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Crossing Network versus Dealer Market:

Unique Equilibrium in the Allocation of Order Flow

1 Introduction

Inter–market competition for order flow has been growing significantly in recent

years. Key forces are the deregulation and globalization of financial markets. Tech-

nological progress in communication technologies and a reduction in communica-

tion costs enable customers to access different trading venues independent of their

physical location. The automation of trading has strengthened the popularity of

alternative trading systems, such as crossing networks (CNs) and electronic com-

munication networks (ECNs). These networks attract order flow away from existing

exchanges by offering lower commission prices and the longest after–hours trading.

Thereby, they increase inter–market competition for order flow. One of the ma-

jor concerns with respect to multi–market trading is the question, how liquidity is

allocated between different market venues. In order to provide a liquid platform,

new trading venues must attract sufficient order flow to ensure a high probability of

order execution.

Typically, electronic markets are first established as CNs where market orders are

carried out at a price adopted from traditional markets, in which dealers set prices

to equalize supply and demand. Electronic markets are most successful in attracting

order flow for homogeneous products with large turnover. Once established, many

CNs expand by allowing limit orders and introduce their own price discovery. Then,

they are classified as ECNs. In financial markets, we observe many hybrid market

structures, in which CNs or ECNs are allied with traditional dealer markets. Here,

price discovery results from orders submitted to both market venues and orders that

cannot be executed in the electronic market are eventually routed to a dealer market

for best–price execution.

In this paper, we focus on the allocation of order flow between traditional dealer

markets and a CN. Trading on established dealer markets guarantees immediate

order execution at bid and ask prices quoted by market makers. Trading on the

electronic market is less expensive, as traders do not have to pay for an interme-

diary’s services but only a small commission. However, the execution of an order

submitted is uncertain. The probability of execution depends on the number of

orders submitted. As more traders direct their orders to the electronic matching

market, liquidity increases and raises the probability of execution for all submit-
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ted orders. This, in turn, attracts even more traders to submit their orders to the

electronic market.

The allocation of order flow can be understood as a coordination game with positive

network externalities. If and only if many traders coordinate to trade on the elec-

tronic market, the probability of order execution is high and expected payoff from

trading on this market exceeds the payoff from trading on dealer markets. Coordi-

nation failure may result in the immediate failure of the new market due to a lack of

liquidity. This raises the question under which circumstances and for which sort of

assets or commodities electronic matching markets can co–exist with dealer markets

or even replace them. Related to these are the questions which parameters influence

the traders’ decision where to trade and whether low trading cost are a sufficient

condition for concentration of trade on an electronic crossing network.

We show that traders with a high preference for immediate order execution prefer

trading at traditional dealer markets, while patient traders prefer submitting orders

to a CN. If traders’s beliefs about the value of immediate order execution are private

information, there is a unique equilibrium, in which assets with large turnover and

low average liquidity preference will be traded at the CN. Assuming that liquidity

preference is positively related to price volatility, our model predicts that assets with

large turnover and low price volatility are more likely being traded at electronic

markets, while others are traded at dealer markets.

Previous theoretical research that addresses the allocation of order flow between mar-

ket venues suffers from an indeterminacy due to multiple equilibria of the underlying

coordination game. Pagano (1989) examines competition between two centralized

markets and between a centralized market and direct search for a trading partner.

He focuses on the role of traders’ beliefs about the actions of other traders and their

impact on markets’ performance. There is no intermediary but liquidity arises as a

function of scale. Depending on the transaction cost differential between markets,

multiple rational expectation equilibria arise. If markets have identical transaction

costs, the equilibrium in which both markets exist is unstable and trade will rather

concentrate in one of them. If markets differ in transaction costs or in the search

mechanism there may be either fragmentation or consolidation of trading, depend-

ing on the traders’ initial expectations about other traders’ decisions where to trade.

When there is fragmentation, smaller traders go to the less expensive but illiquid

market and larger traders to the more expensive but liquid market.

Considering competition between a centralized market with an intermediary that

offers guaranteed execution and a decentralized search market where heterogeneous

liquidity traders meet randomly and negotiate prices, Gehrig (1993) analyzes how
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the intermediaries’ pricing behavior is affected by the existence of the search market

and the employed bargaining process. He shows that there is an equilibrium in

which traders with large gains from trade choose to trade with the monopolistic

intermediary while traders with low gains from trade enter the search market. Here,

both markets co–exist and order flow is fragmented.

Glosten (1994) examines an idealized electronic limit order book and shows that it

does not invite competition from other markets while other markets do. Parlour

and Seppi (2003) present a model of competition for order flow between different

pairings of pure limit order markets and hybrid specialist/limit order markets. These

models jointly describe liquidity demand and supply by assuming different types of

traders: limit order traders and intermediaries supply liquidity while market order

traders demand liquidity. Viswanathan and Wang (2002) analyze the traders’ choice

between a limit-order book, a dealership market and a hybrid market structure of

the two when traders differ in size and risk aversion.

Chowdhry and Nanda (1991) analyze how the ability of traders to choose the trading

venue affects functioning and liquidity of markets in the presence of informational

asymmetries and liquidity traders, who are not allowed to switch to another market.

They show that the market with the largest number of liquidity traders attracts liq-

uidity and informed traders, resulting in a concentration of trading in this market.

Hendershott and Mendelson (2000) study the impact of an introduction of a passive

crossing network (CN) on traders and competitive dealer markets. When there are

different types of heterogeneous liquidity and informed traders, liquidity creates a

positive network externality, while informed traders enter the market exclusively on

one market side and, thus, create a negative congestion effect. The most plausible

equilibria share the property that low liquidity preference traders use the CN ex-

clusively, traders with medium net gain use dealer markets when they could not be

matched at the CN, and high liquidity preference traders go to the dealer market

directly. Hendershott and Mendelson analyze comparative statics for some equilib-

ria and argue that dealers’ spreads are increasing in the proportion of traders, who

use dealer markets opportunistically. Traders, who use the CN exclusively, generate

the opposite effect.

These models suggest that markets with different trading costs and market struc-

tures may co–exist. They have one feature in common: there exist multiple equilib-

ria resulting from the coordination problem among traders. Whether order flow is

consolidated on one market or fragmented depends on the initial beliefs of traders

about other traders’ behavior. Given fragmentation of order flow, a sudden change

in initial beliefs can result in traders switching markets and trade concentrating on
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one single market.

Our paper reconsiders the allocation of order flow between a CN and a dealer market

and derives conditions for a unique equilibrium. Concentrating on liquidity traders,

we show that either small differences in traders’ information or a sufficient mass of

traders with low liquidity preference generate a unique equilibrium.

In Section 2, we develop a model of liquidity–based competition between a pure

dealer market and a CN. Traders’ choices of market venues depend on transaction

costs, probabilities of order execution and expected losses from unexecuted orders

that may be interpreted as liquidity preference or as a measure of an asset’s price

volatility. If these losses are the same for all traders and common knowledge among

them, multiple equilibria exist. In Section 3, we analyze the common knowledge

game as a reference scenario. We compare efficiency and stability of equilibria and

calculate critical market shares that are necessary for a CN to drive out dealer

markets.

In Section 4, we allow expected disutilities of unexecuted orders to differ across

individuals (private value game). In each equilibrium there is a threshold such that

all traders with lower disutilities submit orders to the CN, while traders with higher

disutilities trade on the dealer market. There is a unique equilibrium, if there is

a sufficient mass of traders, for whom submitting orders to the CN is a dominant

strategy. By attracting new traders who would not have submitted orders to a dealer

market at the same point in time, a CN creates a minimal liquidity that is sufficient

to attract even some traders, who would have gone to the dealer market otherwise.

Thus, providing services that attract new customers and raise the overall market

thickness is crucial to establish a CN in an environment where liquidity preferences

differ across traders.

In Section 5 we adopt the global-game approach of Carlsson and van Damme (1993):

we return to a common value for the gain from immediate order execution, but intro-

duce noisy private information about this gain. If the noise in private information

is sufficiently small, there exists a unique equilibrium with a threshold signal up

to which agents submit orders to the CN. Agents who estimate the loss from un-

executed trade to be higher than this threshold trade on the dealer market. The

threshold rises with rising bid–ask spread at the dealer market, with rising market

thickness and with falling trading costs in the CN. If the expected disutility from an

unexecuted order is proportional to an asset’s price volatility, this model predicts

that assets with high price volatility or small trading volume are exclusively traded

on dealer markets, while assets with low price volatility or large turnover are traded

in a CN.
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In Section 6 we discuss the robustness of our results with respect to (i) a combination

of private values and private information, (ii) endogenous trading costs, and (iii)

price discovery in the electronic market.

Section 7 concludes the paper and gives an outlook on future research. An appendix

contains all formal proofs.

2 Traders and Markets

Several features of market intermediation contribute to economies of scale: in a CN,

a larger volume of trade raises the probability of finding trading partners with whom

a trade can be carried out. In a traditional dealer market (DM), the market maker

faces inventory risk that declines with the volume of trade and, thereby, allows

lowering trading costs and attract even more traders. In addition, costs of price

discovery and the risk of exploitation by insiders are decreasing in the proportion

of orders that are directed to the same market venue. By these features, the choice

of a market venue is a coordination game with strategic complementarities. The

difference in expected payoffs from directing an order to some market A versus

market B is a monotone function of the relative size of both markets.

Here, we use a stylized model in which strategic complementarities arise only from

the probability of order execution at the CN, while trading costs at the DM and

asset prices are treated as given exogenously. The other features would strengthen

strategic complementarities without affecting our central results as will be explained

in Section 7.

There is a continuum of agents i ∈ [0, 1], from which a finite number of active traders

is selected randomly for both sides of the market. The number of agents who are

selected as buyers is denoted by Nb, the number of sellers by Ns. We assume that

Nb and Ns are independently and identically distributed with prob(Nb 6= Ns) > 0.

Furthermore, we assume that all agents have the same probability of being selected.

Each trader can decide to buy [sell] one unit of the one and only asset either at a

dealer market (DM) or at a crossing network (CN).

In the DM, traders trade with market makers who set bid and ask prices at which

they are willing to buy or sell the asset. We normalize the mid–point of bid and ask

price to zero, so that traders can buy the asset at price tDM and sell at −tDM , where

tDM is half of the bid–ask–spread and sometimes referred to as the DM’s transaction

fee.
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The electronic CN offers purely transactional services without any intervention by

an intermediary. Orders can be submitted to the CN as market orders and are

executed at the mid–point between bid and ask price observed on the DM, i.e. zero.

If an order is executed in the CN, the trader pays a small fee tCN < tDM .

There may be an imbalance of orders on the two sides of the CN, in which case the

excess side is rationed stochastically. In this case, one runs the risk of an order not

being executed. Orders on the excess side are randomly selected to match orders on

the short side. The probabilities with which orders are executed are determined by

the numbers of buyers and sellers who place their orders in the CN, denoted by nb
and ns. The probability of a buy order in the CN to be executed is

πb = min{1, ns/nb}. (1)

The probability of a sell order being executed is

πs = min{1, nb/ns}. (2)

Unexecuted orders may be submitted to the market in the next period or passed

to a dealer automatically. In either case, trades are executed with delay and pos-

sibly at a different price. Traders’ choices of market venues depend on transaction

costs, probabilities of order execution and expected losses from unexecuted orders.

Such losses may arise from traders’ impatience or urgency to trade or from the risk

associated with an asset’s price volatility. Higher price volatility is associated with

higher risk of losing gains from trade and, thereby, increases expected losses from

unexecuted orders. These losses may also depend on the costs of passing orders to

another trading venue and on the length of the time interval until the order can

be resubmitted. We consider a reduced form one–shot game, in which unexecuted

orders leave the trader with some disutility θ ∈ [θ̌, θ̂]. Parameter θ is also referred

to as liquidity preference.

The difference in expected payoffs from submitting an order to the CN instead of

the DM is

E (π (θ − tCN)− (θ − tDM)) . (3)

The model and its parameters are assumed to be common knowledge. For the

disutility of unexecuted orders θ we consider three cases: first, we assume that

all traders face the same disutility θ if an order remains unexecuted. In the next
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section, we assume in addition that θ is common knowledge. This assumption leads

to multiple equilibria for a wide range of values.

In Section 4 we analyze equilibria of a game with private values θi. Disparate

liquidity preferences may result from, for example, idiosyncratic endowments or

(time) preferences. In general, θi may also be influenced by a trader’s risk aversion,

idiosyncratic beliefs or inside information. If the distribution of private values is

common knowledge, a unique equilibrium requires that liquidity preferences are

spread over a wide range with a sufficiently large share of agents for whom the CN

is a dominant strategy. The unique equilibrium is associated with a critical value

θ∗, such that all agents with smaller values submit their orders to the CN, while

agents with higher values go to the DM. However, if the distribution of liquidity

preferences is more concentrated, multiple equilibria persist.

In Section 5 we go back to the extreme case where all traders face the same disutil-

ity. Instead, we apply the global–game approach and introduce small noise in the

observation of θ, so that agents only have private information about this variable.

One possible interpretation may be that traders lack perfect information on the

assets’s price volatility or, at least, doubt that other agents interpret data in the

same way. As a result, traders’ expected losses from unexecuted orders are clus-

tered around θ without being identical. As opposed to clustered private values with

common knowledge of their distribution, here the posterior distribution of beliefs

is private information and agents are uncertain about their relative position in this

distribution.

Optimization under uncertainty establishes an additional equilibrium condition that

leads to a unique equilibrium if the variance of private signals is sufficiently small.

In this case, there exists a unique threshold signal x∗ such that traders with smaller

signals use the CN while traders with higher signals go to the DM. Similar results

can be obtained with ideosyncratic liquidity preferences, when their distribution is

private information. This will be discussed in Section 6.

To our knowledge, this is the first paper that compares the global–game approach, in

which uniqueness of equilibrium arises from small differences in agents’ information,

with a private value game, in which uniqueness requires a sufficient dispersion of

agents’ payoffs.
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3 Common Knowledge Game

When θ is the same for all agents and common knowledge, an individual strategy is

a function ai assigning either market to each θ conditional on whether the agent is

selected as buyer or seller. ai(θ, b) = 1 means that agent i goes to the CN if she is a

buyer and the value of trade is θ. If she is a seller, she goes to the CN if ai(θ, s) = 1.

The total numbers of buyers and sellers, Nb and Ns, are unknown to traders, so that

they always face some uncertainty about successful execution of an order placed at

the CN.

Given a strategy combination a = (ai)i∈[0,1] and disutility θ, the proportions of

agents who submit orders to the CN if selected as buyers or sellers, respectively, are

αb(θ, a) =

∫ 1

0

ai(θ, b) di and αs(θ, a) =

∫ 1

0

ai(θ, s) di (4)

Given these proportions and the random process that selects the number of buyers

and sellers, the probabilities of order execution are well defined. We demonstrate

this using a particular distribution assumption.

Assume that Nb and Ns have a geometric distribution with E(N·) = λ. The geo-

metric distribution follows from the idea that there is an infinite set of agents out of

which potential buyers and sellers are selected randomly. With probability γ a first

agent is selected as buyer. A second buyer is selected with probability γ if and only

if another buyer has been selected already. Thus, the probability of having at least

n buyers is γn and the total number of buyers Nb has a geometric distribution with

an expected number of λ = γ
1−γ . The same procedure is applied to select sellers.

Lemma 1 Suppose a fraction αb of all traders goes to the CN if selected as buyers

and a fraction αs of all traders goes to the CN if selected as sellers. If Nb and Ns are

independently drawn from a geometric distribution with E(N·) = λ, the probability

with which a buy order at the CN is executed is given by

Π(αb, αs) =
αs
αb

ln

(
1 +

αb λ

1 + αs λ

)
.

The probability of execution of a sell–order is Π(αs, αb), accordingly.

Lemma 1 is a generalization of a result by Hendershott and Mendelson (2000, Propo-

sition 3, p. 2081) who prove the special case of αb = αs. All proofs are given in the
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Appendix. For a buyer the expected payoff from going to the CN instead of going

to the DM is

Ũb(θ, a) = (θ − tCN) Π(αb(θ, a), αs(θ, a))− (θ − tDM) (5)

and for a seller accordingly

Ũs(θ, a) = (θ − tCN) Π(αs(θ, a), αb(θ, a))− (θ − tDM). (6)

Let a∗ be a Nash equilibrium. In equilibrium traders go to the market with higher

expected payoff. Thus,

αs(θ, a
∗) =

{
1 if Ũb(θ, a

∗) > 0

0 if Ũb(θ, a
∗) < 0

(7)

and

αb(θ, a
∗) =

{
1 if Ũs(θ, a

∗) > 0

0 if Ũs(θ, a
∗) < 0

(8)

To analyze equilibria, we first show that the same proportions of buyers and sellers

submit orders to the CN.

Lemma 2 If a∗ is a Nash equilibrium of the common knowledge game, then

αb(θ, a
∗) = αs(θ, a

∗) = α(θ, a∗) for all θ.

If different proportions of buyers and sellers submit orders to the CN, their payoffs

differ as well, which contradicts the equilibrium property that traders choose the

trading venue that promises the highest expected payoff. Associated with each

Nash equilibrium a∗ is a market share for the CN of α(θ, a∗). Given the geometric

distribution for the number of traders, the probability of order execution is

π̃(α) = ln

(
1 +

αλ

1 + αλ

)
. (9)

π̃ is strictly increasing in α up to

π̄ = π̃(1) = ln

(
1 +

λ

1 + λ

)
< 0.7. (10)
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For λ→∞, the probability of order execution converges to ln(2) ≈ 0.693.

It is a general property of finite markets that the probability of order execution is

bounded away from 1 even if all potential traders decide for the CN. The numbers of

buyers and sellers are drawn independently and, therefore, it is a rare event that the

numbers on both sides of the market are equal, even when the expected number of

traders on each side is extremely large. Accordingly, each trader faces some positive

probability of being rationed whenever the expected number of traders is finite. This

property has often been neglected by assuming non–atomistic traders as in Gehrig

(1993).

If disutilities from unexecuted orders are extremely large, then the risk at the CN

can never compensate the low fees. Even if a trader believes that all other traders

submit their orders to the CN, for a sufficiently high θ, the DM is a dominant

strategy. The frontier of this dominance region is given by θ0, for which both market

venues promise the same expected payoff, provided that all traders go to the CN.

θ0 is defined by

(θ0 − tCN) π̄ = θ0 − tDM ⇔ θ0 =
tDM − π̄ tCN

1− π̄ (11)

Note that for the geometric distribution with λ → ∞, this value converges to
tDM−ln(2) tCN

1−ln(2)
and not to infinity. For other distributions on the number of traders,

θ0 is also converging to some finite number if the expected number of traders rises

to infinity.

Equilibrium strategies are individually optimal, given that all other agents play the

strategies of the same equilibrium. For θ > θ0 the payoff on the DM exceeds the

expected payoff in the CN, even if all others traders coordinate to use the CN. Given

the high demand for immediacy, even the lowest possible risk of an order not being

executed in the CN outweighs the difference in fees. Here, trading on the DM is a

dominant strategy and the only equilibrium.

For tCN < θ < tDM , agents lose from trading on the DM and expect profits in the

CN. Here, trading in the CN is a dominant strategy and the only equilibrium.

For trading values θ ∈ [tDM , θ0] there are multiple equilibria. In one equilibrium, all

agents go to the DM. A single trader cannot gain by switching to the CN, because

without trading partner her order would not be executed. In another equilibrium,

all agents go to the CN. Their expected payoff is not lower than at the DM and,

hence, no agent has an incentive to leave the CN.

In addition to these pure equilibria, there are mixed equilibria, in which both markets
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co–exist with a market share for the CN of α̃(θ) that increases from zero to one as θ

rises from tDM to θ0. In these equilibria, the market share of the CN just generates

an execution probability for which expected payoffs at both markets are equal, so

that no agent wants to switch. If expected payoffs are the same on both markets,

traders in the CN cannot gain from switching to the DM. On the other hand, a

single trader, say buyer, who switches from DM to CN, would reduce E(πb) and,

thus, would expect smaller gains from trade in the CN. Mixed equilibrium market

share α̃(θ) is given by

π̃(α̃) (θ − tCN) = (θ − tDM) ⇔ α̃(θ) = π̃−1

(
θ − tDM
θ − tCN

)
. (12)

Nash equilibria are summarized in Theorem 1 and illustrated in Figure 1.

Theorem 1 A strategy combination a∗ is a Nash equilibrium of the game with com-

mon knowledge if and only if

αb(θ, a
∗) = αs(θ, a

∗) = 1 for θ ∈ (tCN , tDM),

αb(θ, a
∗) = αs(θ, a

∗) ∈ {0, α̃(θ), 1} for θ ∈ [tDM , θ0],

αb(θ, a
∗) = αs(θ, a

∗) = 0 for θ > θ0.

For a geometric distribution of market size

α̃(θ) =
1

λ
·
[
exp

(
θ − tDM
θ − tCN

)
− 1

]
·
[
2− exp

(
θ − tDM
θ − tCN

)]−1

.

Insert Figure 1 here

Figure 1 Nash equilibria of the common knowledge game. For tCN = 1, tDM = 2

and λ = 15, the upper limit of the multiplicity region is θ0 = 3.953, while π̄ = 0.6614.

Which of the three types of equilibria should one expect in real situations of inter–

market competition? One possible answer to this question is provided by the relative

stability of equilibria. In a Nash equilibrium no single player has an incentive to

deviate. But, intermediaries may compete by attracting a large number of traders

at the same time, e.g. by offering a temporary discount on transaction fees or by

rewarding traders who submit orders to their venue.
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An equilibrium is called ‘strong equilibrium’, if no coalition of players can improve

upon their payoffs by a coordinated deviation from this equilibrium. If all traders

go to the CN, they receive a higher payoff than at the DM, provided that θ < θ0.

Any coordinated deviation by many traders would leave the remaining customers

of the CN with a lower payoff, but deviators would not gain at the DM. Market

consolidation in the CN is a strong equilibrium. Therefore, it is a hard task for a

dealer to attract order flow away from a CN that has already captured the market.

To intrude a CN–monopoly, the dealer has to compensate all traders by lower fees

until the CN is so drained out that lower transaction costs do not compensate for

execution risk and the DM is more attractive even with higher fees.

If all traders go to the DM, it needs a coalition of at least size α̃(θ) switching to

the CN, to improve upon their payoffs. If θ is just above tDM , traders make a

small gain at the DM. A small group of traders joining the CN creates a liquidity

sufficient to raise expected payoffs at the CN above the payoff at the DM. The DM–

equilibrium is rather weak here, and it is easy for a CN to attract the initial order

flow that is necessary to become more attractive than the DM. With rising θ the

DM–equilibrium becomes stronger as coalitions of growing size are needed to raise

the execution probability in the CN to a level that outweighs the difference in fees.

A CN must manage to coordinate a proportion of at least α̃(θ) of traders in order

to intrude a DM–monopoly. This is very difficult in markets with a high θ, because

α̃(θ) rises exponentially. For θ ≥ θ0, the DM–equilibrium is strong and cannot be

improved upon by any coalition.

The mixed equilibrium is very weak. Expected payoffs are the same in both markets

and any coalition with at least one trader on each side of the market can improve

their payoffs by switching from DM to CN. A coalition switching from CN to DM

cannot improve. Therefore, once a CN has a market share of α̃(θ), one should expect

that it takes over the whole market. Critical mass α̃ rises in θ and tCN and falls in

tDM , as these changes reduce the relative advantage of the CN. A rise in the expected

number of traders λ, i.e. rising “thickness” of the market, increases probability of

order execution and makes the CN more attractive. This lowers α̃(θ) and raises θ0.

With respect to the situation where existing DMs face upcoming electronic CNs,

we suggest the following interpretation: the lower the expected value of immediate

trade θ, the easier is it to intrude the market with a CN. Intrusion is possible only

if θ ≤ θ0. For θ > θ0 agents trade on the DM exclusively. While it is increasingly

easy for an intruding CN to win the market when θ goes down, it becomes more

and more costly for market makers to re–attract order flow. To convince traders

to return to the DM, they must be compensated for higher bid–ask spreads. This,
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in turn, is costly for market makers. It pays for the DM to protect itself against

attempts to establish a CN–monopoly. A CN may fail to enter the market if its

market share stays below the critical value α̃(θ).

For trading values θ ∈ [tDM , θ0] multiple equilibria exist. Although these equilibria

differ in strength, it is not possible to predict at which market trade consolidates.

The CN–equilibrium is the only strong equilibrium, but, it is hard to imagine that

a CN may achieve full market share in situations when coordination of almost all

traders is required to provide sufficient liquidity. In laboratory experiments, Van

Huyck, Battalio and Beil (1990) and Chaudhuri, Schotter and Sopher (2001) demon-

strate that it is almost impossible to achieve efficient coordination in such games if

the group size exceeds ten subjects. Traders may be locked in an inefficient equilib-

rium due to a lack of coordination. Multiple equilibria open ways for self–fulfilling

beliefs and inertia effects. Once a market has been established as main trading

venue, braking the monopoly may require tremendous funds to attract the neces-

sary liquidity and keep it until the original monopolist is too exhausted to fight

back.

Mixed equilibria are extremely unstable and strategy combinations that are no Nash

equilibrium will not survive in the long run either. We would therefore expect that

all traders direct their orders to the same market venue. On the other hand, orders

that are not executed in the CN may be passed on to a dealer in the next period.

Then, the dealer gets at least the leftovers, even when initially all traders direct

orders to the CN. The expected proportion of orders that are not executed in the

CN is 1− π̄ which is greater than 0.3 in case of the geometric distribution. Thereby,

an automatic routing of unexecuted orders from CN to DM provides dealers with

a minimum liquidity justifying quotations of bid and ask prices on which the CN

is a free rider. This implies, however, that dealers are taking inventory, because all

orders are from the same side of the market and even out only over time.

4 Private Value Game

Multiplicity of equilibria hinges on the assumption of a common value θ that is

common knowledge to all agents. In this section we show that the equilibrium may

be unique, if liquidity preferences differ across individuals.

Each agent i has a private value of immediacy θi. The distribution of private values

is defined by a density function f(θi). To simplify exposition, we identify agents

with their preferences, i.e. i = θi. We assume that θi ≥ tCN for all θi ∈ supp(f).
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Otherwise, we would need to consider “no trade” as a third option.

Distribution f is common knowledge, and each trader knows her own preference

θi. However, she does not know how many other traders are selected as buyers and

sellers and what their preferences are. Traders for both market sides are selected

according to the random process described in the last section. After selection, a

trader decides to which market she submits her order. A strategy is a function

ai : {b, s} → {0, 1}, where ai(b) = 1 means that trader i goes to the CN if she is

selected as buyer.

Let αb(a) [αs(a)] be the expected proportion of traders who use the CN if they are

selected as buyers [sellers]. For any given strategy combination a, the probability of

execution is πb(a) = Π(αb(a), αs(a)) for a buy order and πs(a) = Π(αs(a), αb(a)) for

a sell order.

Given strategy combination a, the expected payoff for trader i going to the CN

instead of the DM is

Ũb(θ
i, a) = (θi − tCN)πb(a)− (θi − tDM) (13)

if i is a buyer and

Ũs(θ
i, a) = (θi − tCN) πs(a)− (θi − tDM) (14)

if i is a seller. Since the probability of order execution is bounded below 1, Ũb and

Ũs are strictly decreasing in θi for any strategy combination a. Using this property,

we can show that in each equilibrium there is a value θ∗, such that all agents with

private values below θ∗ submit their orders to the CN, while agents with private

values above θ∗ trade on the DM.

Lemma 3 If a∗ is a Nash equilibrium of the private value game, there is a unique

θ∗(a∗) ∈ [tDM , θ0], such that

a∗i(b) = a∗i(s) =

{
1 if θi < θ∗(a∗)
0 if θi > θ∗(a∗)

The associated proportion of agents who submit orders to the CN is given by α∗ =

F (θ∗), where F is the cumulative distribution of private values. The probability of

order execution is π̃(α∗), and excess utility from going to the CN instead of the DM

is

Û(θ∗) = (θ∗ − tCN) π̃(F (θ∗))− (θ∗ − tDM). (15)
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In equilibrium Û(θ∗) = 0, and any zero point of Û describes an equilibrium in which

agents use the CN if an only if their liquidity preferences are below θ∗. If there is a

sufficient proportion of traders, for whom the CN is a dominant strategy, there is a

unique equilibrium, as described by the following theorem.

Theorem 2 Suppose that traders are selected by a geometric distribution and pri-

vate values have a uniform distribution in [tCN , θ̂]. If tDM−tCN
θ̂−tCN λ ≥ 1

2
, the private

value game has a unique Nash equilibrium. If, in addition, θ̂ > θ0 the equilibrium

is associated with an interior threshold tDM < θ∗ < θ0. If, instead, θ̂ ≤ θ0, then

θ∗ = θ0 and (almost) all traders submit orders to the CN.

For a unique equilibrium with an interior threshold, there must be some agents,

with private values above θ0 and a sufficient mass of agents with private values

below tDM . Theorem 2 requires that the expected number of these agents is at

least 1/2. This guarantees a minimal probability of order execution π̃( tDM−tCN
θ̂−tCN ) ≥

ln(4/3) ≈ 0.288. Given this probability at the lower end of [tDM , θ0], the increase in

π that is associated with a rising threshold value θ is too weak to compensate for

the increasing disadvantage of the CN stemming from uncertainty of gain θ. Thus,

Û(θ∗) is monotonically decreasing at θ∗ and equilibrium is unique.

If disutilities of unexecuted orders differ sufficiently between traders to have some

traders for whom going to the DM is a dominant strategy and a sufficient mass of

traders for whom going to the CN is a dominant strategy, then there is a unique

equilibrium with a threshold θ∗, such that all traders with lower disutilities submit

orders to the CN while traders with higher values go to the DM. Under these con-

ditions, initial orders are split between both markets. The market share of the CN

rises with rising tDM and falling tCN . Figure 2 illustrates a unique Nash equilibrium

of this kind.

Insert Figure 2 here

Figure 2 Nash equilibrium of the private value game. An intersection of the two

curves at θ∗ represents a Nash equilibrium if all agents with private values below θ∗

use the CN and agents with private values above θ∗ go to the DM. For tCN = 1,

tDM = 2, λ = 15 and θ̂ = 10, we get θ0 = 3.953 and θ∗ = 3.433. The share of

initial order flow submitted to the CN is F (θ∗) = 27%. Execution probability is

π̃(F (θ∗)) = 59%.

More important than the share of orders initially submitted to a market is the share

of orders that are executed there. If unexecuted orders are passed on to the DM,
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the share of trades executed in the CN is π̃(F (θ∗)) ·F (θ∗), which is only 16% in the

example of Figure 2.

If the support of f is a subset of (tDM , θ0), there are at least three Nash equilibria

comparable to those in the common knowledge game: either initial orders concen-

trate on one of the two markets or initial order flow is fragmented, with some interior

θ∗. In general, multiplicity of equilibria requires that there are very few traders with

private values below tCN . An example with a truncated normal distribution is shown

in Figure 3.

Insert Figure 3 here

Figure 3 Multiple Nash equilibria in the private value game with a truncated normal

distribution of private values, where E(θ) = 3.5 and Var(θ) = 0.25. Truncations are

at θ̌ = tCN = 1 and θ̂ = 10. tDM = 2. There are three equilibria at θ1 = 2.023,

θ2 = 2.828 and θ3 = 3.880. Associated shares of initial order flow submitted to the

CN are 0.2%, 8.9% and 77.6%.

If there are three equilibria, the equilibrium with the largest share of the CN is

strong. The equilibrium with the highest market share of the DM is robust against

deviations of any small coalition. The ”middle” equilibrium is unstable: if some

agents switch from the DM to the CN, they attract others with values just above

θ∗, who attract more agents with even higher values, and so on. With best–reply

learning agents should converge to the equilibrium with the highest market share

of the CN. Vice versa, if some agents originally switch from the CN to the DM.

However, best reply learning needs many periods, while in the common value game,

the best reply of all agents is identical, and once the market share of the CN deviates

from α̃ all agents jump to the winning market immediately.

If there is a unique equilibrium, for example under conditions of Theorem 2, individ-

ual decisions neglect positive external effects on the execution probability in the CN.

Efficiency considerations depend on whether private values are information based

and randomly assigned to agents after their selection as traders or whether these val-

ues are inherent properties of agents’ preferences, e.g. stemming from risk aversion.

In the latter case, and if utility is not transferable across agents, any allocation dif-

ferent from equilibrium reduces expected payoffs for some agents. If execution risk

can be hedged by transferable payoffs, the efficient threshold θ∗∗ maximizes the sum

of individual payoffs weighted with respective probabilities of the agents’ participa-

tion given by the density function f . The same holds if private values are randomly

assigned to agents. Here, f is the density function of the information based private
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value for each agent. The efficient threshold θ∗∗ maximizes the expected payoff with

respect to distribution f .

Theorem 3 If the cumulative density F is continuous and the private value game

has a unique equilibrium, associated with an interior threshold θ∗ < θ̂, then θ∗ is

smaller than θ∗∗.

If prob(θi ∈ (θ∗, θ∗∗)) > 0, the market share of the CN is inefficiently small. Traders

with private values between θ∗ and θ∗∗ submit their orders to the DM. If they would

go to the CN instead, the overall gains for all traders induced by higher liquidity

of the CN exceed the losses that traders in the CN must expect whose values are

closest to θ∗∗.

Results of this game are related to Gehrig (1993), who also shows that traders

with a low liquidity preference choose direct trading instead of trading with an

intermediary. Gehrig’s (1993) model differs from ours in that he does not consider a

CN, but traders must search for partners by themselves and matching occurs with

a rather low probability. Thus, execution probability is bounded above far from

unity. In Gehrig’s model, a whole continuum of traders is active on both sides of

the market. Hence, there is no uncertainty about market size. Introducing a CN

in Gehrig’s model would guarantee multiple equilibria, and execution probability in

the CN would either be zero or one. Uncertainty in Gehrig (1993) stems from the

search process, while in our model uncertainty is due to the finite random selection

of active traders. In both models, the probability of order execution at the direct

market is limited — a crucial feature for uniqueness of the critical value θ∗ that

divides customers of the two markets. In equilibrium, uncertainty of order execution

is a result of the matching technology at the direct market. Automation of trading

and price discovery may raise the probability of order execution tremendously and

increase the market share of direct markets accordingly.

The results in this section are also related to those of Herrendorf, Valentinyi and

Waldmann (2000) who study multiplicity and indeterminacy in two–sector models

with sector–specific labor and positive externalities. In their model, individuals dif-

fer in productivity and choose the sector in which they work. Herrendorf, Valentinyi

and Waldmann show that enough heterogeneity in agents’ sector–specific produc-

tivity can ensure uniqueness of the chosen stationary state as it prevents sufficiently

many agents from changing their choice in reaction to a change in beliefs about the

production of the sectors. This is in line with our result that a sufficient mass of

traders with private values below tDM ensures a unique equilibrium.
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5 Private Information Game

As we have seen in the last section, different liquidity preferences across individuals

are, in general, not sufficient for equilibrium uniqueness, e.g. if the distribution of

preferences is concentrated in the intermediate region. In this section, we go back to

the case of a common value θ, introduced in Section 3. As we have seen above, this

is an extremely unfavorable case for achieving uniqueness. However, multiplicity

of equilibria in Section 3 is not only due to a common value, but also to common

knowledge of this value.

If this value represents the volatility of an asset’s price, there is no reason to believe

that all traders agree on their estimates of θ. Suppose that a trader is uncertain

about θ and only has a private estimate (signal) xi. When there is uncertainty

about θ, there is also uncertainty about the estimates of other agents. Even if

strategies are known, the actual behavior of other agents is uncertain to each trader.

This uncertainty creates an additional restriction for equilibria that can be used to

eliminate strategies that are equilibria under common knowledge of θ. Applying the

global–game approach, introduced by Carlsson and van Damme (1993), extended

by Morris and Shin (2003), and tested by Heinemann, Nagel and Ockenfels (2004a),

we show that private information on θ may also lead to a unique equilibrium.

Assume that θ is a random variable with some distribution in [θ̌, θ̂]. We assume

once more that θ̌ ≥ tCN , so we do not need to consider the option of ”no trade”.

Agents do not know the realization of θ, but only get some private signal xi = θ+ui.

Error terms ui are independently and identically distributed around 0. For means

of exposition, we assume that θ has a uniform distribution in [θ̌, θ̂] and ui has a

uniform distribution in [−ε,+ε].
An individual strategy assigns either market to each possible signal. ai(xi) = 1

[0] means that agent i goes to the CN [DM] if her signal is xi. Here, we think of

traders choosing the market irrespective of their wish to buy or sell the asset. They

decide on the market depending on their signal before they are selected as buyers

or sellers. This must be taken into account for any interpretation of equilibria. The

market that we consider has the same people trading on both sides. This may be

a suitable assumption for many asset markets, but not for all. It is most certainly

not appropriate for product markets, where buyers and sellers are firms of differ-

ent branches, for retail markets or markets with participants who exercise market

power. With this restriction, agents’ decisions are strategic complements, which is

a sufficient condition for the global–game approach yielding a unique equilibrium.1

1We believe that it is possible to extend the proof of our main theorem in this section to a
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Denote the conditional density of signal xi for given disutility θ by f(xi | θ). The

proportion of players who go to the CN if selected as buyers or sellers is

α(θ, a) =

∫ ∞
−∞

∫ 1

0

f(xi | θ) ai(xi) di dxi. (16)

The probability of order execution in the CN conditional on the value of trade θ

and strategy combination a is π̃(α(θ, a)), and the expected payoff for agent i going

to the CN instead of the DM is

Ũ(xi, a) = E
(

(θ − tCN) π̃(α(θ, a))− θ + tDM

∣∣∣ xi
)
. (17)

The more traders direct their orders to the CN at some signals, the higher is the

probability of order execution at all surrounding signals. Ũ(xi, a) is non–decreasing

in the mass of states and traders associated with orders going to the CN. Hence,

market choices are strategic complements.

If the support of θ includes tDM and θ0 and the variance of ui is sufficiently small,

then there exist two signals x0 and x̄0, such that

E(θ |x0) = tDM and E(θ | x̄0) = θ0. (18)

For the uniform distribution, we assume that θ̌ < tDM − ε and θ̂ > θ0 + ε. Then,

E(θ |xi = tDM) = tDM and E(θ |xi = θ0) = θ0, so that x0 = tDM and x̄0 = θ0.

Using (17), we find that for xi < x0 expected payoff Ũ(xi, a) > 0 ∀a. Thus, for

an agent who gets a signal below tDM , it is a dominant strategy to go to the CN.

The trader expects a positive reward in the CN with some probability that depends

on the strategies of other agents, while the expected reward on the DM is certainly

negative.

For xi > x̄0, we find Ũ(xi, a) < 0 ∀a. Thus, for an agent who gets a signal above

θ0, it is a dominant strategy to go to the DM. The expected value of trade is so big

that certainty of execution in the DM outweighs the lower costs in the CN even for

the highest possible execution probability.

situation, where strategies may depend on players being selected as buyers or sellers. In equilib-
rium, strategies will be symmetric for almost all signals. But, traders on the same side of the
market compete with each other for being matched in the CN, and their choices are no strategic
complements. It is yet an open question, how the global–game approach can be generalized to
games in which strategies are not complementary.
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Having strategic complementarity and two dominance regions, we can find sequences

{xk, x̄k}k∈N0 by iteratively eliminating dominated strategies. As is well known, this

procedure amounts to the assumption that players are rational and rationality is

common knowledge. Starting with k = 0, rational players do not choose the DM

for xi < x0, nor the CN for xi > x̄0. Hence we may eliminate these dominated

strategies. When rationality is common knowledge an agent will not play a strategy

that is dominated if she considers only those strategies of other players that have

not been eliminated yet. At step k+1 agents consider only the strategies that assign

the CN to signals below xk and the DM to signals above x̄k.

The more agents decide for the CN the higher is the incentive for each agent to

go to the same market. After eliminating dominated strategies, the best [worst]

thing that can happen to a potential trader in the CN is that all other potential

traders who have signals in [xk, x̄k] go to the CN [DM]. This maximizes [minimizes]

the probability of execution of an order in the CN. So, the best [worst] strategy

combination that an agent at step k+1 must consider is given when all other agents

play strategy Ix̄k [Ixk ]. Define a strategy Iy by

Iy(x
i) =

{
1 if xi ≤ y
0 if xi > y.

(19)

In other words, an agent playing this strategy goes to the CN if and only if her

signal is not bigger than y.

It is a dominant strategy to go to the CN whenever the lowest expected return there

exceeds the certain return at A, i.e. Ũ(xi, Ixk) > 0. This is the case when xi < xk+1,

defined by

xk+1 = min{x | Ũ(x, Ixk) = 0}. (20)

It is a dominant strategy to go to the DM, if the highest expected return in the CN

is lower than the gain at the DM. This happens for xi > x̄k+1, defined by

x̄k+1 = max{x | Ũ(x, Ix̄k) = 0}. (21)

Ũ(x, Iy) rises in y. Since xk < x̄k, we have xk+1 < x̄k+1. If rationality is common

knowledge, players use the CN if they get signals below xk, and they go to the DM

if their signals exceed x̄k for any k. Common knowledge of rationality takes this

procedure to the limits, where a trader with signal xi will always use the CN if
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xi < x∞ = limk→∞ xk and always go to the DM if xi > x̄∞ = limk→∞ x̄k. Sequences

xk and x̄k are monotone and bounded, so that limit points exist and are given by

x∞ = min{x | Ũ(x, Ix) = 0}
x̄∞ = max{x | Ũ(x, Ix) = 0},

(22)

where

Ũ(x, Ix) = E((θ − tCN) π̃(F (x|θ))− θ + tDM | x), (23)

and F (x|θ) is the cumulative density of signal x given value of trade θ. x∞ and x̄∞

are the limits of the set of strategies surviving the iterative elimination procedure.

From Milgrom and Roberts (1990) we know that in a game with strategic com-

plementarities, the range of iteratively undominated strategies is limited by Nash

equilibria. Indeed, it is easy to see that Ix∞ and Ix̄∞ are Nash equilibria of the

private information game. Since Nash equilibria can never be eliminated, there is

no Nash equilibrium where agents go to the DM for signals below x∞ or to the CN

for signals above x̄∞.

Limit points x∞ and x̄∞ are the smallest and the largest solution of equation

Ũ(x, Ix) = 0. In general, this equation may have several solutions, so that we may be

left with multiple equilibria, although we could clearly reduce the set of disutilities

with unpredictable outcomes in comparison to the game with common knowledge

of θ. However, if dŨ(x, Ix)/dx is negative for each solution of Ũ(x, Ix) = 0, then the

equilibrium is unique. Signals enter this function in two ways. The partial derivative

of Ũ with respect to x is negative. An increase in x increases expected return in the

CN at a marginal rate that equals execution probability π < 0.7. Expected returns

on the DM rise at a marginal rate of 1. If execution probability is not affected, an

increase in x lowers the expected payoff from going to the CN instead of the DM

at a rate 1− π. On the other hand, an increase in the switching point up to which

traders use the CN may change the probabilities of order execution in a way that

depends on the assumed probability distributions. This effect may be positive and

may even exceed the negative partial derivative. Hence, the net effect depends on

the probability distributions, as does multiplicity of equilibria. For a uniform distri-

bution of values of trade and signals the latter effect vanishes, because agents always

attribute the same probability to other signals being higher or lower than their own.

The same holds for any other distribution if the variance of ui is sufficiently small

(Frankel, Morris and Pauzner, 2003).
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Theorem 4 Given a uniform distribution of values of trade and signals, there is a

unique signal x∗, such that any equilibrium strategy assigns the CN to signals below

x∗ and the DM to signals above x∗. x∗ is given by the solution to

Ũ(x∗, Ix∗) =

∫ 1

0

(x∗ + ε− 2 ε α− tCN) π̃(α) dα− x∗ + tDM = 0. (24)

Given uniform distributions, there is a critical signal x∗, such that agents, who

estimate the value of immediate trade to be lower than x∗, submit orders to the

CN and agents with higher estimates go to the DM. Traders weigh expected gains

from trading in the CN against certain gains from trading on the DM. At the

equilibrium switching signal x∗, expected gains at both markets are equal. A trader

i who receives signal x∗ attaches equal probability to all values of θ within an ε–

surrounding of her own signal. If all traders who receive signals lower than x∗ choose

the CN, the proportion of traders in the CN is α(θ, Ix∗) = x∗−θ+ε
2ε

∈ [0, 1] and the

execution probability is π∗ = E(π(θ, Ix∗) | x∗). For a marginal trader with xi = x∗

the expected gain in the CN
∫ x∗+ε
x∗−ε (θ − tCN)π(θ, Ix∗) dθ just compensates the gain

in the DM x∗ − tDM (see Figure 4).

Interpreting θ as a measure of price volatility, the theorem tells us that assets with

a high price volatility are more likely to be traded on a DM, while assets, where the

immediacy of order execution is less important, are traded in a CN. The higher x∗,
the more likely is an asset traded in the CN.

It is worth noting that for uniform distributions the probability of order execution

for the marginal trader is independent from the precision of signals.

Theorem 5 With uniform distribution of values of trade and signals, the probability

of order execution at the critical signal x∗ is independent of ε and given by

π∗ =

∫ 1

0

π̃(α) dα.

This result is, however, not robust with respect to changes in the probability distri-

bution. Uniqueness of the equilibrium allows us to do some comparative statics:

Corollary 1 Given a uniform distribution of θ, the critical signal x∗ rises with

rising λ or tDM and with falling tCN for any ε > 0. If, in addition, the number of

traders has a geometric distribution, a rise in ε lowers x∗.
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If we interpret the probability distribution of θ as statistical distribution of these

values across all assets, the market share of the CN across all assets is prob(xi <

x∗) = x∗−θ̌
θ̂−θ̌ . It rises in the difference of transaction costs between the two market

venues and in market thickness λ. The latter tells us that CNs get especially those

assets to trade, for which the expected turnover is large. But, even for blue chips with

the highest turnover, the disutility of order execution (and hence, price volatility)

is an important criterion for the allocation of initial orders.

Corollary 2 Given a uniform distribution of values of trade and signals and geo-

metric distribution of market size, for λ→∞, the critical signal x∗ and θ0 are both

converging to tDM−tCN ln 2
1−ln 2

.

As we have argued above, the probability of order execution is bounded below 1 even

for an arbitrarily large number of expected traders. For increasing λ, x∗ and θ0 are

both rising, and x∗ is catching up with θ0 for λ → ∞. The solution of the private

information game converges to the upper bound of the region with multiple equilib-

ria in the common knowledge game. Although a large market does not guarantee

order execution in the CN, it reduces strategic risk that the global–game solution ac-

counts for. The global–game solution approaches an efficient allocation for λ→∞.

Hence, for very large markets, private information is sufficient to establish efficient

coordination.

On one hand, Corollary 2 tells us that even those assets with the largest turnover

will not be traded in a CN if prices are too volatile. This property of the equilibrium

limits the potentials for a CN to compete with a DM: if trading intervals are extended

to collect a large number of orders (and raise λ), the probability of order execution

rises, making the CN more attractive. But, the delay in the execution increases

expected costs, which is a severe limitation to any CN.

If the distribution of θ is not uniform, there may be multiple equilibria. From

Hellwig (2002) and Morris and Shin (2003) we know that uniqueness of a global

game equilibrium is a quite general property, but requires that the dispersion of

private information is sufficiently small. Frankel, Morris and Pauzner (2003) have

shown that a large class of games with strategic complementarities has equilibria

converging towards a single strategy profile that does not depend on higher moments

of the probability distribution as the variance of private information approaches zero.

Symmetric binary choice games with opposing dominance regions at the extrem ends

of the space of a payoff relevant parameter belong to this class of games. For our

game, these results imply that for any continuous distribution of random terms with
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vanishing variance of private information, the equilibrium is unique and converges

to the equilibrium of the case with uniform distributions and vanishing ε.

Corollary 3 Given a uniform distribution of values of trade and signals, as ε goes

to zero, the critical signal x∗ approaches

x∗0 =
tDM − π∗ tCN

1− π∗ .

The limiting equilibrium x∗0 is an important reference point for equilibria under

positive variance of private information. On the other hand, we know from Corollary

1 that for positive ε the equilibrium switching signal is smaller than x∗0. This raises

the question, how far the equilibrium may deviate from x∗0.

Corollary 4 Given a uniform distribution of values of trade and signals, for all

ε > 0,

x∗0 −
π∗

1− π∗ ε < x∗ < x∗0.

This shows that precision of private information has no big impact on the critical

signal x∗. Since π∗
1−π∗ <

7
3

for geometric distribution of market size, a reduction in

ε raises x∗ by a magnitude in the order of the change in ε. So even for positive ε,

the equilibrium threshold is close to x∗0. This is especially important as x∗0 is much

easier to calculate than x∗. An example is illustrated in Figure 4.

The last result does also have some relevance for measures to compete for order

flow. Corollary 1 has shown that a DM’s unconditional market share increases in

the precision of private information. But, according to Corollary 4 the provision of

information, e.g. on price volatility, is a weak instrument to compete for order flow.

The effect of increasing precision of private information is small and may easily be

dominated by effects outside our model.

Insert Figure 4 here

Figure 4 Nash equilibrium of the private information game. Agents switch markets

at signal x∗, where the expected payoff from trading on the CN equals the certain

payoff from trading on the DM, i.e. the areas A and B are of equal size. For tCN = 1,

tDM = 2, λ = 15 and ε = 0.1, we get θ0 = 3.953, x∗ = 3.434 and x∗0 = 3.445.
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Given θ, the market share of the CN is F (x∗ | θ), where F is the cumulative distri-

bution of signals. If θ < x∗ − ε, all traders get signals below x∗ and choose to trade

using the CN. If θ > x∗ + ε, all traders get signals above x∗ and trade on the DM.

For θ ∈ [x∗ − ε, x∗ + ε] the market share of the CN is x∗−θ+ε
2 ε

. As ε approaches zero,

the CN’s market share approaches 1 [0] for θ < [>] x∗0.

Initial order flow is split between both markets if θ ∈ [x∗−ε, x∗+ε]. However, this is

an event with probability 2 ε

θ̂−θ̌ . For small ε this probability is small and approaches

zero for ε→ 0. Hence, we would expect to observe a split of initial order flow only

for very few assets. If the variance of private information approaches zero, all assets

with θ > x∗0 (say assets with high price volatility) are exclusively traded on DMs

while orders to trade assets with smaller θ are first submitted to the CN.

In comparison to the results of the common knowledge game, we see that uncer-

tainty about the value of trade destabilizes a DM monopoly for low values of trade.

Uncertainty makes it easier to coordinate trade on a CN, because traders believe

that others might believe that some traders go to the CN anyway. Accordingly,

there is a positive execution probability that is sufficient to attract some traders

who know that the value of trade is above tDM . For high values of trade up to θ0,

a CN could win the market provided that θ is common knowledge. Although this

is a strong equilibrium, it is very hard to establish. Any grain of doubt that higher

order beliefs of all traders coincide, leads to uncertainty which induces traders to

submit initial orders to the DM, simply because they attach a positive probability

to others behaving likewise. Heinemann, Nagel and Ockenfels (2004b) show that

the best response to observed behavior in experiments on coordination games with

multiple equilibria is close to the global–game solution.

In the common knowledge game, the CN–equilibrium provides higher expected pay-

offs to all traders whenever θ < θ0. In the private information game, maximizing

expected total payoffs to all traders requires to coordinate trade on the CN up to a

signal k∗ that is close to θ0.

Theorem 6 Given a uniform distribution of values of trade and signals, the strategy

combination, maximizing expected total payoff to all players in the private informa-

tion game is Ik∗, where

k∗ = θ0 − ε
π̄ − 2

∫ 1

0
α π̃(α) dα

1− π̄ < θ0. (25)

Theorem 6 shows that the efficient strategy requires to switch markets at a signal

that is smaller than θ0. However, the deviation from θ0 is smaller than π̄
1−π̄ ε <

7
3
ε
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and disappears for ε→ 0, while x∗ converges to x∗0 < θ0. So, for almost precise pri-

vate information the equilibrium threshold is below the efficient one. For geometric

distribution of market size, this property can be shown to hold for positive ε as well:

Theorem 7 Given a uniform distribution of values of trade and signals and ge-

ometric distribution of market size, the unique equilibrium switching signal x∗ is

smaller than the collective payoff maximizing switching signal k∗.

The equilibrium switching signal x∗ is smaller than k∗ and hence, the equilibrium is

inefficient from traders’ point of view. Reason are network externalities that arise

from strategic complementarities. Agents should use the CN at signals at which,

in equilibrium, they do not use it, because the decision to go to the CN increases

expected payoff also for other users of the CN. The externality is not accounted for

by individual decisions. This can be used to argue that CNs and other electronic

market places need public support to overcome inefficiencies. It must be noted,

however, that we assumed transaction fees at both markets to be set exogenously.

In reality, costs to operate a CN are overhead and fees should be falling in the

number of trades. Even more important, as orders carry information used for price

discovery, a dealer’s bid–ask spread is generally decreasing in trading volume. On

one hand, this strengthens strategic complementarity that is the driving force to our

results on the allocation of order flow. On the other hand, efficiency considerations

must also consider that a CN can never replace a dealer market, because it free rides

on the dealer’s price discovery. A dealer, who gets only excess orders from a CN

does also have to bear overhead costs and has less information than in the monopoly

situation. This increases the bid–ask spread for the remaining orders and decreases

prior expected transaction costs and efficiency.

For large markets, however, we find that that the equilibrium of the private in-

formation game approaches efficiency: assuming the geometric distribution for the

number of traders, λ→∞ implies that π̃(α)→ ln(2) for all α > 0. Then, equation

(25) implies that k∗ → θ0. Corollary 2 established that the equilibrium threshold

converges to θ0 as well. Thereby, even for positive ε the equilibrium converges to

efficiency for λ→∞.

6 Robustness

In this section we check robustness of our results with respect to (i) combining

private values with private information, (ii) endogenous trading costs, (iii) price

discovery in the electronic market.
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6.1 Private Values and Private Information

If utilities arising from immediate order execution differ across agents and the dis-

tribution of these private values is not common knowledge, we may get a unique

equilibrium, even if all private values are in the intermediate region. Here, we only

sketch a game with private values and private information.

Suppose that agent i has a private value of immediacy θi = θ + yi. Let g be the

distribution of yi. Each trader knows her own preference θi. Density function g

is common knowledge, but θ is unknown. Agents have a prior belief that θ has a

uniform distribution on [θ̌, θ̂], and they get private signals xi with a uniform posterior

distribution in [θ − ε, θ + ε].

This modelling approach is a generalization of the private value game and the private

information game. If yi = 0 with probability 1, we get the private information game

with a common value. If ε = 0, we are in the private value game with common

knowledge of the distribution of private values. In the generalized approach, a

strategy depends on θi and xi. A symmetric equilibrium in monotone strategies

is characterized by a decreasing function h, such that an agent chooses the CN if

and only if xi < h(θi). Such an equilibrium has the property that traders with

low values and/or low signals about the distribution of private values choose the

CN, while others go to the DM. Assets with large turnover or low θ are to a larger

extend traded in the CN than assets with low turnover or high θ. The iterative

elimination procedure now concerns h–functions, starting with h̄0(θi) = θ̂+ ε for all

θi and h0(θi) = θ̌− ε for all θi. If the conditional variance of xi given θ converges to

zero, the equilibrium should be unique. A proof of this claim is, however, beyond

the scope of this paper.

6.2 Endogenous Trading Costs

Trading costs depend on the market share. A CN must charge a fee covering the

overhead costs of operating the network. It is a natural monopoly and average

costs are decreasing in trading volume. For a DM, the bid ask spread can be lower,

the more traders use this market. Reasons are, besides overhead costs, decreasing

expected inventory per trade, lower costs of price discovery, and a lower risk of

exploitation by insiders.

Suppose that tCN is a decreasing function of the CN’s market share α and tDM is

increasing in α. This strengthens strategic complementarity. If tCN(0) < tDM(1),

the lower dominance region exists. The assumption can be justified, by assuming
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that a CN cross–subsidizes dry markets by revenues from markets in which it is

already established or reduces fees below average costs in the introduction phase as

an advertisement.2

The DM will never charge an infinite fee, even if it has almost no customers. Recall

that traded assets have a worth of their own and dealers may also use the CN to

relieve themselves of involuntary inventory. Hence, the upper dominance region

exists, provided that θ̂ > tDM(0). Here, it is sufficient that some traders believe

that other traders might believe ... that the DM is a dominant strategy for some

traders. With the existence of both dominance regions strategic complementarity

allows for the iterative elimination procedure leading to a unique equilibrium for

sufficiently small noise in private information.

6.3 Price Discovery

Once a CN is established with a sufficient market share, it has an incentive to

introduce its own price discovery by allowing for limit orders. Limit orders reduce the

risk of an order not being executed to negligibility. With lower operating costs, an

ECN appears being a dominant strategy for all traders, no matter how urgent their

orders are. However, price discovery by market makers is more than just equalizing

supply and demand. Typically, dealers try to smoothen prices over time by taking

inventory. They also respond to indications of inside–trading. These services cannot

be provided by an ECN. A low trading volume and uncertain prospects of the

underlying asset are more likely leading to volatile prices in an ECN than in a DM.

Hence, risk averse agents who have no clue about the fair price have an incentive

to choose the DM for trading such assets. Traders, who know the fair price may

submit limit orders to the CN but their orders might not being executed, if the

current price happens to be beyond their limit, whereas prices are more stable at a

DM, which raises the probability for these orders being executed.

No–arbitrage conditions limit the extend to which prices at a CN may deviate from

prices at a DM to an amount in the order of tCN + tDM , where precise caps depend

on the possible timing of arbitrage trades and on the volatility of the underlying

fundamental.

Smoothing prices is a service that is valuable to customers as is immediate order

execution. DMs provide both services, while pur electronic markets can provide

2With strategic price setting, the CN will set transactions fees below those of dealer markets if
and only if the resulting equilibrium allocation of order flow guarantees a sufficient trade volume
to cover overhead costs.
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only one of the two. CNs provide smooth prices taken from the DM, ECNs provide

almost certain order execution instead. For a trader, the trade–off between an

ECN and a DM is similar to the trade–off between a CN and a DM. For traders

with a low preference for the service of price–smoothing, the ECN is a dominant

strategy, while trades with a high preference for smooth prices better choose the DM.

Strategic complementarity arises from the fact that both market venues can reduce

their price fluctuations with a higher turnover. Thus, both approaches, private value

and private information game can be applied in a similar way to the competition

between an ECN and DMs.3

7 Conclusion and Outlook

The proliferation of alternative trading systems such as CNs considerably increases

inter–market competition for order flow. While increased competition may be wel-

comed from the perspective of market and price efficiency, the enhanced choice of

trading venues fragments the order flow and reduces liquidity which is key to the

functioning of financial markets. In this paper we presented a model building on

the idea that the allocation of order flow between DMs and a CN may be under-

stood as a coordination game among traders. The main advantage of a CN are low

transaction costs. Part of the service provided by a dealer may be understood as

an insurance against mismatch. Therefore, traders with a high preferences for fast

order execution prefer trading on a DM even at higher costs.

The major achievement of our work is the removal of the multiplicity of equilibria

in the allocation of order flow that has plagued all models in the previous literature.

We prove existence of a unique equilibrium if traders have private information about

the value of immediate order execution or if a sufficient mass of traders is patient

enough to choose the CN as a dominant strategy.

In contrast to models with multiple equilibria, our analysis provides a definitive

answer to the question, under which conditions a CN can co–exist with a dealer

market. If traders have the same disutility from unexecuted orders, initial order

flow concentrates on one market. Interpreting disutilities of unexecuted orders as

a measure of price volatility, our model shows that orders to trade assets with low

price volatility and large turnovers are initially submitted to a CN, while assets with

3This argument also explains an empirical difference between the US and Europe. In the US
traditional markets operate as dealer markets and face competition by ECNs, while in Europe, most
stock exchanges are organized as auctions and do not take inventory. They are not threatened by
ECNs but face competition from cheaper CNs (Degryse and Van Achter, 2002).
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high volatility or small volumes are exclusively traded on dealer markets. Empirical

research has shown that, indeed, electronic trading systems are most successful in

attracting orders to trade assets with high trading volume and low price volatility.4

If disutilities differ sufficiently across individuals, both markets co–exist and initial

order flow is fragmented. Traders with low disutilities use the CN and traders with

higher disutilities go to the DM.

In Europe, CNs have been established mainly by brokers, who circumvent tradi-

tional exchanges by matching their customers’ orders in–house, if possible. They use

traditional exchanges only for excess orders. Although European exchanges are or-

ganized as auction systems, the features characterizing the dealer in our model fully

applies to them. In the US, traditional dealer markets are less automated and price

discovery takes explicit account of potential orders by insiders. Here, electronic com-

munication networks (ECNs) have been particularly successful in attracting trade.

ECNs combine direct trading with an automated auction system. While CNs free

ride on the price discovery provided by traditional dealers and therefore require their

co–existence, ECNs can completely replace traditional markets. However, the allo-

cation of order flow follows a similar pattern: while bid–ask spreads of traditional

dealers provide a partial insurance against exploitation of liquidity traders by insid-

ers, transaction prices at ECNs do not provide this service.5 Liquidity traders may

find it worthwhile buying this insurance or not. Small differences in their probability

assessments for insiders distorting prices lead to a unique equilibrium, in which all

assets for which insiders are likely to be influential are exclusively traded on dealer

markets, while other assets are exclusively traded on ECNs.

Electronic crossing networks have also emerged in product markets. Here, competi-

tion between CNs and intermediaries follows the same rules as in the game analyzed

in this paper. CNs save transaction costs, but intermediaries provide reliable in-

formation on the products, smoothen prices or take the solvency and delivery risk

that traders may face on electronic matching markets. For customers who attribute

a high value to these services, it is dominant strategy to trade with intermediaries,

while others, for whom the cost advantage is the major concern will trade on CNs.

With two dominance regions, the results of our model carry over to these markets.

Without dominance regions, there are multiple equilibria that make it difficult for

a new trading venue to enter the market. However, by offering special services or a

cost advantage that make a new market venue attractive for some customers even

without liquidity, the new venue creates the minimal liquidity required to attract

further customers and gain a substantial market share.

4For a recent empirical study see Theissen (2002).
5Empirical Evidence for this view is provided by Venkataraman (2001).
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The games presented above provide a broad platform to study inter–market compe-

tition for order flow between DMs and a CN. With respect to further research, we

can think of a number of extensions. Most importantly, one should make spread and

transaction fees endogenous by considering inter–market competition of a dealer and

a CN who set their prices strategically. If a dealer quotes her prices based on her

expectations about the number of traders, market microstructure theory suggests

that the spread must widen if the expected number of traders at the DM decreases to

ensure coverage of the dealer’s costs. On the other hand, Hendershott and Mendel-

son (2000) have shown that the presence of informed traders might lead to a reverse

effect, because insiders prefer to hide their positions by submitting orders to a CN

and, thus, reduces adverse selection at the DM.

In a dynamic, multiple–period model, a CN may set its fee strategically, even with

a negative value, i.e. it offers little presents or bonus points to attract traders and

gain market share in the beginning. Such modes of attracting liquidity were quite

common in the early days of the internet economy. On the other side, a strategic

dealer may lower prices for some periods in order to re–attract trade or to fend off

competitors.

Another important extension of our model is the implementation of an endogenous

price discovery process as it exists at ECNs. In this case, the price at which orders

are executed is not taken from a primary exchange but is derived endogenously,

depending on traders’ preferences. In a continuous–trading model, buy and sell

limit orders are submitted to the ECN and matched. Unexecuted orders are stored

in the order book and matched against new incoming limit orders. This requires

a dynamic model that discounts the expected utility from order execution in later

periods.

Furthermore, our model can be used for analyzing the choice between direct market-

ing, search for trading partners or barter on one side and the use of intermediaries or

media of exchange on the other side. Models explaining the use of money are closely

related to the model employed above and typically suffer from multiple equilibria.

We believe it being a promising task of future research to apply the global game

approach in monetary theory.

Appendix

Proof of Lemma 1

Suppose the probability of a buyer [seller] to get a signal leading her to go to market
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B is αb [αs]. Then, the additional number of buyers k has a geometric distribution

with E(k) = αb λ. For a buyer on market B the probability of having k additional

buyers on this market is

pb(k) =
1

1 + αb λ

(
αb λ

1 + αb λ

)k
.

The probability of having r sellers is

ps(r) =
1

1 + αs λ

(
αs λ

1 + αs λ

)r
.

The probability of execution of a buyer’s order, given that there are k additional

buyers and r sellers, is

πb(k, r) =

{
r

k+1
if r ≤ k

1 if r > k.

The conditional probability of order execution, given that there are k additional

buyers, is

E(πb | k) =
k∑
r=0

r

k + 1
ps(r) + 1 · ps(r > k) =

k∑
r=0

r

k + 1
ps(r) + 1−

k∑
r=0

ps(r)

= 1−
k∑
r=0

(
1− r

k + 1

)
ps(r) = 1− 1

1 + αs λ

[
k∑
r=0

qrs −
1

k + 1

k∑
r=0

r qrs

]
,

where qs := αs λ
1+αs λ

. Using

1− qs =
1

1 + αs λ
,

k∑
r=0

qr =
1− qk+1

1− q and
k∑
r=0

r qr =
q [1− qk (k + 1− q k)]

(1− q)2

we find that

E(πb | k) = qk+1
s +

αsλ

k + 1

[
1− qks (k + 1− qs k)

]

= qk+1
s + αs λ

[
1− qk+1

s

k + 1
− qks + qk+1

s

]
= qk+1

s (1 + αs λ) + αs λ

[
1− qk+1

s

k + 1
− qks

]
.
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The probability of order execution is

E(πb) =
∞∑

k=0

E(πb | k) pb(k)

=
∞∑

k=0

[
qk+1
s (1 + αs λ) + αs λ

(
1− qk+1

s

k + 1
− qks

)]
1

1 + αb λ
qkb

where qb := αb λ
1+αb λ

. This equals

1 + αs λ

1 + αb λ

∞∑

k=0

qk+1
s qkb +

αs λ

1 + αb λ

∞∑

k=0

(
qkb

k + 1
− qk+1

s qkb
k + 1

− qks qkb
)

=
1 + αs λ

1 + αb λ
qs

∞∑

k=0

qks q
k
b +

αs λ

1 + αb λ

[
1

qb

∞∑

k=1

qkb − qks qkb
k

−
∞∑

k=0

qks q
k
b

]
=
αs
αb

∞∑

k=1

qkb − qks qkb
k

.

Using

∞∑

k=1

qk/k = − ln(1− q)

we find that

E(πb) =
αs
αb

[ln(1− qb qs)− ln(1− qb)] =
αs
αb

ln
1 + (αs + αb)λ

1 + αs λ
=
αs
αb

ln

(
1 +

αb λ

1 + αs λ

)
.

Execution probability for sell orders is calculated accordingly by changing subscripts

b and s. QED

Proof of Lemma 2

Let a∗ be a Nash equilibrium. Suppose αb(θ, a
∗) > αs(θ, a

∗) for some θ. Then

Π(αb, αs) < Π(αs, αb) and Ũb(θ, a
∗) < Ũs(θ, a

∗). On the other hand, αb(θ, a
∗) >

αs(θ, a
∗) implies αb(θ, a

∗) > 0 and αs(θ, a
∗) < 1 and therefore Ũb(θ, a

∗) ≥ 0 and

Ũs(θ, a
∗) ≤ 0. This contradicts the inequality above. Therefore, αb(θ, a

∗) = αs(θ, a
∗)

for all θ. QED

Proof of Theorem 1
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A strategy combination a∗ is a Nash equilibrium iff either

Ũ(θ, α(θ, a∗)) > 0 ∧ α(θ, a∗) = 1 (26)

or Ũ(θ, α(θ, a∗)) < 0 ∧ α(θ, a∗) = 0 (27)

or Ũ(θ, α(θ, a∗)) = 0 (28)

If tCN < θ < tDM , then Ũ(θ, α) > 0 for all α. This excludes (27) and (28), while

(26) holds. So, in equilibrium α(θ, a∗) = 1.

If θ = tDM , then Ũ(θ, α) ≥ 0 for all α. This excludes (27). (26) holds, and (28) is

equivalent to π̃(α) = 0 ⇔ α(θ, a∗) = 0. There are two equilibria with market shares

of zero and one for the CN.

(27) holds for all θ > tDM . (26) requires (θ−tCN) π̃(1) > θ−tDM , which is equivalent

to θ < θ0. (28) ⇔ (θ−tCN) π̃(α) = θ−tDM ⇔ π̃(α) = θ−tDM
θ−tCN . π̃ is a continuous and

increasing function in α reaching from zero to π̄. Hence, there is a unique solution

α̃(θ) = π̃−1
(
θ−tDM
θ−tCN

)
≤ 1 for all θ ≤ θ0. For θ > θ0, there is no solution to (28) with

α ∈ [0, 1]. QED

Proof of Lemma 3

Let a∗ be a Nash equilibrium of the private value game. ai∗(b) = 1[0] if Ũb(θ
i, a∗) >

[<] 0 and ai∗(s) = 1[0] if Ũs(θ
i, a∗) > [<] 0. Ũb(θ

i, a) and Ũs(θ
i, a) are positive for

θi < tDM and negative for θi > θ0 for all a. As Ũb and Ũs are strictly decreasing

in θi, there are a θ∗b (a
∗) and a θ∗s(a

∗), such that ai∗(b) = 1[0] if θi < [>] θ∗b (a
∗) and

ai∗(s) = 1[0] if θi < [>] θ∗s(a
∗).

Suppose θ∗b (a) < θ∗s(a). Then αb(a) < αs(a), and πb(a) > πs(a). Then Ũ i
b(a) > Ũ i

s(a)

for all i. This implies θ∗b (a) > θ∗s(a) which contradicts the inequality above. Hence,

θ∗b (a) = θ∗s(a). QED

Proof of Theorem 2

Since Û(θ) is continuous and positive for θ < tDM and negative for θ > θ0, it is

sufficient to show that Û is strictly decreasing in equilibrium.

dÛ(θ)

dθ
= π̃(F (θ))− 1 + (θ − tCN)

∂π̃

∂α
f(θ). (29)
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For geometric distribution of the number of buyers and sellers and uniform distri-

bution of private values,

dÛ(θ)

dθ
= π̃(α)− 1 +

θ − tCN
θ̂ − tCN

λ

(1 + 2αλ) (1 + αλ)
.

θ−tCN
θ̂−tCN = α and in equilibrium π̃(α) = θ−tDM

θ−tCN .

dÛ(θ)

dθ

∣∣∣∣∣
θ∗

=
θ − tDM
θ − tCN − 1 +

αλ

1 + 3αλ+ 2α2 λ2
= −tDM − tCN

θ − tCN +
αλ

1 + 3αλ+ 2α2 λ2
.

dÛ(θ)

dθ

∣∣∣∣∣
θ∗

< 0 ⇔ tDM − tCN
θ̂ − tCN

>
θ − tCN
θ̂ − tCN

αλ

1 + 3αλ+ 2α2 λ2

⇔ (1 + 3αλ+ 2α2 λ2)
tDM − tCN
θ̂ − tCN

> α2 λ

⇐ 2α2 λ2 tDM − tCN
θ̂ − tCN

≥ α2 λ ⇔ tDM − tCN
θ̂ − tCN

λ ≥ 1

2
.

QED

Proof of Theorem 3

The efficient threshold θ∗∗ maximizes (over k)

E(U(θi, ak)) =

∫ k

tCN

f(θ) (θ − tCN) π̃(F (k)) dθ +

∫ θ̂

k

f(θ) (θ − tDM) dθ.

The first order condition implies

(θ∗∗ − tCN) π̃(F (θ∗∗)) +

∫ θ∗∗

θ̌

f(θ) (θ − tCN) π̃′(·) dθ − θ∗∗ + tDM = 0. (30)

In equilibrium Û(θ∗) = 0. If there is a unique equilibrium θ∗, the derivative of Û is

negative at equilibrium. Therefore, θ∗ < θ∗∗ if and only if Û(θ∗∗) < 0. (15) and (30)

imply

Û(θ∗∗) = (θ∗∗ − tCN) π̃(F (θ∗∗))− θ∗∗ + tDM = −
∫ θ∗∗

θ̌

f(θ) (θ − tCN) π̃′(·) dθ < 0.
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QED

Proof of Theorem 4

For uniform distribution of values of trade and signals,

π(θ, Ix) =





π̄ if θ < x− ε
π̃
(
x−θ+ε

2 ε

)
if x− ε ≤ θ ≤ x+ ε

0 if θ > x+ ε.

and

Ũ(x, Ix) =
1

2 ε

∫ x+ε

x−ε
(θ − tCN) π(θ, Ix) dθ − x+ tDM .

Probability π(θ, Ix) depends on the difference between x and θ and the integral is

evaluated around x. Substituting α for x−θ+ε
2 ε

, we find

Ũ(x, Ix) =

∫ 1

0

(x+ ε− 2 ε α− tCN) π̃(α) dα− x+ tDM

and

d Ũ

d x
=

∫ 1

0

π̃(α) dα− 1 < 0.

As Ũ(x, Ix) is strictly decreasing in x, there is a unique x∗ with Ũ(x∗, Ix∗) = 0. QED

Proof of Theorem 5

For uniform distribution of values of trade and signals, the probability of order

execution at the critical signal x∗ is

π∗ = E(π(θ, Ix∗) |x∗) =
1

2 ε

∫ x∗+ε

x∗−ε
π̃

(
x∗ − θ + ε

2 ε

)
dθ =

∫ 1

0

π̃(α) dα.

QED

Proof of Corollary 1

From (24), the derivatives of x∗ w.r.t. tDM , tCN , and λ are obvious. Differentiating

(24) yields

dx∗

dε
=

∫ 1

0
(1− 2α) π̃(α) dα∫ 1

0
(1− π̃(α)) dα

.
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As π̃(α) < 1 for all α ∈ [0, 1], the denominator is positive. Splitting the numerator

up, substituting y for 1− α in the second integral and rearranging terms gives

∫ 1

0

(1− 2α) π̃(α)dα =

∫ 1/2

0

(1− 2α) π̃(α)dα−
∫ 1/2

0

(1− 2 y) π̃(1− y) dy

=

∫ 1/2

0

(1− 2α) [π̃(α)− π̃(1− α)] dα

For α < 1/2, π̃(α) < π̃(1− α). Hence, the integral is negative. This proofs that x∗

falls with rising ε. QED

Proof of Corollary 2

For λ → ∞, the probability of order execution π̃(α) approaches ln 2 for all α > 0.

Thus, equilibrium condition (24) converges to

∫ 1

0

(x∗ + ε− 2 ε α− tCN) ln 2 dα− x∗ + tDM = 0 ⇔ x∗ =
tDM − tCN ln 2

1− ln 2
.

Since π̄ → ln 2, θ0 converges to the same value as x∗. QED

Proof of Corollary 3

As ε approaches zero, (24) shows that Ũ(x∗, Ix∗) → (x∗ − tCN)π∗ − x∗ + tDM = 0.

Solving for x∗ gives the equation in Corollary 3. QED

Proof of Corollary 4

Corollaries 1 and 3 imply x∗ < x∗0. From Theorem 4 we know that Ũ(x∗, Ix∗) = 0.

Ũ(x∗, Ix∗) = (x∗ − ε− tCN) π∗ + 2 ε

∫ 1

0

(1− α) π̃(α) dα− x∗ + tDM = 0.

As the integral is positive,

(x∗ − ε− tCN)π∗ − x∗ + tDM < 0 ⇔ x∗ > x∗0 − ε
π∗

1− π∗ .

QED

Proof of Theorem 6
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Unconditional expected payoff to traders who employ switching strategy Ik is

E(U(Ik)) =
1

θ̂ − θ̌

∫ θ̂

θ̌

F (k|θ) (θ − tCN) π̃(F (k|θ)) + (1− F (k|θ)) (θ − tDM) dθ.

=
1

θ̂ − θ̌

[∫ k−ε

θ̌

(θ − tCN) π̄ dθ +

∫ θ̂

k+ε

(θ − tDM) dθ

+

∫ k+ε

k−ε

k − θ + ε

2 ε
(θ − tCN) π̃

(
k − θ + ε

2 ε

)
+
ε− k + θ

2 ε
(θ − tDM) dθ

]

=
1

θ̂ − θ̌

[∫ k−ε

θ̌

(θ − tCN) π̄ dθ +

∫ θ̂

k+ε

(θ − tDM) dθ

+2 ε

∫ 1

0

α (k + ε− 2 ε α− tCN) π̃(α) + (1− α) (k + ε− 2 ε α− tDM) dα,

]

where we substituted α for k−θ+ε
2 ε

. If there is an interior optimum k∗, the derivative

dE(U(Ik))/dk equals zero at k∗.

dE(U(Ik))

dk
=

1

θ̂ − θ̌

[
(k − ε− tCN) π̄ − k − ε+ tDM + 2 ε

∫ 1

0

α π̃(α) + (1− α) dα

]
.

Setting the derivative to zero and solving for k gives (25). QED

Proof of Theorem 7

Given uniform distribution of values of trade and signals, the proof of Theorem 4

shows that Ũ(x, Ix) is strictly decreasing in x. At the equilibrium switching signal

Ũ(x∗, Ix∗) = 0. Hence, x∗ < k∗ is equivalent to Ũ(k∗, Ik∗) < 0. Using (24), (25, and

Theorem 5 ) we find

Ũ(k∗, Ik∗) =

∫ 1

0

[
θ0 − ε

π̄ − 2
∫ 1

0
α π̃(α) dα

1− π̄ + ε(1− 2α)− tCN
]
π̃(α) dα

−θ0 + ε
π̄ − 2

∫ 1

0
α π̃(α) dα

1− π̄ + tDM
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= θ0 (π∗ − 1)− π∗ tCN + tDM +
ε∆

1− π̄

where ∆ = π∗ (1 − 2 π̄) + π̄ − 2 (2 − π∗ − π̄)
∫ 1

0
α π̃(α) dα. Henceforth, x∗ < k∗ is

equivalent to

ε∆

1− π̄ < θ0 (1− π∗)− tDM + π∗ tCN

⇔ ε∆ < (tDM − π̄ tCN) (1− π∗)− (1− π̄) (tDM − π∗ tCN) = (tDM − tCN) (π̄ − π∗)

Given our assumption that ε < tDM − tCN , a sufficient condition for this is

∆ < π̄ − π∗

⇔ (1− π̄)π∗ < (2− π∗ − π̄)

∫ 1

0

α π̃(α) dα.

⇐ 2 (1− π̄) < 2− π∗ − π̄ ∧ π∗

2
<

∫ 1

0

α π̃(α) dα.

⇔ −π̄ < −π∗ ∧
∫ 1

0

π̃(α) dα < 2

∫ 1

0

α π̃(α) dα.

⇔ π̄ > π∗ ∧
∫ 1

0

(1− 2α) π̃(α) dα < 0.

These inequalities follow from monotonicity of π̃. The second has been proved above

in Corollary 1. QED
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Figure 1. Nash equilibria of the common knowledge game. For 1=CNt , 2=DMt  and 15=λ , 

the upper limit of the multiplicity region is 953.30 =θ , while 6614.0=π . 
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Figure 2. Nash equilibrium of the private value game. An intersection of the two curves at *θ  

represents a Nash equilibrium if all agents with private values below *θ  go to B and agents 

with private values above *θ  go to A. For 1=CNt , 2=DMt , 15=λ  and 10ˆ =θ , we get 

953.30 =θ  and *θ  = 3.433. The share of initial order flow submitted to the CN is F(θ *) = 

27%. Execution probability is %59*)((~ =θπ F . 
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Figure 3. Multiple Nash equilibria in the private value game with a truncated normal 

distribution of private values, where E(θ ) = 3.5 and V(θ ) = 0.25. Truncation points are 1=θ  

and 10ˆ =θ . There are three equilibria at  1θ = 2.02,  2.83 2 =θ   and  3.88 3 =θ .  Associated 

shares of initial order flow submitted to the CN are  0.2%,  8.9%  and  77.6%. 
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Figure 4.  Nash equilibrium of the private information game. Agents switch markets at signal 
*x , where the expected payoff from trading on the CN equals the certain payoff from trading 

on the DM, i.e. the areas A and B are of equal size. For tCN = 1, tDM = 2, λ = 15 and ε = 0.1, 

0θ  = 3.953, *x = 3.434 and *
0x = 3.445. 
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