be any lower- f -elaboration, and s∗ its greatest equilibrium strategy profile.

Then

s∗(R) = a(g, f ).

Proof. By definition of a(g, f ), there is a lower- f -elaboration e′(g, f ) of g with a greatest

equilibrium strategy profile s∗∗ that attains a(g, f ). Since s∗∗ is increasing and the joint action

space A is finite, we can identify s∗∗ with a finite sequence z1, z2, . . . , zk, with k ≤ R, of jump

points, at which players switch to greater action profiles. If players follow the strategy profile

s∗∗, a small change in the jump point zn would influence their expected payoffs compared with

s∗∗ only at signals in the interval [zn−1, zn+1]. Thus the maximum distance between any two

adjacent jump points zn and zn+1 must be less than 1. Otherwise, if s∗∗ is an equilibrium strategy

profile then, for sufficiently small ε, the similarly increasing strategy profile determined by the

jump points z1, z2, . . . , zn−1, zn − ε, . . . , zk − ε would be an equilibrium strategy profile as well,

contradicting the maximality of s∗∗. But if the distance between any two adjacent jump points

is less than 1, then zk ≤ R. Equivalently, s∗∗(R) = a(g, f ). Now we may easily verify that the

strategy profile given by the jump points z1, z2, . . . , zk can also be interpreted as the greatest

equilibrium strategy profile s∗ of e(g, f ). �

The following result is an immediate consequence of our characterisation of the global game

selection process in terms of a(g, f ) and a(g, f ). In addition to providing a simple approach to

compute the global game selection, it also allows us to use the concept with respect to a single

game of strategic complementarities, thus making it analytically comparable to other equilibrium

refinements.

Theorem 3. Let Gv(u, φ, f ) be any global game. The global game selection at any state para-

meter θ depends solely on the noise structure f and on the complete information game g(θ), and

is independent of u and φ. More precisely, if s f is the essentially unique limit strategy profile of

Gv(u, φ, f ), and g = g(θ∗) then s f (θ∗) = a(g, f ) and s f (θ∗) = a(g, f ).

The irrelevance of the prior distribution φ for the global game selection was already shown by

FMP. It may be surprising that the choice of payoff function of the global game embedding is

irrelevant as well. After all, the global game selection process is often described as an infection

process, starting from the high and low parameter regions. Thus, one might think that if the

embedded game g is close to the lower dominance threshold θ, this may influence the global

game selection so that it selects a lower equilibrium compared to a global game embedding of g

in which g is close to θ. However, theorem 3 tells us that will not be the case.

Another way to think about theorem 3 is the following. In economic applications, the state

parameter θ is typically interpreted as an economic fundamental affecting the decision problem
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of players. But there may be several economic variables that are candidates for the parameter θ.

Theorem 3 tells us that the choice of the fundamental used to perturb the decision problem is

irrelevant: the global game selection will be the same. It is determined by the payoff structure of

the unperturbed game.

§3.3. The Global Game Selection is Generically Unique

Relative to the set of all games of strategic complementarities, how often does the global game

approach give a sharp prediction? To answer this question, we will show that in a mathematically

precise sense the global game selection is generically unique.

The set of games with a fixed player set I and fixed action sets Ai∈I is naturally identified with

Euclidean space RI×A, endowed with the usual metric. Let G ⊆ RI×A be the set of games of

strategic complementarities. The set G is closed and forms a proper convex cone3 in RI×A. For

some fixed noise structure f , let us denote G−f := {g ∈ G | a(g, f ) , a(g, f )} and let G f be its

complement in G. Then the set G−f is small relative to G f , both in a measure theoretic sense and

in a topological sense.

Proposition 4. G− f is closed in RI×A and of zero Lebesgue measure, while G f is of infinite

measure. Moreover, G f is open and dense in G, while G−f is nowhere dense in G.

Thus, intuitively, for any given game of strategic complementarities, it is extremely unlikely that

the global game selection is not unique. Proposition 4 is our counterpart to FMP’s observation

that in any given global game embedding, the global game selection is unique at almost all values

of the state parameter θ. Indeed, that must hold as long as changes in θ at least slightly perturb

the game whenever the global game selection is not unique, even if assumptions A3 and A4 are

not fully satisfied.

§3.4. Global Game Selection in Discontinuous Global Games

While assumptions A3 and A4 are mathematically convenient, from an applied point of view

they are not always desirable. Consider the finite player three action game in figure 3. It is an

exemplary regime change game, where players’ payoffs depend on whether they reach critical

mass. Intuitively, there are two ways to perturb the game: one can perturb the payoffs as in lemma

1, or one can perturb the critical threshold by setting ξ = θ. In the latter case, which is often

considered in the applied literature, the embedding payoff function u is no longer continuous in

θ, and does not satisfy A3.

It does however satisfy the following, weaker form of state monotonicity.

3The set G is closed under addition and non-negative scalar multiplication of payoff functions, and has non-empty
interior.
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player i

α < ξ|I| ξ|I| ≤ α
0 0 0
1 −1

4
1
2

2 −1 1

where α is the sum over all players actions, and ξ ∈ [0, 2].

Figure 3. Finite-player three-action speculative attack game

A3* Weak state monotonicity: Greater states make greater actions weakly more appealing.

More precisely, for all θ > θ′ and for all i, ai > a′i and a−i we find

ui(ai, a−i, θ) − ui(a′i , a−i, θ) ≥ ui(ai, a−i, θ
′) − ui(a′i , a−i, θ

′).

Again, we find that the approach used to perturb the decision problem is irrelevant: the global

game selection is determined by the payoff structure of the unperturbed game.

Let G∗v(u, φ, f ) be a generalised global game, differing from an ordinary global game in that

u satisfies A3* but not necessarily A3 and A4. By standard results on games with strategic

complementarities, for each v > 0 there exists a greatest equilibrium strategy profile ŝv and a least

equilibrium profile šv. We define the pointwise limits ŝ = lim supv→0 ŝv and š = lim infv→0 šv.

For any embedded game g = g(θ), we call š(θ) and ŝ(θ) the generalised global game selections.

Proposition 5. Suppose the generalised global game G∗v(u, f , φ) is a global game embedding

of g = g(θ∗), such that u is continuous at θ∗. If a∗ = a(g, f ) = a(g, f ), then there is a unique

generalised global game selection at θ∗, that is, a∗ = ŝ(θ∗) = š(θ∗).

4. Noise Independence

For a global game Gv(u, φ, f ), the embedded game g(θ∗) is called noise independent if the

limit strategy profile s f takes on the same values at θ∗ regardless of the choice of f . Theorem

3 says that noise independence is a property of the complete information game g: a game of

strategic complementarities is noise independent under one global game embedding if and only

if it is noise independent under every other global game embedding.

In this section, we will use the notion of attainability to analyse how the global game selection

may depend on the noise structure. For each player i, there must be thresholds z0
i , z

1
i , . . . , z

k
i at

which she is willing to switch to a greater action, given the action distribution of opponents’

actions. The players’ thresholds need to be mutually consistent under the noise structure f .

This problem takes the simplest form—and may be solvable independent of f —if there are few

players or few actions, or if some actions are very appealing for wide range of opposing action

distributions.

The simplest non-trivial games with multiple equilibria are two-player, binary-action games.

For such 2 × 2 games it is known that the global game selection is noise independent; it selects
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the risk dominant equilibrium (Carlsson and Van Damme [3]). In a symmetric 2 × 2 game this

means it selects the best replies to the conjecture that the opponent mixes over both actions

with equal probability. If both the least and greatest actions are best replies to this conjecture,

then the least is prescribed by the left continuous version of the limit strategy s f while the right

continuous version prescribes the greatest.

But noise independence may fail quickly when the player set or the action sets of players are

enlarged beyond size 2. An example of Carlsson [2] shows that noise independence may already

fail in an (asymmetric) three-player, binary-action game.4 Oyama and Takahashi [23] show that

symmetric two-player 3 × 3 games are noise independent, but FMP present an example where

noise independence fails in a symmetric two-player 4 × 4 game. Below, we provide three further

results on how many players or actions it takes to violate noise independence. We show that

any two-player game in which one player’s action space is binary (i.e., every 2 × n game) is

noise independent. We will also give two other examples where noise independence fails in an

asymmetric two-player 3 × 3 game and in a symmetric 3-player, 3-action game. This gives a full

characterisation of games where noise independence can be established simply by counting the

number of players or actions.

A quite restrictive criterion that guarantees noise dependence even in many-player and many-

action games is the “p-dominance” criterion.

Definition. Let p = (pi)i∈I and 4(A−i) be the set of all probability distributions over A−i. An

action profile a∗ in g is p-dominant if for each player i and any opposing action distribution

µ ∈ 4(A−i) that assigns weight µ(a∗
−i) ≥ pi we find that

∀ai,
∑

a−i∈A−i

µ(a−i)gi(a∗i , a−i) ≥
∑

a−i∈A−i

µ(a−i)gi(ai, a−i),

i.e. a∗i is a best response. �

If a∗ is p-dominant for some p with
∑

i∈I pi < 1, then a∗ is the global game selection (see FMP).

For example, it follows that independent of the noise structure, a∗ is the global game selection

in a two-player symmetric payoff game if it is a best reply on the conjecture that the opponent

will play a∗
−i with probability less than 1

2 . The concept of attainability in a lower- f -elaboration

enables us to see why. For any f we find thresholds zi ∈ [0, 1] such that P(x−i > z−i|xi = zi) = 1
2 .

Now, consider the strategy profile s0 where each player i switches from her lowest action to a∗i at

zi. As each player receiving the signal xi = zi assigns a probability of 1
2 ≥ pi to the event that his

opponent plays a∗, p-dominance guarantees that the best reply to s0 is weakly greater than s0.

4Carlsson’s example does not fit well with the usual definition of a global game, since in his setup the players’
signals are not conditionally independent, which is required to apply the theory of FMP. In a previous version of our
working paper we give a similar example where this assumption is satisfied [1].
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lower

dominance

region

(0)i∈I

a∗

x

noise independent game

7

Figure 4. Attaining a∗ by exploiting noise independence of restricted games.

Thus, an upper-best reply iteration from s0 converges towards an equilibrium strategy profile s

that attains a∗.

However, considering strategy profile s0, it seems unnecessarily strict to require that players

are willing to switch from 0 to a∗ immediately. As the notion of attainability implies, it suffices

if a∗ is reached with some intermediate steps, considerably weakening the criterion.

§4.1. A Decomposition Approach to Noise Independence

Elaborating on this idea, we will show that if there exists a suitable decomposition of a game

of strategic complementarities g into smaller, noise independent games, this may be a sufficient

condition for noise independence of g itself. Figure 4 illustrates the idea. If we can show that

certain action profiles are attained in certain lower- f -elaborations that we obtain by restricting

the strategy space of g, we can “patch” these strategy profiles together to obtain a strategy profile

for a lower- f -elaboration of the full game g. In this case, simple known criteria for games with

small action spaces may prove to be extremely useful to analyse games with bigger action spaces.

Definition. Consider a game of strategic complementarities g with joint action set A. For action

profiles a ≤ a′, we define [a, a′] := {ã ∈ A | a ≤ ã ≤ a′}. The restricted game g�[a,a′] is defined

by the restriction of the payoff functions of g to the set [a, a′]. We write a
g
→ a′ if and only if a′

is the unique noise independent global game selection in g�[a,a′], and conversely a
g
← a′ if and

only if a is the unique noise independent global game selection in g�[a,a′]. �

We write 0
g
7−→ a∗ if there exists an increasing sequence 0 < a1 < · · · < ak < a∗ in A

such that 0
g
→ a1 g

→ . . .
g
→ ak g

→ a∗ and a∗
g
←− [ m if there exists an increasing sequence

a∗ < ak+1 < · · · < m in A such that a∗
g
← ak+1 g

← . . .
g
← m.

Now we may state the following sufficient condition for noise independence.

Theorem 6. If 0
g
7−→ a∗

g
←− [ m, then a∗ is the unique noise independent global game selection

in g. More precisely, let Gv(u, φ, f ) be any global game embedding of g, and s f its essentially
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unique limit strategy profile. Let g = g(θ∗). Then:

s f (θ∗) = a∗ = s f (θ∗).

Theorem 6 reveals a connection with the literature on robustness to incomplete information.

Proposition 2.7 and 3.8 in Oyama and Tercieux [24] together imply that if a game with strategic

complementarities can be decomposed—as above—into restricted games, each of which has a

strict p-dominant equilibrium with sufficiently small p (rather than “just” a unique global game

selection), then a∗ is the unique equilibrium of g that is “robust to incomplete information”. The

formal link to our theorem runs via the observation that if an equilibrium is robust to incomplete

information, then it is also the unique global game selection (at least generically), so that the

conclusion of theorem 6 follows. This link is clarified below (cf. our proposition 8 and corollary

9).

However, theorem 6 allows application of wide range of known criteria for noise independence

besides p-dominance, such as the fact that all symmetric 3 × 3 games, all symmetric n-player

binary games, and (as we show shortly) all 2 × n games are noise independent, or indeed the

robustness to incomplete information of some equilibrium of the restricted game. None of these

are equivalent to the p-dominance criterion—the conditions under which our theorem may be

applied are strictly more general. Also, its conclusion does not hinge on the fact that a∗ is a

robust equilibrium. Thus theorem 6 establishes a more direct and more elementary result about

noise independent global game selection.

§4.2. Applications

Consider the global game where payoffs depend on θ as in figure 5. The p-dominance criterion

tells us that (c, c) is the unique noise independent selection for θ > 3, as c is a best reply if one

expects the opponent to chose c with probability one half. If θ < −1, (a, a) is selected for the

same reason, yet we cannot tell which action profile will be chosen if θ ∈ [−1, 3] or whether the

selection will be noise independent at all. However, by looking at 2 × 2 restricted games, and

applying the risk-dominance criterion, we find that a
g(θ)
−→ b and b

g(θ)
−→ c for θ > 0 so (c, c) is the

unique noise independent selection. If θ < 0, (a, a) is uniquely selected as c
g(θ)
−→ b and b

g(θ)
−→ a.

player 1

player 2
a b c

a 4 − θ −θ −4 − θ
b 2 2 0
c θ − 6 θ 2 + θ

Figure 5. Symmetric two-player three-action game
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As indicated, theorem 6 allows the application of more general criteria. For instance, FMP find

that symmetric binary-action games are noise independent and give the following simple criterion

to determine which action profile will be selected. Let I = {1, ..., I}, Ai∈I = {0, 1} and suppose

that gi∈I(ai, a−i) depends only on ai and the number of opponents that play 1 (this is always true if

payoffs are symmetric). Furthermore, let ∆n denote the payoff difference on playing 1 rather than

zero if n opponents play 1. Then (1)i∈I is the unique noise independent selection if
∑I−1

n=0 ∆n > 0

and (0)i∈I is the uniquely noise independent selection if
∑I−1

n=0 ∆n < 0. In other words, the global

game approach selects the best reply on the conjecture that the number of opponents using action

1 is uniformly distributed between 0 and |I| − 1. Theorem 6 allows us to apply this criterion to

games with more than two actions.

player i

players −i
(a, a) (a, b) (b, b) (a, c) (b, c) (c, c)

a 2 −1 −2 −2 −3 −4
b 0 0 0 0 0 0
c −15 −10 −2 −2 1 2

Figure 6. Symmetric three-player game

Consider the three-player symmetric payoff game g in figure 6. As b is a best reply if one

expects his opponents to play (a, a), (a, b) or (b, b) with equal probability, we find that b is the

unique noise independent selection in g�[a,b], so a
g
→ b. Analogously we find b

g
→ c, so a

g
7−→ c.

Then theorem 6 implies that (c, c, c) is selected uniquely and noise independently by the global

game approach. Note that this result holds irrespective of the payoffs against (a, c). Also, we

could set the payoffs of playing c versus (a, a) or (a, b) arbitrarily low without deterring players

to play c.

§4.3. Two player, 2 × n action games

Obviously, in order to fruitfully apply theorem 6, we need as many basic conditions as possible

that guarantee noise independent selection for restricted games. Just counting the number of

players and actions is certainly one of the most simple conditions to check. One possible

extension of a two-player 2 × 2 game is enlarging the action space of just one of the players.

We will show that such games are always noise independent. Let g be any game of strategic

complementarities with I = {1, 2}, A1 = {0, 1}, A2 = {0, 1, . . . ,m2}. For example, figure 7 shows a

2× 4 game. This game does not have a p-dominant action profile and is not concave, so standard

results do not guarantee noise independence.5

5As Oyama and Takahashi [23] show, FMP’s “local potential maximiser” condition is sufficient only in concave
games.
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player 1

player 2
0 1 2 3

0 1, 6 0, 5 0, 4 0, 0
1 0, 0 0, 3 0, 4 1, 7

Figure 7. A 2 × 4 game with no p-dominant action profile

For any a∗2 ∈ A2, if (0, a∗2) = a(g, f ) for some noise structure, a∗2 is simply player 2’s greatest

best reply to player 1’s action 0, and can be attained from below under any noise structure. Now

suppose the action profile (1, a∗2) = a(g, f ). Then there exists a lower- f -elaboration e(g, f ) of

g with an equilibrium strategy profile s∗ that attains (1, a∗2), and s∗ may be identified with the

thresholds z0
1 and z0

2, z
1
2, . . . , z

k
2, where players switch to greater actions. Without loss of generality,

we may assume all thresholds are below R − 1
2 (we can always increase R, extending the region

of the signal space where players play the action profile (1, a∗2)). The opposing action distribution

faced by player 1 at x1 = z0
1 is determined by the probabilities

P(x2 < z j
2|x1 = z0

1) =

∫ z j
2

−∞

π1(x2|z0
1) dx2, j ∈ {0, ..., k}.

Now, the opposing action distribution that player 2 faces at each of her thresholds z j
2 is also given

by these probabilities, since

P(x1 > z0
1|x2 = z j

2) = P(x1 − x2 > z0
1 − z j

2|x2 = z j
2)

= P(x1 − x2 > z0
1 − z j

2|x1 = z0
1)

= P(x2 < z j
2|x1 = z0

1) =: p j, j ∈ {0, ..., k},

where the second equality follows from the uniform prior distribution of θ.

Let z = min{z0
1, z

0
2, z

1
2, . . . , z

k
2} be the smallest of the thresholds used in the strategy profile

s∗, and let i∗ be the associated player switching at z (that is, z = z0
i∗). Now, if we consider a

different noise structure f ′, we can construct a similarly increasing strategy profile s∗∗ by again

putting i∗’s smallest threshold z̃0
i∗ to z, and then simply rearranging the k + 1 remaining thresholds

{z̃0
1, z̃

0
2, z̃

1
2, . . . , z̃

k
2} − {z̃

0
i∗} such that the k + 1 equations

P(x2 < z̃0
2|x1 = z̃0

1) = p j, for j ∈ {0, ..., k}

hold under the new noise structure. In this way, the action distributions of both players at all

of their thresholds remains unchanged. Hence, since s∗ is an equilibrium strategy in e(g, f ),

it must be the case that s∗∗ is an equilibrium strategy in e(g, f ′), and clearly s∗∗ attains (1, a∗2).

So (1, a∗2) is attained from below under f ′, and we may conclude that a(g, f ′) ≥ a(g, f ). By a

symmetric argument, a(g, f ) ≥ a(g, f ′). Thus a(g, f ) = a(g, f ′), and by duality we may conclude

that a(g, f ) = a(g, f ′). Since f and f ′ were arbitrary, g is noise independent. This establishes
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Proposition 7. Any 2 × n game of strategic complementarities is noise independent.

§4.4. Global Games and “Robustness to Incomplete Information”

A lower- f -elaboration e(g, f ) of g is “close” to g in the sense that conditional payoffs in e(g, f )

coincide with the payoffs in g with high ex ante probability. Kajii and Morris [14] examine

incomplete information games that are close to some complete information game g in this sense.

Specifically, they look for a Nash equilibrium a∗ of g for which, in every incomplete information

game sufficiently close to g, there exists an equilibrium strategy profile s in which players

use the action profile a∗ with high probability. Such equilibria are called robust to incomplete

information. We will show that if a∗ is robust to incomplete information, then a∗ is attained both

from below and from above under any noise structure f . Thus, we can make use of existing

conditions on robustness to incomplete information (see for example Morris and Ui [20]) when

trying to determine whether a given game of strategic complementarities is noise independent.

A conceptual problem that we need to overcome in order to connect robustness and noise

independence, is that the former is defined in a discrete incomplete information framework.

Definition. A discrete incomplete information game u consist of a finite player set I, finite action

sets Ai∈I , a countable probability space Ω and state dependent payoff functions ui : A ×Ω→ R.

Each player receives a measurable signal Pi(ω) = pi, where Pi can take on finitely many values

and P(pi) > 0 for each pi ∈ Pi[Ω]. Under these assumptions, the conditional probabilities P(·|pi)

are well defined, so that players have well defined posteriors over the true state ω and their payoff

function ui(·, ω). �

Let 4(Ai) denote the set of all probability measures on Ai. A (mixed) strategy for player i is a

function σi : Pi[Ω]→ 4(Ai). When player i uses the strategy σi, the probability that she chooses

action ai given the signal pi is denoted by σi(ai|pi). A strategy profile σ = (σi)i is a tuple of

mixed strategies. The probability that the action profile a = (ai)i∈I is played given the strategy

profile σ and given ω is denoted by σ(a|ω). The domain of ui extends to mixed strategies as

follows:

ui(σ(ω), ω) =
∑
a∈A

ui(a, ω)σ(a|ω).

A strategy profile is a (Bayes-Nash) equilibrium strategy profile of a discrete incomplete inform-

ation game u if for all i ∈ I, pi ∈ Pi(Ω) and ai ∈ Ai∑
ω∈P−1[{pi}]

ui(σ(ω), ω)P(ω|pi) ≥
∑

ω∈P−1[{pi}]

ui(ai, σ−i(ω), ω)P(ω|pi)

i.e. if it is a best reply to use σi at the signal pi against the opposing action distribution induced

by σ−i.
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Now let g be a complete information game of strategic complementarities. For an incomplete

information game u, we define

Ωg = {ω|ui(·, ω′) = gi(·) for all i ∈ I, ω′ ∈ P−1
i (Pi(ω))}

as the set of states where each player i receives a signal pi telling her that her payoff function is

gi. A discrete incomplete information game u said to be an ε-elaboration6 of g if P(Ωg) ≥ 1 − ε,

following Kajii and Morris [14]. Although in the event Ωg each player i knows that payoffs are

the same as in g, there will still be uncertainty about the signals that opponents receive, and this

uncertainty affects players’ higher order beliefs.

Definition. A Nash equilibrium a∗ of g is said to be robust to incomplete information (Kajii and

Morris [14]), or more succinctly, a robust equilibrium of g, if for every γ > 0, there exists ε > 0,

such that in any ε-elaboration u of g, there exists an equilibrium strategy profile σ such that a∗ is

played with ex ante probability at least 1 − γ, i.e.
∑
ω∈Ω σ(a∗|ω)P(ω) ≥ 1 − γ. �

The next proposition gives the formal link between robustness and noise independence, showing

that every robust equilibrium is “sandwiched” between a(g, f ) and a(g, f ).

Proposition 8. Let g be a game of strategic complementarities. If a∗ is a robust equilibrium of g,

then a(g, f ) ≤ a∗ ≤ a(g, f ), for any noise structure f .

The proposition slightly generalises a similar result by Oury and Tercieux [22], who use a

more restrictive notion of robustness to incomplete information. They require that a∗ is robust

not only in g itself but in all complete information games in a neighbourhood of g, and then

exploit a link with so-called “contagious” equilibria to show that their notion implies that a∗ is

the unique noise independent global game selection. We can connect our theorem to their result

as follows:

Corollary 9. Let Gv(u, φ, f ) be any global game and s f its essentially unique limit strategy

profile. Suppose g(θ1) = g and g(θ2) = g′ for some θ1 < θ2. If a∗ is a robust equilibrium of both

g and g′, then it is the unique noise independent global game selection at any state parameter

θ∗ ∈ (θ1, θ2). More precisely, s f (θ∗) = a∗ = s f (θ∗) for any noise structure f .

Proof. Fix f and some θ∗ ∈ (θ1, θ2). Since s f is increasing, we find that s f (θ1) ≤ s f (θ∗) ≤ s f (θ∗) ≤

s f (θ2). From proposition 8 we infer s f (θ2) ≤ a∗ ≤ s f (θ1). Thus, s f (θ∗) = a∗ = s f (θ∗). �

6ε-elaborations should not be confused with the notion of lower(upper)- f -elaborations, where f denotes the noise
structure instead of the size of the event Ω −Ωg.
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§4.5. Examples of Noise Dependence

For an example where theorem 6 is of no help, turn to the game in figure 8. It is the two-

player four-action counterexample to noise independence that was discovered by FMP. Using

the attainability criterion, we find that b
g
7−→ a and b

g
7−→ d, so we lack a unique focal point. All

we can say is that either (a, a) or (d, d) will be selected.

player 1

player 2
a b c d

a 2000 1936 1144 391
b 1656 2000 1600 1245
c 1056 1800 2000 1660
d 254 1000 2160 2000

Figure 8. FMP’s counterexample

However, FMP’s counterexample is not the only minimal counterexample to noise independence.

We conclude this section with two other minimal examples. These examples show how the idea

of attainability may be applied to establish the noise dependence of a game.

Let g be the two-player 3 × 3 game given by I = {1, 2}, Ai∈I = {a, b, c} and payoffs as in

figure 9. First suppose η1 is distributed uniformly over [−1
2 ,

1
2 ] while η2 is distributed uniformly

player 1

player 2
a b c

a 30, 10 −15, 0 −15,−15
b 0, 0 0, 0 0, 0
c −10,−40 −10, 0 10, 10

Figure 9. Asymmetric two-player three-action game

over [− 1
10 ,

1
10]. Then (a, a) will be a global game selection. To see this, consider the upper-

f -elaboration of g, in which the action c is dominant for strictly positive signals. The state

parameter θ is distributed uniformly over some interval [L, 1
2 ], and given a signal xi ∈ [L + 1

2 , 0]

the conditional distribution that each player holds over his opponent’s signal is given by the

density

πi(x−i|xi) =


1, 0 ≤ |x−i − xi| ≤ 0.4,

3 − 5 |x−i − xi| , 0.4 < |x−i − xi| ≤ 0.6.

Now, consider the strategy profile in which player 1 switches to action b at zb
1 = 0 and to the

lowest action a at za
1 = −1

6—see figure 10. Player 2 switches at thresholds zb
2 = 0 and za

2 = −1
3 .

If player 1 receives signal x1 = 0, she assigns probabilities 1
6 , 1

3 and 1
2 to the events that his

opponent chooses actions a, b and c respectively. Her expected payoff of playing c is 0 and she

is willing to switch from action c to action b. Similarly, we find that P(x2 ≤ za
2|x1 = za

1) = P(za
2 <
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xia

b

c

action c

is dominant

za
1 = −1

3
za
2 = −1

6
zb
1 = zb

2 = 0

4

Figure 10. (a, a) is attained from above under f in e(g, f ).

x2 ≤ zb
2|x1 = za

1) = P(x2 > zb
2|x1 = za

1) = 1
3 and conclude that player 1 is willing to switch to the

lowest action a given a signal x1 = za
1.

For player 2, we find that P(x1 ≤ za
1|x2 = zb

2) = 1
3 and P(x1 > zb

1|x2 = zb
2) = 1

2 , implying that

the expected payoff of playing c is zero at zb
2, hence equal to the payoff of playing b. Finally, we

find that P(x1 ≤ za
1|x2 = za

2) = 2
3 and P(x1 > zb

1|x2 = za
2) = 1

6 , implying that the expected payoff of

playing a given the signal x2 = ta
2 is zero and equal to the payoff of playing b. Thus there exists

an equilibrium profile in the upper- f -elaboration of g in which the action profile (a, a) is used, so

the equilibrium (a, a) of g is selected by the left continuous version of the limit strategy profile.

However, if η1 follows the density f1(x) = 1 − 2x with support [−1
2 ,

1
2 ], while η2 is distributed

uniformly over [−ε, ε] the global game approach uniquely selects (c, c) for sufficiently small ε.

Consider a lower- f -elaboration of g and a strategy profile specified by the four thresholds zb
i , z

c
i

(i ∈ {1, 2}) at which the players switch to greater actions. Let ∆a,b
i (xi) denote player i’s difference

in payoff of playing b rather than a when given a signal xi, and define ∆b,c
i (xi) analogously. We

first examine the limit ε = 0, so that player 2 is informed about the true state θ. We find that for

zb
1 = 0, zc

1 = 0.15, zb
2 = 0.07, zc

2 = 0.34

∆a,b
1 (0) =

759
2000

, ∆b,c
1 (0.15) =

239
500

, ∆a,b
2 (0.07) =

61
200

, ∆b,c
2 (0.34) =

69
200

,

so players strictly prefer to switch to greater actions at the thresholds and (conducting an upper-

best reply iteration) we see that (c, c) is attained from below under this noise structure. Indeed,

since players strictly prefer to switch at the thresholds, the same must be true if we draw x2

from [θ − ε, θ + ε] and choose ε very small—this only slightly perturbs expected payoffs. And

even as we very slightly perturb the payoffs of the game g, the expected payoff differences at

the thresholds remain positive. Thus (c, c) is a global game selection for all games in some

neighbourhood of the game g. This implies that, for any global game embedding of g, (c, c) is the

unique noise independent global game selection for both the left and right continuous versions

of the limit strategy profile s f .
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player i

players −i
(a, a) (a, b) (b, b) (a, c) (b, c) (c, c)

a 1 1 1 0 −1 −1
b 0 0 0 0 0 0
c −1 −1 −1 −1 2 2

Figure 11. Symmetric three-player game

Finally, let us consider the symmetric three-player, three-action game g specified in figure 11. If

all agents noise terms ηi are distributed identically, then (a, a) will be part of the global game

selection. To see this, consider the upper- f -elaboration of g and the strategy profile s where all

players choose to play a for negative signals and the dominant action c for positive signals. At

xi = 0, agents hold a Laplacian belief about opponents actions, i.e. they expect to face (a, a),

(a, c), (c, c) with probability 1
3 . On that belief, each action yields an expected payoff of 0, and

agents are indeed willing to switch at the threshold. That is to say, s is an equilibrium strategy

profile in e(g, f ) and attains (a, a, a) from above. Thus, for any global game embedding with

g = g(θ∗) we find s f (θ∗) = (a, a, a).

However, if η1 and η2 are both uniformly distributed over [−1
2 ,

1
2 ] while the third agent receives

a very precise signal, the global game approach uniquely selects (c, c, c). Consider a lower- f -

elaboration of g and the strategy profile s where agents 1 and 2 switch from a to c on receiving a

signal xi = 0. The third agent switches to action b at the threshold tb = 0.01 and to action c at

tc = 0.1. Let ∆a,b
i (xi) denote player i’s difference in payoff of playing b rather than a when given

a signal xi, and define ∆b,c
i (xi) and ∆a,c

i (xi) analogously. We first examine the degenerate case

x3 = θ, where player 3 is informed about the true state. We find that for i ∈ {1, 2}

∆a,c
i (0) =

299
5000

, ∆b,c
i (0) =

2197
20000

, ∆a,b
3 (0.01) =

1
50
, ∆b,c

3 (0.1) =
2

25
,

so agents strictly prefer to switch to greater actions at the thresholds and (using an upper-best

reply iteration) we see that (c, c, c) is attained from below under this noise structure. Indeed,

since players strictly prefer to switch at the thresholds, the same must be true if we draw x3

from [θ − ε, θ + ε] and choose ε very small—this only slightly perturbs expected payoffs. And

even as we very slightly perturb the payoffs of the game g, the expected payoff differences at

the thresholds remain positive. Thus (c, c, c) is a global game selection for all games in some

neighbourhood of the game g. This implies that, in any global game embedding of g, (c, c, c)

is the unique noise independent global game selection for both the left and right continuous

versions of the limit strategy profile s f .
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Symmetric Games Asymmetric Games

actions: 2 each 3 each 4 each actions: 2 each 2 × n 3 each

2 players �a �b ×c 2 players �a �* ×*

3 players �c ×* 3 players ×d n/a
n players �c n players ×e n/a

� Noise independent × Counterexample to noise independence exists.
* This paper, Section 4. a Carlsson and Van Damme [2]. b Oyama and Takahashi [5].
c Frankel, Morris and Pauzner [4]. d Carlsson [1]. e Corsetti et al. [3]

Table 1. Noise (In)dependence
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5. Conclusion

The theory of global games is a powerful tool for equilibrium selection in games of strategic

complementarities with multiple equilibria. It is sometimes interpreted as a modelling device for

the effects of strategic uncertainty on the stability of equilibria. Experiments support this view

and indicate that, even though real players may deviate from a global game selection towards

more efficient action profiles, comparative statics with respect to the parameters of the payoff

function work precisely as predicted by the theory. In spite of these favourable properties, the

theory of global games has almost exclusively been applied to binary-action games. The two

main reasons that kept researchers from applying it to models with more than two actions seem

to be (i) the tedious process required for deriving a global game selection and (ii) a lack of simple

conditions under which the global game selection is independent of the chosen global game.

Characterising the global game selection by attainable actions (theorem 3) simplifies the

process of deriving it. It also shows that out of the three elements that define a global game

embedding (the prior distribution, the generalised payoff function, and the conditional distribution

of private signals) only the signals’ distribution affects the global game selection. Generically, it

does not matter if the generalised payoff function is continuous or not. If the number of players

and actions is sufficiently small, the signal’s distribution does not affect the global game either.

In this paper, we have completed the characterisation of cases where noise independence can be

judged simply by looking at the number of players and actions. Table 1 provides a summary of

these results.

From an applied perspective, the most powerful result in this paper is theorem 6. It implies

that the global game selection may be derived by decomposing a many-action game into smaller

games, for which existing heuristics and noise independence results can be applied. For instance,

in symmetric binary-action games, the noise independent selection is simply the best response to

a uniform distribution of the share of other players choosing one or the other action. With our
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results, this rule can be applied to any game with finitely many actions to find the unique noise

independent selection, provided that pair-wise comparisons of neighbouring action profiles all

point towards the same equilibrium.

Simplified conditions for noise independence and a manageable heuristic to derive the global

game selection in games with finitely many actions make it easier to apply the theory of global

games. That should facilitate research on topics where strategic complementarities are crucial.

Appendix

Proof of Theorem 3

The theorem is an immediate consequence of the following three lemmas.

Lemma 10. Let Gv(u, φ, f ) be any global game embedding of g and s f its essentially unique

limit strategy profile. Let g = g(θ∗). We have:

s f (θ∗) ≥ a(g, f ), and dually, s f (θ∗) ≤ a(g, f ).

Proof. We prove the first inequality. Without loss of generality assume that θ∗ = 0. Also, for the

moment, fix some v ∈ (0, 1).

Consider the simplified global game Gv(u, f ). We will want to assume that its random state

parameter θ is distributed over an interval [L,R] where L ≤ min{θ−1,−1
2 } and R ≥ max{θ+ 1,R}.

This will allow us to compare the simplified global game with a lower- f -elaboration of g later in

the proof. For Gv(u, f ), this might mean extending the range over which θ is distributed further

into the dominance regions. But that will not change its essentially unique equilibrium profile s f
v ,

other than enlarging the range in which dominant actions are prescribed. So this is without loss

of generality.

Consider the lower- f -elaboration e(g, f ), with θ distributed on [ 1
v L, 1

v R]. Its greatest equilib-

rium strategy profile s∗ is increasing and satisfies s∗(x) = a(g, f ) for x ≥ R. Define the profile

sv:

for all i ∈ I, sv,i(x) :=


0 if x < 0,

s∗i (x/v) if 0 ≤ x ≤ vR,

a(g, f ) if vR < x.

We will compare the simplified global game with a “compressed” version of e(g, f ), where all

individual noise variables ηi have been scaled by the factor v, and θ is distributed uniformly

on [L,R]. We denote this compressed lower- f -elaboration of g by ev(g, f ). Compressing the

elaboration amounts merely to a relabelling of signals. Therefore, the restriction of sv to the

signal space of ev(g, f ) is an equilibrium strategy profile of ev(g, f ). Note also that in the games
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Gv(u, f ) and ev(g, f ) the distributions of opponents’ signals conditional on a player’s own signal

are identical.

Now suppose that players follow the strategy profile sv in the simplified global game Gv(u, f ).

For any player i, and any signal xi < 0, 0 is a dominant action in ev(g, f ), so that β(sv)i(xi) = 0 =

sv,i(xi) in Gv(u, f ). For xi ≥ 0, β(sv)i(xi) ≥ sv,i(xi), since sv,i(xi) is the best reply to sv,i under the

payoff function u(·, 0) = g, and hence the greatest best reply under the payoff function u(·, xi)

must be weakly greater than by assumption A3.

In sum, β(sv) ≥ sv, so an upper-best reply iteration starting at sv yields a monotonically

increasing sequence of strategy profiles that converges to the essentially unique, increasing

equilibrium strategy profile s f
v of Gv(u, f ). Thus,

s f
v (vR) ≥ sv(vR) = s∗(R) = a(g, f ).

Since s f
v is increasing, it follows that for all x ≥ vR, s f

v (x) ≥ a(g, f ).

Since the choice of v was arbitrary, the above argument shows that for all ε > 0, there is v > 0

such that s f
v (ε) ≥ s f

v (vR) ≥ a(g, f ) for all v ≤ v (just take v = ε/R). Hence:

∀ε > 0 : limv↘0s f
v (ε) ≥ a(g, f )

implying

s f (0) = limε↘0(limv↘0s f
v (ε)) ≥ a(g, f )

as claimed. �

The next two lemmas establish that the converse of lemma 10 also holds.

Lemma 11. Let Gv(u, φ, f ) be any global game embedding of g and s f its essentially unique

limit strategy profile. Let g = g(θ∗), and assume that s f is continuous at θ∗. Then we have:

s f (θ∗) ≤ a(g, f ), and dually, s f (θ∗) ≥ a(g, f ).

Proof. We will prove the first inequality. Consider again the simplified global game Gv(u, f ).

Without loss of generality we will assume that θ = 0. Since the joint action space is finite,

continuity of s f at θ∗ implies that, for some δ > 0, s f is constant, and equal to some a∗ ∈ A, on

the interval [θ∗ − δ, θ∗ + δ]. Since s f
v , the right continuous equilibrium strategy profile of the

simplified global game Gv(u, f ), converges towards s f in horizontal distance, there must be v > 0

such that for v < v, s f equals s f
v on the sub-interval [θ∗ − δ/2, θ∗ + δ/2].

Fix some v∗ < min{δ/2, v}. Consider the “compressed” lower- f -elaboration ev∗(g, f ), where all

individual noise variables ηi have been scaled by the factor v∗, and θ is distributed uniformly on

the interval [−1
2 ,R], with R the same as in the simplified global game. Assume that in this game
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players use the strategy profile s given by:

for all i ∈ I, si(x) =


s f

v∗,i(xi) if xi ≤ θ
∗,

s f
v∗,i(θ

∗) if xi > θ
∗.

For any player i, and any signal xi < 0, 0 is a dominant action for i both in ev∗(g, f ) and in

Gv∗(u, f ). So in the game ev∗(g, f ), we have

for xi < 0, β(s)i(xi) = 0 = s f
v∗,i(xi) = si(xi).

For xi ∈ [0, θ∗], player i’s opponents receive signals smaller than θ∗ + δ
2 and behave as if they

were following s f
v∗,i(xi). Since the distributions of their signals are identical in Gv∗(u, f ) and

ev∗(g, f ), but i’s payoff function is given by ui(·, θ∗) in ev∗(g, f ) and by ui(·, xi) in Gv∗(u, f ), in the

game ev∗(g, f ) we have

for 0 ≤ xi ≤ θ
∗, β(s)i(xi) = β(s f

v∗)i(xi) ≥ s f
v∗,i(xi) = si(xi),

where the inequality follows from the state monotonicity assumption A3 and the fact that s f
v∗ is

the greatest equilibrium profile of Gv∗(u, f ).

For xi > θ∗, player i’s opponents receive signals greater than θ∗ − δ
2 . Since for such signals

s is constant and equal to s f
v∗(θ

∗) = a∗, player i faces action profile a∗
−i. Moreover, a∗ is a Nash

equilibrium under the payoff functions of the game g. This means that in ev∗(g, f ) we have

for xi > θ
∗, β(s)i(xi) ≥ a∗i = s f

v∗,i(xi) = si(xi).

In sum, β(s) ≥ s. Therefore an upper-best reply iteration in the game ev∗(g, f ) starting from s

yields a monotonically increasing sequence of strategy profiles that converge to an equilibrium

profile s∗ ≥ s. It follows that s∗(θ∗) ≥ s(θ∗) = s f (θ∗). Since compressing an elaboration

amounts to a relabelling of signals, in the equivalent uncompressed lower- f -elaboration there

is an equilibrium strategy profile s∗∗ such that s∗∗(θ∗/v∗) ≥ s f (θ∗), Thus s f (θ∗) is attained from

below under f , implying the inequality s f (θ∗) ≤ a(g, f ). �

Lemma 12. Let Gv(u, φ, f ) be any global game embedding of g and s f its essentially unique

limit strategy profile. Let g = g(θ∗), and assume that s f is not continuous at θ∗. Then we have:

s f (θ∗) ≤ a(g, f ), and dually, s f (θ∗) ≥ a(g, f ).

Proof. We will again prove the first inequality. Let {θn}n∈N be a sequence that converges to θ∗

from above. By lemmas 11 and lemma 2, for any θn, the greatest equilibrium strategy profile sθn

of each lower- f -elaboration e(g(θn), f ) attains s f (θn) ≥ s f (θ∗) at R, and hence attains s f (θ∗) at R.
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By definition, for θn we have:

∀i∀xi∀ai,

∫
R|I|−1

(
ui(sθn

i (xi), s
θn
−i(x−i), θn) − ui(ai, s

θn
−i(x−i), θn)

)
πi(x−i|xi) dx−i ≥ 0.

Moreover, by the state monotonicity assumption (A3), the sequence of profiles sθn converges to

s∗ = inf{sθn |n ∈ N} in monotonically decreasing fashion. By the dominated convergence theorem

we find:

∀i∀xi∀ai,

∫
R|I|−1

(
ui(s∗i (xi), s∗−i(x−i), θ∗) − ui(ai, s∗−i(x−i), θ∗)

)
πi(x−i|xi) dx−i

=

∫
R|I|−1

lim
n→∞

(
ui(sθn

i (xi), s
θn
−i(x−i), θn) − ui(ai, s

θn
−i(x−i), θn)

)
πi(x−i|xi) dx−i

= lim
n→∞

∫
R|I|−1

(
ui(sθn

i (xi), s
θn
−i(x−i), θn) − ui(ai, s

θn
−i(x−i), θn)

)
πi(x−i|xi) dx−i ≥ 0.

So s∗ is an equilibrium strategy profile in e(g(θ∗), f ). Clearly s∗ attains s f (θ∗) at R. �

Proof of Proposition 4

As in lemma 1, for any game g ∈ G we define a global game embedding ug by setting

ug
i (a, θ) := gi(a) + θai for i ∈ I, a ∈ A.

To prove that G f is dense in G we need to show that whenever a(g, f ) , a(g, f ) there is a

game g′ ∈ G f arbitrarily close to g. Suppose a(g, f ) , a(g, f ). Since the joint action space

is finite, there is ε > 0 such that in the global game embedding ug we have s f (θ) = s f (θ) for

θ ∈ [−ε, 0) ∪ (0, ε], i.e., the global game selection is unique. By theorem 3, if the global game

selection is unique at θ, then a(ug(θ), f ) = a(ug(θ), f ), so ug(θ) ∈ G f , as required.

Next we will show that G− f is closed, so that G− f is closed in G and (hence) nowhere dense,7

and G f is open in G. For r > 0, let Br(g) denote the open ball in RA×I with radius r around g.

First we prove:

Claim. If, for some g and ε > 0, we have ug(θ) ∈ G f for all θ ∈ [−ε, ε], then g′ < G− f for any

g′ ∈ B ε
2
(g).

Proof of Claim. By theorem 3, we find a∗ = a(ug(θ), f ) = a(ug(θ), f ) for all θ ∈ [−ε, ε]. Now

let g′ ∈ B ε
2
(g), and without loss of generality suppose g′ ∈ G.8 For all i, a−i, and a′i ≤ ai we find

ug
i (ai, a−i,−ε) − ug

i (a′i , a−i,−ε) = gi(ai, a−i) − gi(a′i , a−i) − ε(ai − a′i)

≤ gi(ai, a−i) − gi(a′i , a−i) − ε

≤ g′i(ai, a−i) − g′i(a
′
i , a−i).

7A set is nowhere dense if the complement of its closure is dense.
8If g′ < G, then g′ < G− f is trivially fulfilled.
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For any opposing action distribution, this implies that the upper best reply under g′ is weakly

greater than under ug(−ε). Thus, the greatest equilibrium profile of e(g′, f ), derived in an

upper best reply iteration, is weakly greater than the greatest equilibrium profile of e(ug(−ε), f ).

So a∗ = a(ug(−ε), f ) ≤ a(g′, f ). Using a symmetric argument, we establish that a(g′, f ) ≤

a(ug(ε), f ) = a∗. In the same way, we show that a(g′, f ) = a∗, proving our claim.

Now consider any g ∈ RA×I − G− f . If g < G, then one of the inequalities in (1) is violated,

and that holds in an open ball around g. If g ∈ G, then we consider the global game embedding

ug. Surely g ∈ G f , so by theorem 3 the limit strategy profile s f is continuous at θ = 0. Hence

there is ε > 0 such that ug(θ) ∈ G f for all θ ∈ [−ε, ε]. By our claim B ε
2
(g) ⊆ RA×I −G− f . Thus

RA×I −G− f is open, and G− f is closed.

Finally, we establish genericity in a measure theoretic sense. A subset P of RA×I is called

porous if there are λ ∈ (0, 1) and k > 0 such that for any g ∈ P and ε ∈ (0, k), there exists some

y ∈ RA×I such that Bλε(y) ⊆ Bε(g) − P. Any porous subset of RA×I is a Lebesgue null set (see

[15], p. 220–222). Define:

G− f
k := {g ∈ G | a(g, f ) , a(g, f ) and ug(θ) ∈ G f ,∀θ ∈ [−k, 0) ∪ (0, k]}.

We will prove that G− f
k is porous. Assume g ∈ G− f

k and choose ε ∈ (0, k). Setting g′ := ug( ε2 ), we

know that {ug′(θ) ∈ G | θ ∈ (− ε2 ,
ε
2 )} ⊆ G f . Then our claim implies that B ε

4
(g′)∩G− f

k = ∅. Setting

λ = 1
4 , we have for ε ∈ (0, k) that Bλε(g′) ⊆ Bε(g) − G− f

k , i.e., G− f
k is porous. This means that

G− f =
⋃
{k∈Q | k>0}G

− f
k is a countable union of Lebesgue null sets, so that G− f is a null set itself.

To see that, in contrast, G is of infinite Lebesgue measure, note that its interior is non-empty. In

addition, for each ball B contained in G, we find another ball of greater measure, disjoint from B,

by multiplying the payoffs of games in B with a sufficiently large constant. Thus G must be of

infinite measure. �

Proof of Proposition 5

Note that ŝ ≥ š, so it suffices to show that š(θ∗) ≥ a∗ ≥ ŝ(θ∗). We will prove the first inequality;

the second follows by duality. To do so, we will compare u to a payoff function u′ that satisfies

assumptions A1–A4 so that theorem 3 can be applied.

We say that g strictly favours higher actions than g′ and write g′ ≺ g if for all i, ai > a′i and a−i

we find

gi(ai, a−i) − gi(a′i , a−i) > g′i(ai, a−i) − g′i(a
′
i , a−i).

Note that, given any opposing action distribution, the upper best reply under g will be weakly

greater than the upper best reply under g′.
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Write θ̌ for the lowest possible state in the global game. Without loss of generality we

may assume that g(θ̌) ≺ g(θ∗) ≺ g(θ).9 Consider the game of strategic complementarities

g′i(ai, a−i) = ui(ai, a−i, θ
∗) − kai. Choose k small enough, such that a∗ = a(g′, f ) = a(g′, f ) (G f is

open by proposition 4) and g(θ̌) ≺ g′. Also note that g′ ≺ g(θ∗). And since u is continuous in θ∗,

there is some nearby game g′ ≺ g(θ∗ − ε). Now, let us construct u′:

u′i(ai, a−i, θ) =



ui(ai, a−i, θ̌) if θ < θ∗ − ε,

θ∗−θ
ε

ui(ai, a−i, θ̌) +
θ−(θ∗−ε)

ε
g′i(ai, a−i) if θ∗ − ε ≤ θ < θ∗,

θ−θ

θ−θ∗
g′i(ai, a−i) + θ−θ∗

θ−θ∗
ui(ai, a−i, θ

∗) if θ∗ < θ < θ,

(θ − (θ − 1))ui(ai, a−i, θ
∗) + (θ − θ)ui(ai, a−i, θ) if θ ≤ θ < θ + 1,

ui(ai, a−i, θ) if θ + 1 ≤ θ,

Comparing u and u′, we see that the dominance regions have been shifted to the right, g(θ̌)

is now embedded at θ∗ − ε, g′ at θ∗, g(θ∗) at θ, g(θ) at θ + 1 and the remaining games are linear

interpolations. Thus, u strictly favours higher actions than u′ at each θ. Also, as payoffs are

linearly interpolated between g(θ̌) ≺ g′ ≺ g(θ∗) ≺ g(θ), u′ satisfies A3. Clearly, A4 is satisfied as

well.

Finally, consider the global game Gv(u′, φ, f ). For any v > 0 there exists a lowest equilibrium

strategy profile, denoted s̃v. As u strictly favours higher actions than u′, for the lowest equilibrium

strategy profiles derived in an upper best reply iteration we find šv ≥ s̃v. Thus,

š(θ∗) = lim inf
v→0

šv(θ∗) ≥ lim
v→0

s̃v(θ∗) = a∗,

where the last equality follows by theorem 3 and the fact that a∗ = a(g′, f ) = a(g′, f ). �

Proof of Theorem 6

In view of theorem 3, it suffices to prove that for any noise structure f , a(g, f ) = a∗ = a(g, f ).

We will prove the first equality, the second follows by duality.

Fix some arbitrary noise structure f . By definition, there exists an increasing sequence

0 < a1 < a2 < · · · < ak < a∗, such that for each adjacent pair a, a′ in the sequence, the

unique noise independent selection in the restricted game g�[a,a′] is a′. Consequently, for each

adjacent pair a, a′ there is a corresponding lower- f -elaboration e(g�[a,a′], f ) with a corresponding

equilibrium strategy profile s that attains a′.

We claim that if s1 attains a1 in e(g�[0,a1], f ) and s2 attains a2 in e(g�[a1,a2], f ), then there is

a lower- f -elaboration e(g�[0,a2], f ) of g�[0,a2] with a corresponding equilibrium strategy profile

9We can choose θ and θ in the interior of the dominance regions so that these extend to states θ + ε and θ − ε. But
then, for noise v < ε

2 the exact payoff structure at θ ≤ θ and θ ≥ θ is irrelevant for the equilibrium strategy profiles in
G∗v(u, φ, f ).
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s∗ such that s∗ attains a2. Consequently, there is a strictly shorter increasing sequence 0 <

a2 < · · · < ak < a∗ with the property that for each adjacent pair a, a′ in the sequence there is a

corresponding lower elaboration e(g�[a,a′], f ) and a corresponding equilibrium strategy profile s

that attains a′. By induction, it follows that a∗ is attained from below under f in g�[0,a∗].

To prove the claim, assume that in e(g�[a0,a1], f ), θ is distributed on the interval [−1
2 ,R

1]

and that in e(g�[a1,a2], f ) θ is distributed on [−1
2 ,R

2]. Now consider the lower- f -elaboration

e(g�[0,a2], f ) such that θ takes values in the interval [−1
2 ,R

1 + 1 + R2], and consider the strategy

profile defined by:

si(xi) =


s1

i (xi) if x ≤ R1,

a1
i if R1 < x < R1 + 1,

s2
i (xi − (R1 + 1)) if R1 + 1 ≤ x.

For xi ≤ R1, the opposing action distribution in e(g�[a0,a2], f ) conditional on xi is just like that in

e(g�[0,a1], f ). Since s1 is an equilibrium strategy profile of e(g�[0,a1], f ), we know that s1
i (xi) is the

best reply to s1
−i among the actions {ai ∈ Ai | ai ≤ a1

i }. So it must be that β(s)i(xi) ≥ s1
i (xi) = si(xi)

in the game e(g�[a0,a2], f ).

For xi ∈ (R1,R1 + 1), the opposing action distribution in e(g�[a0,a2], f ) conditional on the signal

xi (weakly) dominates the opposing action distribution conditional on the signal R1, since s is

increasing. By strategic complementarities, β(s)i(xi) ≥ β(s)i(R1) = a1
i = si(xi).

For xi ≥ R1 + 1, the opposing action distribution in e(g�[0,a2], f ) conditional on the signal xi

is just like in that e(g�[a1,a2], f ) conditional on the signal xi − (R1 + 1). Moreover, the opposing

action distribution given the signal xi (weakly) dominates the opposing action distribution given

the signal R1, since s is increasing. This implies β(s)i(xi) ≥ a1
i . Furthermore, we know that s2

i (xi)

is the best reply to s2
i among the actions {ai ∈ Ai | a1

i ≤ ai ≤ a2
i }, since s2 is an equilibrium

strategy profile of e(g�[a1,a2], f ). Combining, we must have β(s)i(xi) ≥ s2
i (xi − (R1 + 1)) = si(xi)

in the game e(g�[a0,a2], f ).

In sum, β(s) ≥ s. Hence an upper-best reply iteration converges monotonically to an equilib-

rium strategy profile s∗ ≥ s. Since, by construction, s(R1 + 1 + R2) = a2, certainly s∗ attains a2.

This proves the claim.

Conclude there is a lower- f -elaboration e(g�[0,a∗], f ) with an equilibrium strategy profile s that

attains a∗. Since s is an equilibrium strategy profile, enlarging the joint action set from [0, a∗] to

[0,m] cannot make players want to switch to smaller actions when they follow the strategy profile

s. Hence a∗ is attained from below under f given the original game g, implying a(g, f ) ≥ a∗.

It remains to be shown that a∗ is the greatest action profile that is attained from below under

f . Towards a contradiction, suppose there is a lower- f -elaboration e(g, f ) of g with a greatest

equilibrium strategy profile s∗ that attains some a∗∗ > a∗. Let θ be distributed on [−1
2 ,R] in
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e(g, f ) and, without loss of generality, let a∗∗ be the greatest action profile that s∗ attains. Recall

that s∗ is increasing.

By assumption, there is a restricted game g�[a,a′] with a
g
← a′ and such that a < a∗∗ ≤ a′.

Consider the lower- f -elaboration of g�[a,a′] with θ be distributed on [−1
2 ,R], and consider the

strategy profile given by:

for all i ∈ I, si(xi) =


ai if s∗i (xi) ≤ ai,

s∗i (xi) if s∗i (xi) > ai.

For all signals xi < 0, si(xi) = ai is the dominant action in e(g�[a,a′], f ). For all signals xi ≥ 0,

the opposing action distribution in e(g�[a,a′], f ), conditional on xi and when players follow the

strategy profile s, weakly dominates the opposing action distribution at xi in e(g, f ) when players

follow s∗. Since s∗ is an equilibrium strategy profile of e(g, f ), it follows that β(xi)i(s) ≥ si(xi) in

e(g�[a,a′], f ).

In sum, β(s) ≥ s in e(g�[a,a′], f ). Thus an upper best-reply iteration converges to an equilibrium

strategy profile s∗∗ that attains a∗∗. Conclude that a(g�[a,a′], f ) ≥ a∗∗ > a. Yet this contradicts that

a
g
← a′. So it must be that a(g, f ) = a∗ after all. As f was arbitrary, this proves the theorem. �

Proof of Proposition 8

Fix some noise structure f . We will prove the proposition by showing that a∗ is attained

from below—and hence, dually, from above—under the noise structure f . First we make the

information structures of lower- f -elaborations discrete, in order for them to fit the definition of a

discrete incomplete information game. Let e(g, f ) be a lower- f -elaboration of g and, for δ > 0,

let the signal space (−1,R + 1
2 ) of e(g, f ) be covered by a partition of intervals of length δ:

Pδ = {pn | n ∈ {`, ` + 1, ..., r}}, with pn = [nδ, (n + 1)δ), `, r ∈ Z, ` < 0 < r,

and the partition Pδ covering (−1,R + 1
2 ).

Now, for each δ > 0, we may consider a discrete incomplete information game eδ(g, f ) based on

e(g, f ), in which instead of receiving their signal xi, players are only informed about the interval

p ∈ Pδ that contains xi and calculates a conditional density πp(x). A pure strategy profile s in

e(g, f ) is said to be an equilibrium under δ-discretised information if and only if it is constant

on every p ∈ Pδ and maximises expected payoff under this constraint, assuming that opponents

follow the same strategy. More precisely:

∀i, ai, p,
∫

x∈p
ui(si(p), s−i|x)πp(x) dx ≥

∫
x∈p

ui(ai, s−i|x)πp(x) dx,

where, as before, ui(ai, s−i|x) denotes the expected payoff of playing ai ∈ Ai.
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The main step in our argument is based on the following claim, which retrieves the robust

equilibria of g in our continuous lower- f -elaborations via the discrete incomplete information

games eδ(g, f ).

Claim. If a∗ is a robust equilibrium of g, then there exists a lower- f -elaboration e(g, f ) such that

for any δ > 0 there is an increasing, pure strategy profile sδ in e(g, f ) that is an equilibrium under

δ-discretised information and attains a∗.

Proof of Claim. Recall that in any lower- f -elaboration, the state parameter θ is distributed

uniformly over some interval [−1
2 ,R]. For θ > 1

2 , it is guaranteed that each player i will receive a

positive signal xi = θ + ηi that informs her that the relevant individual payoff function ui(·, xi)

is given by gi(·). Now fix some δ, δ > 0. In any δ-discretised lower- f -elaboration eδ(g, f ), a

realisation θ > 1
2 guarantees that each player i knows that her payoff function is gi, so

P(Ωg) ≥ P(θ > 1
2 ) =

R− 1
2

R+ 1
2
.

Since a∗ is a robust equilibrium of g, if we choose R sufficiently large, there exists (by definition)

a (mixed) equilibrium strategy profile σ in eδ(g, f ), such that a∗ is played in some interval

p∗ ∈ Pδ with strictly positive probability. Moreover, we can choose R independent of δ, thus

fixing e(g, f ). Conducting an upper-best reply iteration in eδ(g, f ) starting at σ will give a pure

equilibrium strategy profile s that prescribes actions weakly greater than a∗ on the interval p∗.

Similarly, if we conduct an upper-best reply iteration in eδ(g, f ) starting at

∀i, p, s0
i (p) = mi,

we find the greatest (pure) strategy profile sδ ≥ s that is an equilibrium under δ-discretised

information. Moreover, sδ is increasing. This proves the claim.

Thus, if a∗ is a robust equilibrium, then for some elaboration e(g, f ) of g and arbitrarily small δ,

there is a strategy profile sδ that attains a∗ and is an equilibrium under δ-discretised information.

As we choose δ smaller and smaller, the discretised information structure resembles the continu-

ous information structures ever more closely. Intuitively, there should be an equilibrium strategy

profile in e(g, f ) that attains a∗, which is all we need to show.

To do so, let δk = 1
k and consider the sequence of increasing strategy profiles sδk . As the

(“Helly”) space of increasing functions is sequentially compact (see [27], example 107), we may

choose a subsequence sn that converges pointwise towards some s∗. As each sn attains a∗ for

signals below R + 1
2 , so does s∗. We need to show that s∗ is a best reply to itself at any given

signal. Assume the contrary, that is

∃i∃xi∃ai , s∗(xi), ui(ai, s∗−i|xi) − ui(s∗i (xi), s∗−i|xi) > 0.
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Let us assume that ai > s∗(xi) (a symmetric construction can be applied if ai < s∗(xi)). Define:

Dn = {x | ∃m ≥ n such that sm(x) , s∗(x)}, and s̃n(x) =


0 if x ∈ Dn,

s∗(x) if x < Dn.

Note that (s̃n)n converges towards s∗ in pointwise and monotonic fashion, while s̃n ≤ sm for all

m ≥ n. Using the monotone convergence theorem, we conclude

∃n such that ui(ai, s̃n
−i|xi) − ui(s∗i (xi), s̃n

−i|xi) > 0.

Since, for a fixed opposing strategy profile, the opposing action distribution changes continuously

in one’s own signal, so do expected payoffs. Thus, there exists ε > 0 such that

for all x ∈ [xi − ε, xi + ε], ui(ai, s̃n
−i|x) − ui(s∗i (xi), s̃n

−i|x) > 0.

Now, denote by pn the interval containing xi under δkn-discretised information and choose n′ > n

such that sn′(xi) = s∗(xi) and pn′ ⊂ [xi − ε, xi + ε]. Then∫
x∈pn′

[ui(ai, sn′
−i|x) − ui(sn′

i (xi), sn′
−i|x)]πpn′ (x) dx

=

∫
x∈pn′

[ui(ai, sn′
−i|x) − ui(s∗i (xi), sn′

−i|x)]πpn′ (x) dx

≥

∫
x∈pn′

[ui(ai, s̃n
−i|x) − ui(s∗i (xi), s̃n

−i|x)]πpn′ (x) dx > 0.

where the first inequality is due to the fact that sn′ ≥ s̃n, so switching to the higher action ai yields

a lower payoff when facing s̃n
−i. But this contradicts that sn′ is an equilibrium under discretised

information, so we conclude that s∗ must be an equilibrium strategy profile after all. �
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