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1. Introduction

In this paper, | argue that in binary-action supermodular games, the best response to Laplacian
beliefs! may be a better predictor of individual behavior and for comparative-statics of the

distribution of actions than the global-game selection.

The theory of global games was introduced by Carlsson and van Damme (1993) and
advanced by Morris and Shin (2003) as a refinement concept for supermodular games with
multiple Nash equilibria. A game is supermodular if strategies can be ordered such that each
player has an incentive to switch to higher strategies, if other players choose higher strategies.
Another term for supermodularity is strategic complementarity. Supermodular games are
common in macroeconomics, investment and network theory, and in the description of
financial markets. They have increasing best response functions and may have multiple Nash

equilibria.

The global-game approach relaxes the assumption that the game is common
knowledge among players. It imbeds the game to be analyzed in a larger class of games. The
particular game is then assumed to be randomly drawn out of this world of possible games
(which is expressed by the term global game). Players are not perfectly informed about the
selected game, but instead receive private signals. They are, however, perfectly rational in
analyzing their information and deducing the strategies of other players in the global game.
The class of games and the distribution of signals are common knowledge, so that standard
equilibrium concepts can be applied to the global game. The most important property of
global games is that for a sufficiently small variance of private signals, a global game has a
unique equilibrium. If the variance of private signals converges to zero, the global game
converges to the original complete information game. Thus, the convergence point of global
game equilibria for vanishing noise in private signals can be used as a refinement for the

original game with multiple equilibria. This refinement is called “global-game selection” (GGS).

The theory of global games has been tested by laboratory experiments on
supermodular games with symmetric players.? In those, the GGS is identical to the best
response to Laplacian beliefs about the proportion of other agents who take the higher action
(Morris and Shin, 2003). The experiments have shown that the distribution of actions
observed in one-shot coordination games® can be described by the equilibrium of a global
game with positive variance of private signals. Hence, the equilibrium of a global game with

positive variance can be used as an “as if” approach. Subjects behave as if they had noisy

' The term “Laplacian belief” was coined by Morris and Shin (2003, p. 57) and refers to the belief that the fraction
of players choosing either of the two actions has a uniform distribution.

2 See, for example, Cabrales, Nagel, and Armenter (2007), Heinemann, Nagel, and Ockenfels (2004, 2009), and
Duffy and Ochs (2012).

3 In a one-shot coordination game all players make all decisions at one time and independent from each other.
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private signals.? In repeated games with the same players, subjects usually coordinate on one
of the equilibria. While different groups of players may coordinate on different equilibria,” the
chosen equilibria are usually between the GGS and the payoff-dominant equilibrium.
Furthermore, changes to the payoff function shift the actions in the direction predicted by the
GGS. Thus, even though the GGS is not a perfect point predictor of behavior in supermodular
complete information games, it indicates a lower bound to an interval of strategies that can
be expected to be observed in these games, and it yields a prediction for qualitative
comparative statics that is useful in theoretical analyzes of supermodular games.®
Furthermore, Heinemann, Nagel and Ockenfels (2009, henceforth HNO) have shown that the

GGS provides good advice for an individual player in a one-shot coordination game.

This paper reports an experiment on one-shot supermodular games with complete
information and asymmetric payoffs in which the GGS differs from the best response to
Laplacian beliefs. The best response to Laplacian beliefs and Level-k models’ provide a better
description of observed behavior than the GGS. The GGS also fails to predict observed
responses of subjects to changes in the payoff function. Furthermore, the GGS gives a poor
advice for an individual player. A player following this strategy would have achieved a payoff
below the average realized payoff of our subjects. Level-1 and the best response to Laplacian
beliefs yield higher expected payoffs. To my knowledge, this is the first experiment to test

global games in asymmetric coordination games against alternative solution concepts.

Supermodular games with multiple equilibria are applied to a wide range of topics:
currency and banking crises, government debt and twin crises, refinancing of short-term credit
to firms, competition between trading venues, decisions to join a revolution, poverty trap
models, marketing of network goods, antitrust regulation, and growth models with positive
externalities of investment.® Yet the applications have thus far been restricted to binary-
choice games and most theory papers assume that all players share the same payoff function.
By contrast, real-world players are typically asymmetric in many of the applications outlined
above. For example, large financial institutions can take larger positions on the foreign-
exchange market and exert a larger impact on the likelihood of a currency crisis than small

ones. Banks that are highly interconnected via the inter-bank market, suffer more from runs

4 Heinemann, Nagel, and Ockenfels (2009) attribute this kind of behavior to strategic uncertainty. Frydman and
Nunnari (2023), however, show that strategic uncertainty cannot be the only reason. They demonstrate that
cognitive noise can also explain why subjects behave as if they receive private signals. In an alternative
interpretation, global games describe the true information structure, and hence the equilibrium is the predicted
outcome for a game in which agents actually receive distinct private signals.

> See, for examples, VanHuyck, Battaglio, and Beil (1990), Heinemann, Nagel, and Ockenfels (2004) and Arifovic,
Jiang, and Xu (2013).

% These properties were also demonstrated by Schmidt et al. (2003) who focus on the risk-dominant equilibrium
that is closely related to the GGS.

7 The first level-k models were developed by Nagel (1995) and Stahl and Wilson (1994, 1995).

8 See Angeletos and Lian (2016) for more details.



on other banks than pure consumer banks. Firms that are highly dependent on using a

network good (such as a particular software) gain more from its proliferation than other firms.

In the experiment, all subjects can decide between a safe and a risky action. The safe
action yields a payoff that is independent of other players’ actions. The payoff for the risky
action increases in the number of other players who take the risky action. Subjects differ in
the payoffs that they receive for a given number of risky choices. For some players, the risky
action may be profitable if just a few others opt for the same action. For others, the
profitability of the risky action requires that many other players select the risky action.’
Subjects play 20 different one-shot games without feedback. Some of these games have a

unique equilibrium, but most of the games have several equilibria in pure strategies.

Most of these games are designed in such a way that the GGS predicts that either all
players choose risky or all choose safe. The best response to Laplacian beliefs, instead, predicts
that types with high payoffs from network effects choose risky, while others choose safe. In
the experiment, the proportion of risky choices differs significantly between subject types.
Subjects who require only a few others to opt for the risky choice to render it profitable, are
more inclined to choose the risky option than others. This asymmetry in behavior is consistent
with Laplacian beliefs, but is not predicted by the GGS. The observed responses of subjects
across games vary with changes in the payoff functions in an intuitive and predictable way:
the higher the payoffs from risky choices, the more subjects take the risky option. These

comparative statics are also predicted by Laplacian beliefs, but not by the GGS.

To compare the quality of different solutions concepts, their predictive power is
measured by the probability that a subject’s decision is in line with the respective solution
concept. While only 60% of subjects’ decisions in the experiment are in line with the GGS (not
much more than a random prediction), 80% of observed decisions are in line with a best
response to random behavior and with a best response to a uniform distribution on the
proportion of players who choose risky (Laplacian belief). Note that the latter coincides with

the GGS in symmetric binary-choice games.

Since the GGS does not predict different behavior for different types in most of our
games, it also fails to give good advice to individual agents who play the game against some
randomly selected players from the subject pool. The best responses to Laplacian beliefs
about other players’ behavior or about the fraction of agents choosing the higher strategy

yield higher expected payoffs.

For describing observed heterogeneity, a global game with positive variance of private
signals is estimated and compared with an estimated quantal-response equilibrium (QRE)*°

and with noisy best responses to Laplacian and Level-1 beliefs. All four concepts capture the

9 This is akin to firms who have a symmetric impact on the market of a network good (say, a business software),
but differ by the payoffs that they receive from network effects.
19 The concept of the QRE was developed by McKelvey and Palfrey (1995).
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observed qualitative comparative statics properties and predict the observed asymmetry in
behavior between different types of players. The fit of the estimated global game is not as
good as it has been reported for symmetric coordination games in HNO. Noisy best responses
to Laplacian or Level-1 beliefs provide a better fit. The estimated QRE does worst in this

comparison.

For the class of games underlying this experiment, these results indicate that the best
response to Laplacian beliefs may be more useful than the global-game approach for
predicting or describing individual and aggregate behavior in asymmetric binary-choice
coordination games. This is remarkable also because the best response to Laplacian beliefs is
much simpler to derive. In the concluding section, this is discussed in the light of various goals
that decision makers may have in mind when they want to predict the expected outcome of a
supermodular game. For many research questions and also applied problems, the simple
calculation of the best response to Laplacian beliefs may be more useful than solving a global

game.

In the literature, the theory of global games has almost never!! been applied to
asymmetric games for two reasons: (i) deriving the GGS is, in general, challenging and a simple
way for deriving it exists only for symmetric binary-choice games; (ii) The GGS of an
asymmetric game with more than two players is, in general, not noise independent. A GGS is
called noise independent if it does not depend on the assumed distribution of private signals.
If noise independence fails, then multiple equilibria are replaced by multiple global-game
selections.!? Basteck, Daniéls, and Heinemann (2013) show how the GGS of a supermodular
game with more than 2 strategies or asymmetric players can be derived by splitting the game
into smaller games, deriving the GGS for each of these smaller games, and patching the
selected strategy profiles together. If a supermodular game can be decomposed into binary-
action games with symmetric players and the global-game selections for these games (that
are straightforward to derive) yield a unique GGS for the larger game, then the GGS of the
larger game is also noise independent. The theory part of this paper explains this procedure
and demonstrates how it can be applied to solve for the GGS in the asymmetric games

underlying the experiment.

The remainder of this paper is structured as follows: Section 2 gives a short overview
of some empirical tests on the theory of global games. Section 3 formally introduces global
games and explains the decomposition result by Basteck, Daniéls, and Heinemann (2013) that
is applied in Section 4 to derive the GGS of the asymmetric games underlying the experiment.

Section 5 describes the experimental design and Section 6 derives the results of the

11 Notable exceptions are Corsetti et al. (2004) and Sdkovics and Steiner (2012).
12 This may still be useful, because the GGSs are closer to each other than the extreme Nash equilibria and also
share some comparative statics properties.



experiment. Section 7 concludes by discussing whether and how global games and Laplacian

beliefs can be used as descriptive theories for coordination games.

2. Empirical tests of the theory of global games

Van Huyck, Battaglio, and Beil (1990) show that in a minimum-effort game, groups of 14 to 16
players converge to the risk-dominant equilibrium, while groups with 2 players often converge
to the payoff dominant equilibrium. Heinemann, Nagel, and Ockenfels (2004) show that
convergence points of repeated coordination games with groups of 15 are between the GGS
and the payoff-dominant equilibrium. Global-game equilibria predict the comparative statics
with respect to parameters of the payoff-function, but not with respect to the precision of
signals. They also show that behavior in global games (with noisy signals) tends to converge
to strategies that are more efficient than the unique equilibrium. Cabrales, Nagel, and
Armenter (2007), on the other hand, find convergence to the unique Nash equilibrium in a
different global game. Szkup and Trevino (2020) test behavior in 2-player global games with
different noise levels. They confirm that comparative statics of global-game equilibria with
respect to the precision of private signals is reversed to observations. For precision
approaching infinity, subjects’ behaviour approximates the payoff-dominant equilibrium.
Observations can be explained by a model that allows for “sentiments” in the sense of
optimism in achieving the efficient outcome with high precision of signals and pessimism for
low precision. They also find deviations from the unique equilibrium of the global game in
direction of more efficient payoffs. Using coordination games with perfect information,
Arifovic, Jiang, and Xu (2013) show that there is a path-dependency of the outcome if the
threshold to success of the risky action varies over time. Arifovic and Jiang (2019) show that

extrinsic signals (“sunspots”) may affect behavior in the neighborhood of the GGS.

If subjects behave as if they have noisy private signals, the distribution of actions can be
described by the equilibrium of a global game, where the variance of private signals is a
parameter that can be fitted to maximize the likelihood of observations. HNO estimate a

global game for a one-shot binary-choice coordination game with perfect information.

In the experiment by HNO, N subjects simultaneously had to choose between two options A
and B. The payoff for A was a fixed amount X < 15 Euros, that varied between the different
games. The payoff for B was 15 Euros, provided that at least K group members chose B, and
zero otherwise. The hurdle K was also varied between games. Group size N varied from 4 to
10 between sessions, so that the total experiment spanned a range of 90 different

coordination games. The GGS in these games selects A if and only if

X>15(1— K—_lj .
N



HNO estimate a global game with positive variance of private signals to describe the
distribution of choices observed in the experiment. Subjects were modelled as if they had
different signals about an underlying state parameter, while effectively they possessed perfect
information about the games’ payoffs. Fitting the variance of private signals to observations,
HNO found a surprisingly good fit of actual observations, and the fitted global games also
yielded acceptable out-of-sample predictions. Furthermore, HNO find that the GGS is very
close to the best response of what subjects actually do. Thus, it can be taken as a
recommendation for individually optimal behavior. From experiments on repeated
coordination games, we know that they tend to follow best-response dynamics: that is,
subjects coordinate on the strategy that is a best response to the first round(s).*® In this sense,
the GGS can be used as a descriptive theory for repeated coordination games, at least, if they
fall into the class tested by HNO.

To the best of my knowledge, there are no experiments on supermodular coordination
games with asymmetric payoff functions. Thus, we do not know whether the GGS can also
serve as a descriptive theory for these games. To begin filling this gap, this paper presents an
experiment designed to test the GGS as a selection theory for coordination games with

asymmetric payoff functions.

3. Definition of global game and global-game selection

Before we turn to the experiment, this section introduces some theory needed to solve for
the GGS of the asymmetric coordination games that are employed in the experiment. Readers

primarily interested in the experiment may wish to skip this section.

Let us start by introducing some notation borrowed from Basteck, Daniéls, and

Heinemann (2013, henceforth BDH). We denote the set of players by /. Each player i has an
ordered finite action set 4; = {0,1,2, ... ,mi }. Actions are denoted by a, €4, , an action profile

byae A4 :HA,- . The lowest and highest action profiles are then given by 0 and m.
iel

Throughout this paper, we use the notation x <y for the partial order on vectors x and y

defined by x, <y, Vi.

A complete information game I is specified by payoff functions gi: 4 —R. Game I is
supermodular (actions are strategic complements), if foralli and forall @, <a', and a_, <a';:

g(d,a)-g(a,a,;)<gl(a',a)-gla.a).

In words, supermodularity implies that best-response functions are non-decreasing.

Supermodular games often have multiple equilibria.'*

13 See, for example Van Huyck, Battaglio, and Beil (1990) or Heinemann, Nagel and Ockenfels (2004).
14 This has been phrased as a case of “strong strategic complementarities” by Angeletos and Pavan (2004), who
argue that in this case, constructive ambiguity is better than full transparency, because full transparency bears
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Following Frankel, Morris, and Pauzner (2003), a global game G"(u,¢,f) is defined by

- payoff functions u,(a,,a_,,8), where 0 eR is called state parameter, such that

(A1) for each state 6, the complete information game given by ui (-,6) is a

supermodular game,

(A2) there exist states € and @, such that the lowest and highest action are strictly

dominant in the complete information games given by u.(-,6) and ui(-,g),

respectively,

(A3) each u; satisfies weak state_monotonicity, which means that for all i and
a, <d,, the payoff difference u,(a,,a ,,0)—u,(a,,a ,,0) is weakly increasing

in 6. This implies that higher states make higher actions more appealing.
- adistribution for the state parameter with continuous density ¢, and

- atuple of atomless density functions fi for each i with bounded support and a scale
parameter v €(0,1] . In the global game, players do not observe state 6. Instead, each

player i receives a private signal x, =@+v7,, where the idiosyncratic noise term #; is
distributed according to density function f;.
A global game G embeds a complete information game I” at state 8%, if g.(a) =u,(a,8*) forall

players i and for all action profiles a.

Theorem (analogue to Frankel, Morris, and Pauzner (2003):
As the scale parameter v goes to zero, the global game G*(u,¢,f) has an essentially unique limit

equilibrium.

More precisely, denote a pure strategy of the global game by si : R —4;, such that player i
chooses action si(xi) when receiving signal x; . There is a strategy combination s, such that for
v—0, any equilibrium s”(x) of G"(-) converges to s(x) for all x except possibly at the finitely

many discontinuities of s.

If the global game’s limit-equilibrium strategy profile is continuous at state 6%, its value
at this state determines a particular Nash equilibrium of the complete information game,
called global-game selection (GGS).

The first question that arises when defining a selection for a class of games with
multiple equilibria is whether the selection is actually unique. A complete-information game
can be extended to many different global games distinguished by the extended payoff
function u, the prior distribution of the state variable ¢, and the tuple of noise distributions
for private signals f. Hence, we would like to know under which conditions the GGS is
independent of u, ¢, and f ? If it is not independent, then multiple Nash equilibria of the

the danger of coordination on an inefficient equilibrium, while ambiguity can be modelled as a global game with
a unique equilibrium.



underlying complete-information game are replaced by potentially different limit equilibria of
the different global games. Frankel, Morris, and Pauzner (2003) show that the GGS is
independent of ¢. BDH show that the GGS is independent of u. The combination of these two

results implies that one may use without loss of generality a particular global-game
embedding, such as u,(a,0) = g,(a)+0a, (BDH).

Proof: For a sufficiently wide support of ¢, u; satisfies the global-game assumptions (A1) to
(A3). Obviously, u; embeds g at 6*=0.

Unfortunately, the GGS may depend on f. This is known since Frankel, Morris, and Pauzner
(2003) and Morris and Shin (2003), who constructed the first examples of global games in
which the limit equilibria for v—0 depend on the distribution f. The GGS is called noise
independent, if the GGS is independent of the particular density function of private signals f.
Carlsson and Van Damme (1993) had already shown that for any two-player-two-action game,
the GGS is independent of f. In symmetric 2-player-2-action games, the GGS is actually
identical to the risk-dominant equilibrium defined by Harsanyi and Selten (1988). Table 1,
taken from BDH gives an overview of the games, for which noise independence can be
established simply by counting the number of players and actions. It shows that symmetric
complete-information games with two actions for each player, symmetric 2-player games with
3 actions for each player and asymmetric 2-player games, in which at least one of the players
can only choose between two possible actions are noise independent. In these games, the
GGS can be calculated by solving the simplest possible global-game. Larger games, however,
may not be noise independent. For these games, noise independence can be established by
using p-dominance or potential maximizers, arguably complicated concepts that most applied

researchers do not want to go into.

Table 1. Noise (In)dependence in Supermodular Games

Symmetric games Asymmetric games
actions 2each 3each 4each actions 2each 2byn 3 each
2 players Vv 14 X 2 players Vv 4 X
3players Vv X 3 players X n.a.

n players Vv n players X n.a.

Notes: v always noise independent. X counterexample to noise independence exists. For
empty cells, the existence of counterexamples follows from examples in smaller games.

It is therefore quite helpful that BDH show that some larger games can be broken down into
small games, for which noise independence can be established by counting the number of
players and actions. The idea behind their theorem rests on the observation that any

equilibrium of a global game is a step function with equilibrium strategy profiles increasing in
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the relevant state variable. Hence, the GGS is also a step function increasing in the state
variable. When the variance of idiosyncratic noise terms approaches zero, players may only
need to consider two action profiles, namely those that are played for somewhat smaller and
somewhat larger states of the world. This rough intuition cannot always be successful in
describing a GGS, because symmetric 2-action games are noise independent and there are
examples of larger games that are not. However, a simple criterion for games that can be

broken down may reduce the workload for applied researchers to a minimum.

To get this, consider a supermodular complete information game I" with joint action

set A. For action profiles a < a‘, we define the set of action profiles between these two:
[a,a'|={adeAla<a<a'}.

Now, we look at the restricted game I'|[a,a‘], which is given by restricting the joint action set

of I to the action profiles a and a‘ (inclusive). BDH prove the following Lemma:

Lemma (BDH, 2013): Consider a supermodular game I' and a noise structure f. An action
profile a” is the unique GGS of T, if there is a sequence 0=a"<a' <...<a"<..<ad" =m s.t.
(1) @ is the unique GGS in I'|[a// ,a’ ] for all j < n, and

(i) @ 'isthe unique GGS inI'|[a/ ,a’ ] for all j > n.

Corollary: If all the restricted games are noise independent, then I is also noise independent

and a" is the unique noise independent GGS of I'.

This result provides a simple solution technique: If you have a game with multiple equilibria,
first check whether it is supermodular, so that the result applies. Then decompose the game
by defining restricted sets of action profiles that (if patched together) stretch from the lowest
action profile (denoted by 0) to the largest action profile m. Note that it is not necessary that
all action profiles of the original game are contained in one of the restricted sets. We only
need the highest action profile of one set being the lowest action profile of the next set. So,

you need to define a sequence of profiles 0=a"<d'<..<a"<..<a" =m.

Then, derive the GGS for each of the restricted games. This may sound cumbersome, but
actually, the trick is in defining an appropriate sequence of profiles such that the GGS of each
restricted game is easy to derive. Now, if all solutions point to the same strategy profile, this
profile is a GGS of the large game. We can mark these selections by arrows as in the following

example, where a° is the GGS of the large game:®
0=a">d 5a’>a «a" «a=m
If, in addition, all small games are noise independent, the large game is also noise

independent. Since noise independence is guaranteed for symmetric 2-action games and their

15 The procedure iteratively eliminates strategy profiles as potential solutions for the large game, starting with
the highest and lowest profiles. Thereby, it generalizes the iterative elimination of dominated strategies.
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GGS is almost trivial to derive, it is advisable to define the sequence of strategy profiles in such

a way, that all restricted games fall into this class.

This is certainly not possible for all games, and even if a large game can be broken down
into restricted 2-action games, the arrows may not always point into direction of the same

1

strategy. In the following example, the arrows point to strategy profiles a' and a* and we

cannot say which or whether any of these two profiles is the GGS of the large game:*®
0=a’>d «a*—>a —a*a=m

In such cases, we cannot use the decomposition result and need other techniques for

calculating the large game’s GGS and for checking whether it is noise independent. However,

BDH give some examples for symmetric games with more than 2 actions that can easily be

solved by decomposition. The application in the next section demonstrates that the

decomposition may also be quite helpful for solving games with asymmetric players.

4. An entry game with asymmetric payoff functions

The application is motivated by the problem of marketing a new network good and was
inspired by Ruffle, Weiss, and Etziony (2015). The payoff to any agent buying a network good
is increasing in the number of other agents who adopt the same good. Social media websites,
crowdsourcing applications and cellphones are a few examples. Payoffs need not be the same
for all agents: for some agents, strong network effects already render the good profitable
when just a few others use the same good. For others, profitability requires that many others

adopt the good.

The problem of asymmetric payoff functions also arises in other applications of
supermodular games, like financial crises, where the network effects differ between different
banks depending on how connected they are with the inter-bank market. Depositors of banks
that are highly connected and dependent on the stability of other financial institutions have
incentives to withdraw their deposits, while depositors of other, less vulnerable banks may
find it more profitable to retain their deposits in the bank, even if both depositor groups have
the same expectation about the number of withdrawn deposits. Here, the expected payoff to
any agent who keeps his deposits in the bank is increasing in the number of other agents who

choose the same action.

Table 2 gives an example of such a game. Each entry refers to the player’s net payoff
when he purchases the good as a function of the total number of purchasers. Positive numbers
mean that the payoff from the network good is higher than its price. For players A, B, and C,

for example, purchase of the good is profitable if at least 3 players adopt it, whereas players

16 presumably, the GGS (eventually depending on the noise distribution) is some strategy profile within [a’,a”],
because smaller and larger strategy profiles can be eliminated.
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J, K, and L profit from buying the good only if all 12 players adopt it. In the banking
interpretation “adopting” is equivalent to keeping deposits and positive numbers mean that
the expected returns from keeping deposits are higher than the return from an immediate

withdrawal.
Table 2. Payoff table of an asymmetric entry game

vi(n) Number of adopters n

Player i 1 2 3 4 5 6 7 8 9 10 11 12
A 4 -1 2 5 8 11 | 14 17 20| 23 26 29
B -4 -1 2 5 8 11 | 14 17 20 | 23 26 29
C -4 -1 2 5 8 11 | 14 17 20 | 23 26 29
D -13 -10 -7 | 4 -1 2 5 8 11 | 14 17 20
E -13 -10 -7 | 4 -1 2 5 8 11 | 14 17 20
F -13 10 -7 4 -1 2 5 8 11 | 14 17 20
G -25 -22 -19(-13 -10 -7 -4 -1 2 5 8 11
H -25 -22 -19|-13 -10 -7 4 -1 2 5 8 11
I -25 -22 -19(-13 -10 -7 -4 -1 2 5 8 11
J -34 -31 -28|-25 -22 -19}-13 -10 -7 -4 -1 2
K -34 -31 -28|-25 -22 -19}|-13 -10 -7 -4 -1 2
L -34 -31 -28|-25 -22 -19}-13 -10 -7 -4 -1 2

For an abstract description of this type of entry games and for deriving the GGS, we introduce
some notation: v,(n) = agent’s payoff from entry (adopting) if n players enter in total. We

assume that v,(n) is increasing in n for any player i. Thus, our game is supermodular. There

are M types of players. Agents with the same payoff function belong to the same type, while
players with different payoff functions belong to different types. We consider games in which

we can arrange all of the types according the following order: i belongs to a higher type than
J iff v,(n) 2 v;(n) for all n with at least one strict inequality.

In a one-shot game of this type, a pure strategy for a player is a decision to either enter
the game (adopt the network good) or not. We define a player’s strategy by a, =1 if player i

enters, and a;, =0 if player i does not enter. Strategy combinations are partially ordered by

therelation: a>a' iff a, > a', forall i. Define a” as the strategy combination where everybody

stays out; a' as the strategy combination where only players of the highest type (Type 1, equal
to Players A, B, C in Table 2) enter, others stay out; and a* as the strategy combination where
all players of the high types 1 to & enter and players of lower types stay out. Since there are
M different types, a" is the strategy combination in which all players enter. Note that a*/ <
a“forallk=1,....M.

Following Basteck, Daniéls, and Heinemann (2013), we can decompose the game into
restricted games [a*/, a¥] for k=1, ...,M. The restricted game [a", a*] consists of the strategy
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combinations a*/, a, and all strategy combinations @ that are strictly in between these two,
i.e. af/< @ < d*. The strategy combinations in the restricted game share the feature that all
players of the high types 1 to &1 enter and all players of the low types k+1 to M stay out.
Thus, only players of Type k have a choice in this restricted game. For these active players, the
restricted game is a symmetric binary-action game with payoffs given by the " block diagonal
of the payoff matrix. For the game displayed in Table 2, block diagonals are the same for all
types. Table 3 shows this block diagonal, which is the relevant part of the payoff function of

the restricted game:

Table 3. Payoff table for the restricted game of Type 1 (Players A,B,C)

vi(n) number of adopters n
Player i 1 2 3
A -4 -1 2
B -4 -1 2
C -4 -1 2

In symmetric binary-action games, the GGS is given by the best response to a uniform
distribution on the number of entrants among the other players. For the restricted game,
displayed in Table 3, the expected payoff given a uniform distribution on the number of other
players adopting is —1 < 0. Hence, the global game selects the lowest strategy combination in
the restricted game, such that ;=0 for all players i of Type k. Because the block diagonals are
the same for all 4 groups of our game, the GGS for each of the restricted games [a*/, a*] for k
=1, ..., Misthe respective lowest strategy combination,

0=a"«a' «a’ «a «a'.
It follows that the GGS of the entire game is a’, the strategy combination where no player

enters. Since the restricted games are noise independent, so is the entire game (Basteck,
Daniéls, and Heinemann, 2013).

Strikingly, this selection does not depend on the values of the payoff matrix in the off-
diagonal blocks! The experiment, however, shows that these off-diagonal payoffs affect
behavior in an intuitive manner. The GGS fails to predict this.

The same procedure can also be applied to asymmetric supermodular games with
different block diagonals. If the block-diagonal payoffs of high types are weakly higher than
those of low types, the procedure derives the unique and noise independent GGS. If there is
only one player per type, the procedure is identical to the iterative elimination of dominated

strategies.
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5. Experimental design

The experiment consists of four sessions, each with 12 participants, conducted in the
experimental economics laboratory of Technische Universitat Berlin. Subjects were invited via
ORSEE (Greiner 2015), the experiment was programmed with z-tree (Fischbacher 2007).

Each subject played 20 different supermodular one-shot games in random order
without feedback.!’” In each game, each subject had to decide between two options: “enter”
or “not enter”. The payoff for not entering was 34 experimental currency units (ECU),
independent of what the other participants decided. This number was the same in all games
and appeared on the screen for every game. The payoff for entering depended on the subject’s

role in the particular game and on the other participants’ decisions in the same game.

In each game, there were 12 roles, called A, B, C, ..., L. Roles were randomly assigned
to the 12 participants such that each role was assumed by one participant. The random role
assignment was done for each game independently of the roles or decisions in previous
games, except that no subjects ever got the same role in two consecutive games. The payoffs

for “enter” were displayed on the screen as in the following Table 4:

Table 4. Sample payoff table shown in the instructions for the experiment

number of entrants
Role 1 2 3 4 5 6 7 8 9 10 11 12
A 39 40 41 42 43 a4 45 46 47 48 49 50
B 37 38 39 40 41 42 43 44 45 46 47 48
C 35 36 37 38 39 40 41 42 43 44 45 46
D 33 34 35 36 37 38 39 40 41 42 43 44
E 31 32 33 34 35 36 37 38 39 40 41 42
F 29 30 31 32 33 34 35 36 37 38 39 40
G 27 28 29 30 31 32 33 34 35 36 37 38
H 25 26 27 28 29 30 31 32 33 34 35 36
I 23 24 25 26 27 28 29 30 31 32 33 34
J 21 22 23 24 25 26 27 28 29 30 31 32
K 19 20 21 22 23 24 25 26 27 28 29 30
L 17 18 19 20 21 22 23 24 25 26 27 28

Each row displays the payoffs to the subject with the corresponding role. The player’s own
role in each game was highlighted as Role D in Table 4. For each player, there were 12 possible
payoffs. The payoff each participant received for a game was determined by the total number
of participants that decided to enter in this game. For example, if the player with role D
entered in this game and there were, for example, 6 players (including himself) who entered
in this game, then he received a payoff of 38 ECU.

1750, behavior in any game cannot be affected by the outcome of another game.
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All of these rules were given to subjects in written instructions (see Appendix C) and
read aloud at the start of a session. Before subjects could make decisions in the 20 games,
they had to answer comprehensive questions to make sure that they understood how to read
the payoff tables. In each of the 20 rounds, each subject decided for one of the 20 games.
Once all 12 subjects made and confirmed their decisions, the round ended and the next game
started. Subjects did not receive any feedback about others’ behavior between games. Once
all 20 games had been completed, each subject received a list containing the results of the
games. This list showed the game number (1-20) and displayed for each game: the subject’s
own role (A-L), her or his decision (“enter” or “not enter”), the number of participants who
chose to “enter” in this game, and her or his own payoff for this game. The screen also showed
the sum of the subject’s payoffs over all 20 games. At the end of the experiment, subjects
were paid 1 Euro for every 40 ECU they earned in the experiment.'® Sessions took less than an

hour and subjects earned between 13 and 19 Euros each.

The payoff functions for the 20 games used in this experiment are displayed along with
subjects’ choices in Appendix A. The games varied in the number of types (1, 2, 4, or 12), in
whether the GGS predicts entry or no entry (same prediction for all types except for Game
20), and in the off-diagonal payoffs. 2 games have symmetric payoffs for all players (1 type)
and 4 games have 12 different types and, thus, a unique equilibrium that can be calculated by

iterative elimination of dominated strategies.

Hypotheses: Given the results of previous experiments on coordination games, in
particular from HNO, we hypothesize that (i) changes in payoffs that leave the GGS unaffected
have no significant impact on subjects’ behavior and (ii) playing the GGS strategy yields a
higher expected payoff than actual behavior or other pre-specified strategies. The next section

shows that both hypotheses can be clearly rejected.

6. Experimental results

This section first gives a descriptive review of subjects’ decisions in the 20 games. Then, we
analyze how well the GGS predicts observed choices and compare this measure of predictive
power with other selection theories for binary-choice coordination games. Following HNO, we
then compare the expected payoff of a player who plays either of these selections given the
observed distribution of choices by others. Thereby, we test which theories are best-suited to
provide a recommendation for an individual player. Then, we test the comparative statics
properties of the different solution concepts. Finally, we estimate a global game with positive

variance of private signals and compare its predictive power to an estimated quantal response

18 Subjects were paid for all games. This minimizes the effect of risk aversion. Heinemann, Nagel, and Ockenfels
(2004) have shown that providing a high payoff for a single randomly selected decision leads to a higher threshold
for choosing the risky option. With 20 decisions on amounts in the magnitude of 1 Euro each, risk aversion should
have negligible effects.
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equilibrium (QRE) and to probabilistic responses to Laplacian and level-k beliefs. We also look
at the expected payoffs of best responses to the estimated probabilistic solution concepts.
We compare those with expected payoffs from the best selection theory. Thereby, we analyze
whether the effort of gathering data and estimating a probabilistic model helps in achieving

good recommendations for an individual player.

Appendix A displays the payoff tables for the 20 games. These tables also state for each
game and for each role how many subjects in this role decided to enter. As there were 4
sessions, the maximum number of entrants per role is 4. The maximum number of entrants
per game is 48. Since all games were played without feedback, we can aggregate the results

across all four sessions.

- Games 1to 10 have 4 types of players and 5 Nash equilibria in pure strategies.'® Games
1to 4,9, and 10 have the same payoffs in the block diagonals that determine the GGS.
Here, the GGS is that no player enters. The games vary in their off-diagonal payoffs and
so did the observed total number of entries that varied from 10 subjects (out of 48) in
Game 1 to 30 subjects in Game 10. Games 5 to 8 have higher payoffs in the block
diagonals and here, the GGS is that all players enter. The observed total number of
entries varied from 22 to 29.

- Games 11 to 14 have 2 types of players and 3 Nash equilibria in pure strategies. The
GGS for Game 11 is that all players enter. For the other 3 games, the GGS is that no
player enters. The observed number of entrants is 31 in Game 11. It varies from 16 to
20 in Games 12 to 14.

- Games 15 and 16 are symmetric games (1 type of players). In both games everybody
entering and nobody entering are the 2 Nash equilibria in pure strategies. The GGS is
the same for both games: no player enters. We observe 27 entries in Game 15 and 9
in Game 16.

- Games 17 to 20 have 12 types each. These games have unique equilibria that can be
derived by iterative elimination of dominated strategies. In Game 17, the equilibrium
is that everybody enters. We observe that 20 (out of 48) subjects enter. Games 18 and
19 have the equilibrium that nobody enters. We observe 32 and 16 entries,
respectively. Game 20 has a unique equilibrium in which Types A to H enter and Types
| to L do not enter. We observe that 27 out of 32 players in the roles A to H enter and

none of the 16 playersin roles | to L.

19 The equilibria are (i) nobody enters, (ii) only Players A-C enter, (iii) Players A-F enter, (iv) Players A-l enter, (v)
all players enter.
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6.1 Predictive Power of Selection Theories

This subsection compares selection theories that prescribe a pure strategy to any generic
binary-choice game with an eventual indifference between the two actions for a zero-set of

parameters, in which case we attribute probability .5 to both actions.

The predictive power of a selection theory is measured by the proportion of observed
decisions that is correctly predicted by the respective theory. Since for many games and roles,
different subjects choose different actions, selection theories cannot perfectly fit the data. At
best, a selection predicts for each game and for each role the action that is chosen by the
majority of subjects. The average proportion of decisions that is taken by the majority of
subjects across all games and roles, thus, serves as an upper benchmark for a selection’s
predictive power. The lower benchmark is given by a random prediction (0.5) for all games

and roles. We compare the predictive power of the GGS with four other selection theories:

“Laplacian”, defined as the best response to a uniform distribution (Laplacian belief)
on the number of other players who chose B in the same game. In symmetric binary
choice games with strategic complementarities, the Laplacian strategy coincides with
the GGS.

- “Level-1”, defined as the best response to every other subject choosing either action
with probability .5. The concept of levels of reasoning has been shown to predict many

subjects’ choices in some supermodular games like the guessing game (Nagel, 1995).

- Payoff-dominant equilibrium (PDE), defined as the equilibrium strategy combination

that yields the highest payoffs for all players, amongst all equilibria.

- Maximin, defined as the strategy that yields the highest payoff for an individual player

if no other player enters.

- Best possible prediction, defined as the strategy that is taken by the majority of
subjects in the same game and role. As explained above, no selection can predict a

larger proportion of observed decisions than this benchmark.

Table 5 states the proportion of observed choices that coincides with the predictions by each
of these selection theories. We distinguish asymmetric games with multiple equilbria, (Games
1-14), symmetric games (15-16), and games with a unique equilibrium (17-20). Note that GGS
and Laplacian are identical concepts in symmetric games, and GGS and PDE are both
equilibrium refinements. Thus, they select the same strategy combination if the game has a
unique equilibrium, while Laplacian, Level-1, and Maximin may select non-equilibrium
strategies. Figure 1 normalizes the predictive power with random prediction as zero and

maximum possible probability as 100.
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Table 5. Proportion of observed choices in line with the respective selection theory

GGS Laplacian Level-1 PDE Maximin Best
possible

Asymmetric games .595 .815 .815 455 .544 .827
with multiple equilibria
Symmetric games .625 .625 .625 .375 .625 .687
Games with unique .589 .859 .833 .589 .599 .891
equilibrium
All games .597 .805 .800 474 .564 .826

While only 60% of subjects’ decisions in the experiment are in line with the GGS, 80% of
observed decisions are in line with a best response to random behavior (Level-1) and with a
best response to Laplacian beliefs. These results are remarkable as they are rather close to
the maximum possible predictive power that a selection can have (benchmark).

Figure 1: Predictive power of selection theories relative to benchmarks (random = 0, best
possible = 1)

0,8
0,6
0,4
0,2
0 ,

GGS Laplacian Level-1 PDE Maximin

Another measure for the quality of selection theories is the percentage of games and roles for
which a theory predicts the choice taken by the majority of subjects. The Laplacian strategy
yields the best possible prediction in 92% of all games and roles, Level-1 in 90%, GGS and PDE
in 60%, and Maximin in 63%. A random selection would give the best prediction in 51% of all

games and roles.?°

Furthermore, in 234 out of 240 games and roles (97.5%) the Laplacian strategy is a
weakly better predictor of observed behavior than the GGS. For Level-1, this number is 235

20 This number exceeds 50%, because in 7 out of 240 games and roles, exactly half of all subjects of the respective
type chose the risky option, so that either prediction is the best possible.
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(97.9%). It should be noted that Laplacian and Level-1 strategies coincide in 230 (96%) of our

games and roles.?! Thus, it is not surprising that their predictive power is almost the same.

In order to check how robust these results are, we compare the predictive power of
the same solution concepts for the symmetric coordination games used in the experiment by
HNO using the same criteria. In their experiment, there were 299 subjects in total, each playing
30 different binary-choice games. Here, the GGS correctly predicted 75% of the 299x30=8970
choices and gave the best prediction in 77 out of the 90 different games (86%), Level-1
predicted 71% of all choices and gave the best prediction in 70 games (78%).22 For PDE the
respective numbers are 60.5% (62%), and for Maximin 47.8% (48%). The benchmark was
78.1% (100%). Thus, in symmetric binary choice games, the GGS has the highest predictive
power. Since the GGS is identical to the Laplacian strategy in symmetric games, we may
conclude that the best response to a Laplacian belief about the proportion of players who take
the higher action gives the best point predictions for symmetric and asymmetric binary-choice

games with strategic complementarities.

Result 1: The best response to a uniform distribution on the proportion of other players who
take the higher action (“Laplacian” strategy) predicts more choices correctly than the GGS,

Level-1, PDE, or Maximin.

6.2 Expected Payoffs Resulting from Selection Theories

Suppose you want to give an advice to a depositor of a bank or to a firm manager who
considers adopting a new software. A player who happens to participate in a one-shot
coordination game, would like to know which strategy is associated with the highest expected
payoffs. As he does not know yet the behavior of other players who decide simultaneously,
such a strategy must be defined ex-ante and the selection theories that we discussed in the
last subsection are obvious candidates. Table 6 provides the expected payoffs that a player
obtains when following either of these strategies in a randomly selected game and role with
randomly selected players from our subject pool. We compare these values to the expected
payoff from random behavior (entry with probability .5), subjects’ actual choices, and best
response to the observed distribution of choices. The third line normalizes these payoffs to

those from the best response (100%) and random behavior (0%).

21 Out of the 10 cases, in which Laplacian and Level-1 differed, Laplacian gave the better prediction in 6 cases,
Level-1 in the other 4.
22 |n 8 out of 9 games, in which GGS and Level-1 differed, the GGS predicted the majority of choices.
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Table 6. Expected payoff associated with the respective strategies

Random GGS Laplacian Level- PDE Maximin Actual Best

1 choices response

Exp’d payoff  31.39  33.95 35.97 36.08 28.97 34.20 35.51 36.27

Exp'd payoff 0%  52%  94%  96% -50%  58% 84% 100%

(normalized)

Level-1 and Laplacian yield higher expected payoffs than subjects’ average choices and come
rather close to the maximum possible expected payoff, given by a best response to observed
behavior. The GGS, instead, provides a poor recommendation by which subjects would obtain
lower expected payoffs than they actually achieved (on average).

In HNO, the GGS yielded the highest expected payoff. Using their data, expected
payoffs from the GGS (normalized) were € 11.75 (97%), Level-1 € 11.43 (84%), PDE € 8.29 (-
40%), Maximin € 8.25 (-42%), and random € 9.31 (0%). Actual choices yielded an average of €
10.36 (42%) and a best response to the observed distribution would have given € 11.82
(100%). As Laplacian equals the GGS in symmetric games, we may conclude that Laplacian and
Level-1 give the best recommendations for an individual player in symmetric and asymmetric

binary-choice games with strategic complementarities.

Result 2: The expected payoff for a player who follows either the Laplacian or the Level-1
strategy is higher than the expected payoff from the GGS, PDE, Maximin, or actual behavior.

6.3 Comparative Statics

The different payoff functions in the 20 games of the experiment were designed in such a way
that we can test several comparative statics properties on which the aforementioned
selection theories give different predictions. In all games with different types, we observe that
high-type players (A, B, C...) tend to opt for B more frequently than low types (... J, K, L). Thus,
our first test is whether subjects of higher types enter more frequently than subjects of lower
types within the same game. In the asymmetric games with multiple equilibria (Games 1-14),
GGS, PDE and Maximin predict the same decisions by all types (which constitutes the null
hypothesis), while Laplacian and Level-1 predict entry by high types and no entry by low types
in each of these games. If we look at the correlation between types and entries, we find that
the proportion of subjects who enter is highly correlated with their type. For a formal test, we

run linear regressions with fixed effects for each game:

Regressions were done separately for games with a different number of types. There
are 10 games with 4 types each and 4 games with 2 types. Denote the game number by g and
the “type” number by k. Eg is the number of entrants of type kin game g. I(g) denotes the
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indicator function and a, is the estimated fixed effect of game g. The residual is ug ;. The

regression equation is then
Egk= Bk +agl(g) + ugk.

For games with 4 types, the estimated f = —-3.42 (.24). For games with 2 types, the estimated
S =—15 (.4). Numbers in parentheses are standard errors. In both regressions, “type (k)" is

highly significant (p=.1%). Thus, we can reject the null hypothesis that entries are not related
to type (£ =0).

Another (non-parametric) test just counts how often higher types enter more often
than the next lower type in the same game. In Games 1-14, higher types enter more often
than the next lower type in 29 cases, less often in 2 cases, and equally often in 3 cases, thereof
2 cases with zero entries for both types. Thereby, we can reject that the proportion of entries

is the same across types in the same game (Wilcoxon signed rank test, p<1%).
Result 3: Players of higher types enter more often than players of lower types.

For comparisons between games, let us say that a game is “higher” than another game
if all payoffs in the first game are weakly larger than the payoffs in the second game with at
least one strict inequality. The second comparative statics property concerns the off-diagonal
payoffs. As explained above, only entries in the block-diagonal matrices affect the GGS. Games
1to 4,9 and 10 have the same block diagonals, according to which the GGS predicts no entries,
but vary in their off-diagonal payoffs. Game 2 has higher payoffs than Game 1 in cells above
the diagonal blocks, Game 3 has higher payoffs than Game 1 below the diagonal blocks, Game
4 has higher payoffs than Games 2 and 3 on either side. Game 9 has higher payoffs than Game
3 below the diagonal, and Game 10 has higher payoffs than Games 4 and 9 on either side.
Games 5 to 8 can be ordered in the same way as Games 1 to 4. Amongst the games with 2
types, Game 13 has higher payoffs above the diagonal than Game 12. Finally, Game 18 has
higher payoffs below the diagonal than Game 19. Table 7 summarizes the independent
comparisons between games that are driven by variations in off-diagonal payoffs. The partial
order of games is displayed in the first and fourth column of Table 7. The columns to the right
of these pairs of games indicate the number of entrants in the lower and in the higher game(s)
of the respective pairs. Dependent comparisons have been left out. We find that in 9 of these
independent pairs higher off-diagonal payoffs lead to more entries with one opposing case.
The positive impact of off-diagonal payoffs on the number of entries is significant at 5%

according to the Wilcoxon signed-rank test.

Result 4: Higher off-diagonal payoffs raise the number of entrants.
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Table 7. Effect of higher off-diagonal payoffs on the number of entries

Pair of entrants in entrants in Pair of entrants in entrants in
games lower game higher game(s) games lower game higher game(s)
1<2 10 17 5<6 26 22

1<3 10 15 5<7 26 29
2,3<4 17, 15 21 6,7<8 22, 29 29

3<9 15 21 12<13 19 20
4,9<10 21, 21 30 19<18 16 32

The third comparative statics prediction that we want to test is, whether an overall increase
in payoffs (including the block diagonals) raises the number of entrants. Here, we compare
games for which the payoffs in one game are equal to the payoffs in another game plus some
constant, v;(n) =v,(n)+J, and for which the GGS predicts entry in the higher game and no
entry in the lower gamer. Table 8 summarizes these comparisons. Here, the higher games
always have more entrants, which is significant at 5% according to the Wilcoxon signed-rank

test.

Result 5: A constant increase in all payoffs, such that the GGS predicts entry in the higher game

and no entry in the lower game leads to more entries in the higher than in the lower game.

Table 8. Effect of a constant increase in payoffs on the number of entries

Pair of entrantsin | entrantsin Pair of entrantsin | entrantsin
games (0) | lower game | higher game(s) games () lower game | higher game(s)
1<5(3) 10 26 12 <11 (5) 19 31
2<6(3) 17 22 14 <13 (3) 16 20
3<7(3) 15 29 16 < 15 (8) 9 27
4<8(3) 21 29

The GGS predicts the comparative statics stated in Results 5, but not those described by
Results 3 and 4. PDE and Maximin strategy predict none of the three results. The Laplacian
and the Level-1 strategy, instead, predict all three results.

Finally, we also compare the number of entrants from different games who share the
same payoff function. For example, Type ABC has the same payoff function in Games 1, 3, and
9. The best response to Laplacian beliefs and the level-1 strategy only depend on a player’s
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own payoff function and are insensitive to changes of the payoff functions of other agents.
For our games, this is also true for the GGS, for the PDE and for the Maximin strategy.
Nevertheless, seeing that other agents receive higher payoffs from entering, e.g. in Game 9
compared to Game 3, might also lead more players of Type ABC to enter in Game 9 than in
Game 3, because they might believe that more of the other types enter in Game 9. In total,
we have 11 independent pairs of games in which the payoff function of one type (either ABC

or JKL) is the same. Table 9 summarizes the results of this comparisons.

Table 9. Effect of an increase of other players’ payoffs on the number of entries from a type

with constant payoff function

Pair of | entrants from entrants from Pair of | entrants from | entrants from

games | Type ABCin Type ABC in games | Type JKLin Type JKLin
lower game higher game lower game higher game

1<3 9 10 1<2 0 0

3<9 10 11 3<4 0 1

2<4 12 11 5<6 3 2

4<10 11 12 7<8 2 1

5<7 12 12 9<10 1 2

6<8 12 12

In 5 cases, the number of entrants from the type that should be indifferent across the two
games is higher in the higher game, in 3 cases, it is lower, and in 3 cases, we see the same
number of entrants (but possibly, because these numbers are the lowest or highest possible).
The Wilcoxon signed-rank test cannot reject the hypothesis, that these subjects do not

respond to changes in the payoff function of other players.

6.4 Modelling heterogeneous behavior

Selection theories may predict a large number of choices correctly, but they can neither
account for nor predict the heterogeneity of individual choices within the same game and role.
To account for heterogeneity, probabilistic models assign some probability for either choice
to each game and role. Ideally, such a probabilistic model would predict the observed

distribution of choices.

There are many possible ways of formulating probabilistic models. HNO fitted logistic
functions and two global games to their data. As explained in Section 2, the estimated global
games provided a nice fit of these data, even though there were some systematic deviations,

and they also gave reasonable predictions out of sample. Alternatives to these approaches are
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quantal response equilibria (QRE) or any choice function that adds some noise to the

prescriptions of a selection theory.

Here, we estimate a global game with positive variance of private signals on monetary
payoffs and compare its predictive power to an estimated QRE. We also define noisy
responses to Laplacian and Level-1 beliefs, by assuming that subjects choose the action with
the higher expected payoff (given their beliefs) with some probability defined by a logit
response function. Each of the four models has one free parameter that we estimate using
the data from the experiment. We compare their log-likelihoods to evaluate the predictive

power of these estimated models.

In order to judge whether modelling the distribution of choices helps a participant of
a one-shot game to obtain higher payoffs, we calculate the expected payoffs resulting from
best responses to the four estimated models and compare those with the expected payoffs of

selection theories displayed in Table 6.

First, we define a global-game that embeds the coordination games used in the
experiment. Following BDM, we define the payoff for entry as v,(n) + @, where @ is a random

variable with uniform distribution on the reals. For any given &, players receive i.i.d. private
signals with normal distribution x, ~ N(6,57) . The standard deviation of private signals o

allows heterogeneous behavior and can be estimated to fit the observations of an experiment.
A global-game equilibrium is a vector of thresholds ()_c")i:l’m12 for each of the 12 players.

Of course, all players who belong to the same type (i.e. have the same payoff function), also
have the same equilibrium threshold so that a global game has M different thresholds for the

M types. The equilibrium is characterized by the following two conditions

(1) Given that the realization of § that corresponds to the underlying game is =0, the
probability that player j entersis prob(x; > x)=1-®d(x’ /o), with ® denoting the

cumulative standard normal distribution.

(2) Player i is indifferent at signal X', if and only if E(v,(n)+8]|x, =x')=0.

Appendix B provides the details of how the likelihood function is constructed. Maximizing the
log-likelihood, we estimate a standard deviation of signals o of about 7. The log-likelihood at
this value is —478.9 (average log-likelihood = —.499). Figure 2 displays the log-likelihood
depending on o . One gets the impression that it is rather flat at the top and does not fall
much for an increasing o, so that the estimate of & is rather imprecise.??> Nevertheless, it is
much better than random. Since there are 960 decisions in total, the log-likelihood of random
predictions is 960 x /n(.5) = — 665.

2 The likelihood is not significantly lower for 6=6 or c=8.
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Figure 2: Log-likelihood
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For the QRE, we use a standard definition with a logistic choice function according to which a
subject in Role i enters with probability

b= exp(4-E(v,(n)| p.,))
" exp(A-E(v,(n)| p_,) +exp(1-34)’

(1

where p_, is the vector of entry probabilities for all other subjects. Subjects of the same type

enter with the same probability. Hence, the QRE of a game is given by M probabilities that
solve the M equations (1) simultaneously. The computational complexity of solving these
equations is lower than for solving the equations defining a global-game equilibrium, because
the equations need to be evaluated only at the true payoffs, while a global game needs to
evaluate similar equations for all possible realizations of 6. The maximum-likelihood
estimation of the rationality parameter in the QRE yields 1 = .071.2* The log-likelihood at this
value —521.1 (average log-likelihood = —.543), which is clearly lower than the result for the
estimated global game. Reason is that the estimated QRE predicts rather small differences
between entry probabilities of high and low types of the same game. The estimated global
game also predicts smaller differences between entry probabilities of different types than
observed in the experiment, yet it captures these differences better than the QRE.

Noisy responses to Laplacian and Level-1 beliefs are modelled by a logit response
function to the respective beliefs. Their construction does not require solving complicated
equation systems. Here, a subject in Role i enters with probability

_ exp(4-E(v,(n))
P e p(A-E(v,(n)) + exp(1-34)

24 In general, there may be multiple QRE, especially for large values of A. Apparently, they all yield lower
likelihoods. For the low value of A that maximizes the likelihood, | found only one equilibrium.
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where the expected payoffs E(v,(n) are simply derived from a uniform distribution on » for

Laplacian beliefs (that can be calculated by head) and from a binomial distribution for Level-1
beliefs. The maximum-likelihood estimates are 1 = .184 for Laplacian beliefs and 4 = .170 for
Level-1 beliefs. The maximum log-likelihood is —456.8 (average log-likelihood = —.476) for
Laplacian and —463.8 (—.483) for Level-1 beliefs. Both numbers are clearly higher than the
maximum likelihood of the estimated global game.?> They correspond to an average likelihood
per observation of 62.1% and 61.7% respectively, compared to 60.7% in the estimated global
game and 58.1% in the estimated QRE. It is stunning that the model with lowest computational

complexity (“noisy Laplacian”) yields the best fit of data.

Result 6: The estimated noisy response to Laplacian beliefs about the number of entrants fits
the observed distribution of choices better than estimated global game, QRE or noisy response
to Level-1 beliefs.

All four models of heterogeneous behavior give the observed comparative statics
predictions stated in results 3 to 5. A global game with positive variance of private signals
predicts higher entry probabilities by higher types, because the off-diagonal payoffs lead to
different threshold values for different types. This is an important difference to the GGS that
fails to make this distinction. The global game also predicts that rising payoffs of other agents
lead to a higher entry probability for a type whose payoffs do not change. Noisy Laplacian and
level-1 predict that entry probabilities are independent from other players’ payoffs. As
explained at the end of Section 6.3, the evidence does not allow to reject the null hypothesis
that actions are independent of others’ payoffs. Note however that we cannot reject the

hypothesis coming from the global game either.

For the purpose of choosing the optimal action as a player in a coordination game, the
estimated theories may be helpful as well. Note that a theory without any predictive power
predicts any strategy combination with the same probability. This is random behavior or Level
0. In Section 6.2, we saw that the best response to random actions yields 96% of the
normalized expected payoff.?® Thus, best responses to estimated models cannot do much
better, even if the models are fitted to the data. Indeed, the expected payoffs from playing a

best response to an estimated distribution vary from 95% to 98% as shown in Table 10.%’

Result 7: Best responses to different estimated models of heterogeneous behavior yield similar
expected payoffs, comparable to but not much higher than expected payoffs for the Laplacian
and the Level-1 strategy.

%5 Log-likelihoods of the four models are summarized in Table 11.

26 The expected payoff from random choices is normalized to 0, the maximum expected payoff that is achievable
for the observed behavior is set to 1.

27 One may also ask, whether it is a good idea to play a mixed strategy and enter with the probability given by
any of the estimated models. This is, however, not recommendable. If a subject enters with the probabilities
describing behavior in, e.g., an estimated global game, the expected payoff would be 34.87 (normalized 71%).
These models are descriptive, not normative.
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Table 10. Expected payoffs of best responses to estimated models

Estimated Model Random Global game QRE Noisy Laplacian  Noisy Level-1

Expected payoff
36.085 36.078 36.037 36.165 36.168
from best response

Expected payoff
from best response  96.19% 96.05% 95.22% 97.84% 97.91%

(normalized)

The predictions of estimated models can be useful only out of sample, because they require
the data from the current experiment. As the models are fitted to observations, the predictive
power out of sample is likely to be lower. However, given that best responding to random
behavior yields already 96% of expected payoffs in our experiment, an estimated model from
another data set would presumably yield comparable results. For out-of-sample predictions
of behavior in other coordination games, it is more important to see whether best responses
to random behavior generally yield so high expected payoffs and for which games estimated
models give better predictions.

Are estimated models helpful in predicting individual actions? Since estimated models
predict each action with some probability, the probability of predicting an observed action is
the probability of this action in the estimated model. The average probabilities for correctly
predicting observed individual actions are .69 for the noisy Laplacian and Level-k model, .617
for the estimated QRE and .607 for the estimated global game. Hence, for the purpose of
predicting the action of a randomly selected player, the entry probabilities of estimated
models are not directly useful. This is because these estimates are not maximizing the average
probability of an observation, but rather the probability for the entire distribution of actions.
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7. Conclusions

Table 11. Comparison of solution concepts

GGS Laplacian  Level-1 Noisy Noisy  Global QRE
Laplacian Level-1 game

% correct 59.7% 80.5% 80.0% 69.1% 68.7% 60.7% 61.7%
predictions
Log-likelihood for -infinity  -infinity - infinity -457 -464 -479 -521

obs’d. distribution

Expected payoff in 52% 94% 96% 98% 98% 96% 95%
% of maximum?*

Qualitative no yes yes yes yes yes yes
comparative statics

Computational Very Lowest low low low Very high
complexity low? high

* Note: the last four numbers are expected payoffs for best responses to the estimated models of line 1.

Table 11 summarizes the main results of this experiment. We may distinguish four different

purposes for which we desire a model that provides us with a description of behavior.

To predict the majority of actions or the action of an individual agent, selection
theories are useful. Our results show that the best response to Laplacian beliefs about
the number of other entrants and the Level-1 strategy (best response to random
behavior) yield the best predictions for this purpose.

Predicting the distribution of actions requires a model that assigns entry probabilities
to each player in each game. Out of the four estimated models with one parameter
each, the noisy Laplacian model fits best, followed by Noisy Level-1, and an estimated
global game.

To choose the optimal action in a coordination game, a player can follow one of the
selection theories or play a best response to an estimated distribution of actions.
Among selection theories, the best response to random behavior (Level 1) yields the
highest expected payoff, 96% of what is achievable in comparison to random behavior.
The best responses to estimated models cannot do much better, but noisy Level-1 and
noisy Laplacian increase this performance to 98%.

Predicting the observed qualitative comparative statics is especially important for all
theorists, who want to analyze in which direction a variation of exogenous variables,
e.g. means of regulation, affects the aggregate outcome. Among the selection

theories, Laplacian and level-1 strategy give the right comparative statics predictions,

28 The computational burden of calculating the GGS is low in the games presented here, because they have been
constructed in a way that BDH can be applied and off-diagonal payoffs are irrelevant. However, it may require a
substantial effort to solve for the GGS in other asymmetric games.
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while in our games the GGS does not predict differences between types, nor the

comparative statics with respect to payoffs of other types.

The models tested in this experiment can be ordered by their computational complexity that
also matters for the decision which concept to use for analyzing an applied coordination
problem. The GGS is, in our games, easy to calculate if you know how to do it. But it requires
more effort for other games. The best response to Laplacian beliefs can be calculated by head:
it just requires to compare the average payoffs of the two actions, A and B, over the potential
number of other entrants. The Level-1 strategy requires calculating a binomial distribution.
Their probabilistic versions plug the expected payoffs in a logit function. QRE involves solving
a system of equations with logit functions, and the global game equilibrium needs to evaluate
such a system of equations not only for the payoffs of the actual game, but simultaneously for
all other potential payoffs in the conditional support of the state space. These requirements

order the solution concepts on a scale for complexity, such that
Laplacian < Level 1 < noisy Laplacian < noisy level 1 < QRE < global game.
Surprisingly, for each purpose, the least complex solution concepts work best.

For theorists working with supermodular coordination games, these results are good
news. In order to assess the comparative statics properties, they do not need to construct a
global game but can get reliable predictions from the best response to Laplacian beliefs that
is much easier to calculate and analyze also in algebraic form. The best response to Laplacian
beliefs also provides the best point predictions in symmetric and asymmetric coordination
games. This allows theorists to easily extend their models to asymmetric set-ups, e.g. bank-

run models with banks or depositors of different size.

Depending on the goals, a theorist may require a probabilistic model that yields a
prediction not only about the final aggregate outcome, i.e. whether a banking crisis occurs or
not, but also a description of the distribution of actions, i.e. which share of depositors
(depending on size) may be expected to withdraw deposits. This distribution may be
important for evaluating how much liquidity needs to be provided in order to avoid a banking
crisis or what the best limits are for a deposit insurance. For these questions, noisy Laplacian

beliefs give the best answer.

Consider, for example, a regulator who wants to assess the contribution of an
individual bank’s failure to a systemic crisis or a central bank that needs to decide whether it
should let a distressed bank fail, support it as lender of last resort, or inject liquidity into the
market. Here, the main question is whether the failure of the distressed institution with or
without liquidity provision to the market leads to a systemic crisis. Thus, the aggregate
outcome is of primary importance. The precise distribution of withdrawn deposits is of
secondary importance. However, mis-coordination among depositors is also associated with

losses to those who are on the wrong side (withdraw, although the bank survives or vice
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versa), even if these losses are small in comparison to the welfare losses caused by a

contagious financial crisis.

Thus, the choice of an appropriate solution concept may depend on the goal. If we
want to predict behavior of a single depositor or a single agent whom we want to get as a
customer for a network good, a simple selection theory, like the best response to Laplacian
beliefs, may be sufficient and even optimal, given the computational burden associated with
other concepts. The same may be true if we want to give advice to an individual agent in a

one-shot coordination game.

If we are interested in the distribution of choices, a probabilistic model accounting for
the heterogeneity of choices is indispensable. Note however, that all models that can be used
to describe heterogeneous behavior need a parameter steering the diversity of choices. In a
global game, this is the precision of private signals. Unfortunately, estimated variances of
private signals have a dimension that limits their external validity. For example, | can hardly
take the estimated standard deviation of 7 Euros that maximizes the log-likelihood of
observations in the presented experiment and assume that the same standard deviation gives
me a good prediction for a bank run game, where payoffs are in the magnitude of thousands
of Euros. Noisy Laplacian beliefs, instead, need a parameter for rationality. This has no
dimension and may have a higher external validity. Hence, one can use the rationality
parameter estimated with market data from past financial crises or from experiments like the

one presented here, and use them to calibrate a new model.

In real situations, agents also gain experience and learn the strategies of other players,
so that their behavior may be better described by the convergence point of a repeated
coordination game. Selection theories may be better suitable for predicting the outcome of
such a convergence process. Previous experiments on repeated games have shown that most
subjects follow a best-response to previously observed behavior. Thus, predicting behavior of
the first round is most important for predicting convergence points. The present experiment
implemented one-shot games to gain a large number of independent observations for a range
of different games. One-shot games may be seen as starting point of an eventual convergence
process, but the dynamics in asymmetric coordination games may differ from what we know

about symmetric games.

The obvious downside of Laplacian beliefs as a selection theory is that they are only
defined in binary choice games?® (e.g., extend or withdraw credit). When it comes to more
than two decision alternatives, Level-1 can still be applied, but we do not know yet how well

its predictions perform in comparison to other concepts when there are more than two

2% The original definition of the Laplacian strategy by Morris and Shin (2003) applies only to games in which it
coincides with the GGS. It seems possible to extend the definition to a broader class of games, e.g. with more
than two actions, such that it coincides with the GGS in symmetric games and limits the distribution to
undominated strategies.
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decision alternatives. As shown for the present experiment on binary-choice games, Level-1
may provide predictions that are almost as good as the Laplacian strategy, and the
computational complexity is not much higher. Noisy Level-1 also yields a good fit of observed
heterogeneity and requires the same dimensionless rationality parameter. In the games
considered in this experiment, Level-1 and Laplacian strategy coincide in the vast majority of
cases. Hence, it is not possible to clearly discriminate between the predictive power of these
concepts. These are important tasks for future research: (i) to test these concepts in games in
which Laplacian beliefs and Level-1 yield different predictions and (ii) to compare the

predictive power of Level-1 to the GGS in games with more than 2 possible actions.

The good fit of Laplacian and Level-1 strategies relative to GGS may be due to the
specific nature of the games used in this experiment. In most of these games, the GGS predicts
an extreme outcome: either nobody or all subjects enter. Laplacian and Level-1 strategies are
less extreme in that they predict an entry of some but not all players.3° Given the partial order
on strategy combinations used in Section 3, the GGS always predicts the highest or lowest
strategy combination, while Laplacian and Level 1 are in the middle. Thus, the question arises
whether global games might fit better if the GGS is in the middle, while Laplacian or Level-1
are at the extremes. It is not clear whether it is possible to construct games in which the GGS
differs from the best response to Laplacian beliefs and is less extreme in the above sense. If

yes, it should definitely be tested which concept works better in such environments.

There are other properties of the particular games used in this experiment that may
be “responsible” for the observed ranking of solution concepts by predictive power. Changes
in the structure of games may change the concept that best predicts behavior. In particular, if
the strategy space is extended by adding dominated strategies with additional players who
should never or always enter, the Laplacian and Level-1 strategies respond in the direction of
the added players’ strategies, but not the GGS. In our experiment, we could not reject that
subjects do not respond to changes in the payoff function of others if their own payoff function
remains unaltered. This means subjects behave as if they would not think about how others
decide. This is in line with Laplacian beliefs and Level-1. However, we know from other
experiments that higher-order beliefs exist and subjects respond to them.3! Thus, we should
also expect to find coordination games, in which subjects respond to changes in the payoffs
of other agents, which is predicted by a global game, but not by best responses to random

behavior.

For the estimated global game, we assumed uncertainty about payoffs with signals
that are normally distributed. It is possible that other global games or other distributions yield

a better fit. Hellwig (2002) defined a global game with individual degrees of risk aversion and

30 This holds for all games except Games 15 and 16 in which Laplacian and Level-1 predict no entries.
31 Nagel (1995), for example, has shown that average behavior in a beauty-contest game can be explained by
Level 2 and that subjects also foresee the response to others in a repeated beauty contest with, on average, 2
levels of rationality. Thus, subjects respond to the incentives of others, at least in symmetric games.
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a common error probability. It has 2 free parameters. HNO estimate this for symmetric
coordination games and compare it to a global game with private signals about payoffs and a
second parameter for common risk aversion. The fit of Hellwig’s model is slightly better. The
reason is presumably that its second parameter allows for a constant error rate independent
of signals. The advantage of 2-parameter models is that they can account for the
heterogeneity in behavior and for a systematic shift of individual thresholds from the global
game equilibrium in any direction. Previous experiments have shown that subjects deviate
from the global-game equilibrium towards more efficient strategy combinations, i.e. they
enter more often than predicted by equilibrium. Such a shift can be introduced, e.g. by a
parameter for risk aversion. All models can also be extended by a parameter for the fraction
of players who choose randomly (Level 0). Assuming a fraction of random players may account
for observations from subjects who make crazy choices. Frydman and Nunnari (2023) have
recently shown that heterogeneity of behavior also comes from cognitive noise. Subjects’
misperception of payoffs can be modelled distinct from private signals, and be combined with,
e.g., private signals or Laplacian beliefs. In this paper, however, we have limited the

comparison to models with one free parameter.
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Appendix A. Games used in the experiment and observed choices

The following tables aggregate the payoff for players of the same type in one line. So, for
example, Game 1 has 4 types: Players with roles A, B and C are of the same type and, thus,
have the same payoffs conditional on the total number of entrants. Note that there were 4
sessions and, thus, 4 observations for each role. The last two columns display the Laplacian

and the Level-1 strategy: “0” means no entry, “1” means entry.

Game 1
Payoffs conditional on the number of entrants Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no.ofentrants cian 1
A-C 30 33 36 36 36 36 36 36 36 36 36 36 9 1 1
D-F O O O 30 33 36 36 36 36 36 36 36 1 0 0
G-1 0O 0 O O O O 30 33 36 36 36 36 0 0 0
J-L 0O 0 0 O O O O O 0 30 33 36 0 0 0
Total 10
Game 2
Payoffs conditional on the number of entrants Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no.ofentrants cian 1
A—-C 30 33 36 39 42 45 48 51 54 57 60 63 12 1 1
D-F O O O 30 33 36 39 42 45 48 51 54 4 0 1
G-1 0O 0 O O O O 30 33 36 39 42 45 1 0 0
J-L O 0 0 O O O O O O 30 33 36 0 0 0
Total 17
Game 3
Payoffs conditional on the number of entrants Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no.ofentrants cian 1
A-C 30 33 36 36 36 36 36 36 36 36 36 36 10 1 1
D-F 21 24 27 30 33 36 36 36 36 36 36 36 5 0 1
G-1 9 12 15 21 24 27 30 33 36 36 36 36 0 0 0
J-L 0 3 6 9 12 15 21 24 27 30 33 36 0 0 0
Total 15
Game 4
Payoffs conditional on the number of entrants Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no.ofentrants cian 1
A—-C 30 33 36 39 42 45 48 51 54 57 60 63 11 1 1
D-F 21 24 27 30 33 36 39 42 45 48 51 54 7 1 1
G-1 9 12 15 21 24 27 30 33 36 39 42 45 2 0 0
J-L 0O 3 6 9 12 15 21 24 27 30 33 36 1 0 0
Total 21
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Payoffs conditional on the number of entrants

Observed

Lapla Level-

Role 1 2 3 4 5 6 7 8 9 10 11 12 no.ofentrants cian 1
A-C 33 36 39 39 39 39 39 39 39 39 39 39 12 1 1
D-F 3 3 3 33 36 39 39 39 39 39 39 39 9 0 1
G-1 3 3 3 3 3 3 33 36 39 39 39 39 2 0 0
J-L 3 3 3 3 3 3 3 3 3 33 36 39 3 0 0
Total 26
Game 6
Payoffs conditional on the number of entrants Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no.ofentrants cian 1
A—-C 33 36 39 42 45 48 51 54 57 60 63 66 12 1 1
D-F 3 3 3 33 36 39 42 45 48 51 54 57 7 1 1
G-I 3 3 3 3 3 3 33 36 39 42 45 48 1 0 0
J-L 3 3 3 3 3 3 3 3 3 33 36 39 2 0 0
Total 22
Game 7
Payoffs conditional on the number of entrants Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no.ofentrants cian 1
A-C 33 36 39 39 39 39 39 39 39 39 39 39 12 1 1
D-F 24 27 30 33 36 39 39 39 39 39 39 39 10 1 1
G-1 12 15 18 24 27 30 33 36 39 39 39 39 5 0 0
J-L 3 6 9 12 15 18 24 27 30 33 36 39 2 0 0
Total 29
Game 8
Payoffs conditional on the number of entrants Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no.ofentrants cian 1
A-C 33 36 39 42 45 48 51 54 57 60 63 66 11 1 1
D-F 24 27 30 33 36 39 42 45 48 51 54 57 11 1 1
G-1 12 15 18 24 27 30 33 36 39 42 45 48 6 0 0
J-L 3 6 9 12 15 18 24 27 30 33 36 39 1 0 0
Total 29
Game 9
Payoffs conditional on the number of entrants Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no.ofentrants cian 1
A—-C 30 33 36 36 36 36 36 36 36 36 36 36 11 1 1
D-F 30 30 30 30 33 36 36 36 36 36 36 36 6 0 1
G-1 30 30 30 30 30 30 30 33 36 36 36 36 3 0 0
J-L 30 30 30 30 30 30 30 30 30 30 33 36 1 0 0
Total 21
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Payoffs conditional on the number of entrants Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no.ofentrants cian 1
A-C 30 33 36 39 42 45 48 51 54 57 60 63 121 1
D-F 30 30 30 30 33 36 39 42 45 48 51 54 9 1 1
G-1 30 30 30 30 30 30 30 33 36 39 42 45 7 0 0
J-L 30 30 30 30 30 30 30 30 30 30 33 36 2 0 0
Total 30
Game 11
Payoffs conditional on the number of entrants Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no.ofentrants cian 1
A-F 29 32 35 38 41 44 44 44 44 44 44 44 23 1 1
G-L 11 11 11 11 11 11 29 32 35 38 41 44 8 0 0
Total 31
Game 12
Payoffs conditional on the number of entrants Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no.ofentrants cian 1
A-F 24 27 30 33 36 39 39 39 39 39 39 39 17 1 1
G-L 6 9 12 15 18 21 24 27 30 33 36 39 2 0 0
Total 19
Game 13
Payoffs conditional on the number of entrants Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no.ofentrants cian 1
A-F 24 27 30 33 36 39 42 45 48 51 54 57 17 1 1
G-L 6 6 6 6 6 6 24 27 30 33 36 39 3 0 0
Total 20
Game 14
Payoffs conditional on the number of entrants Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no.ofentrants cian 1
A-F 21 24 27 30 33 36 39 42 45 48 51 54 16 1 1
G-L 21 24 27 30 33 36 39 42 45 48 51 54 0 0 0
Total 16
Game 15
Payoffs conditional on the number of entrants Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no.ofentrants cian 1
A-L 8 12 16 20 24 28 32 36 40 44 48 52 27 0 0
Game 16
Payoffs conditional on the number of entrants Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no.ofentrants cian 1
A-L 0 4 8 12 16 20 24 28 32 36 40 44 9 0 0
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Game 17

Payoffs conditional on the number of entrants Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no.ofentrants cian 1
A 35 35 35 35 35 35 35 35 35 35 35 35 4 1 1
B 33 35 35 35 35 35 35 35 35 35 35 35 4 1 1
C 31 33 35 35 35 35 35 35 35 35 35 35 4 1 1
D 29 31 33 35 35 35 35 35 35 35 35 35 3 5 1
E 27 29 31 33 35 35 35 35 35 35 35 35 2 0 1
F 25 27 29 31 33 35 35 35 35 35 35 35 0 0 1
G 23 25 27 29 31 33 35 35 35 35 35 35 1 0 0
H 21 23 25 27 29 31 33 35 35 35 35 35 0 0 0
I 19 21 23 25 27 29 31 33 35 35 35 35 0 0 0
J 17 19 21 23 25 27 29 31 33 35 35 35 1 0 0
K 15 17 19 21 23 25 27 29 31 33 35 35 1 0 0
L 13 15 17 19 21 23 25 27 29 31 33 35 0 0 0
Total 20
Game 18
Payoffs conditional on the number of entrants Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no.ofentrants cian 1
A 33 35 37 39 41 43 45 47 49 51 53 55 4 1 1
B 33 33 35 37 39 41 43 45 47 49 51 53 4 1 1
C 33 33 33 35 37 39 41 43 45 47 49 51 4 1 1
D 33 33 33 33 35 37 39 41 43 45 47 49 4 1 1
E 33 33 33 33 33 35 37 39 41 43 45 47 3 1 1
F 33 33 33 33 33 33 35 37 39 41 43 45 4 1 1
G 33 33 33 33 33 33 33 35 37 39 41 43 3 1 0
H 33 33 33 33 33 33 33 33 35 37 39 41 3 1 0
I 33 33 33 33 33 33 33 33 33 35 37 39 2 5 0
J 33 33 33 33 33 33 33 33 33 33 35 37 1 0 0
K 33 33 33 33 33 33 33 33 33 33 33 35 0 0 0
L 33 33 33 33 33 33 33 33 33 33 33 33 0 0 0
Total 32
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Game 19

Payoffs conditional on the number of entrants Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no.ofentrants cian 1
A 33 35 37 39 41 43 45 47 49 51 53 55 3 1 1
B 31 33 35 37 39 41 43 45 47 49 51 53 4 1 1
C 29 31 33 35 37 39 41 43 45 47 49 51 3 1 1
D 27 29 31 33 35 37 39 41 43 45 47 49 1 1 1
E 25 27 29 31 33 35 37 39 41 43 45 47 3 1 1
F 23 25 27 29 31 33 35 37 39 41 43 45 1 5 S
G 21 23 25 27 29 31 33 35 37 39 41 43 1 0 0
H 19 21 23 25 27 29 31 33 35 37 39 41 0 0 0
I 17 19 21 23 25 27 29 31 33 35 37 39 0 0 0
J 15 17 19 21 23 25 27 29 31 33 35 37 0 0 0
K 13 15 17 19 21 23 25 27 29 31 33 35 0 0 0
L 11 13 15 17 19 21 23 25 27 29 31 33 0 0 0
Total 16
Game 20
Payoffs conditional on the number of entrants Observed Lapla Level-
Role 1 2 3 4 5 6 7 8 9 10 11 12 no.ofentrants cian 1
A 49 49 49 49 49 49 49 49 49 49 49 49 4 1 1
B 45 47 47 47 47 A7 A7 47 47 47 47 47 4 1 1
C 41 43 45 45 45 45 45 45 45 45 45 45 4 1 1
D 37 39 41 43 43 43 43 43 43 43 43 43 4 1 1
E 33 35 37 39 41 41 41 41 41 41 41 41 4 1 1
F 29 31 33 35 37 39 39 39 39 39 39 39 4 1 1
G 25 27 29 31 33 35 37 37 37 37 37 37 3 0 1
H 21 23 25 27 29 31 33 35 35 35 35 35 2 0 0
I 17 19 21 23 25 27 29 31 33 33 33 33 0 0 0
J 13 15 17 19 21 23 25 27 29 31 31 31 0 0 0
K 9 11 13 15 17 19 21 23 25 27 29 29 0 0 0
L 5 7 9 11 13 15 17 19 21 23 25 27 0 0 0
Total 29
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Appendix B. Estimating the global-game equilibrium

The net payoff for entry by agent i given that a total of n agents are entering is v,(n). Extend
this by a state variable, such that the payoff for entry is v,(n)+ 6. Assume that the state
variable has an improper uniform distribution on the reals (=> dominance regions exist).
Agents receive i.i.d. private signals x, ~ N(6,05%). A global-game equilibrium is a vector of
thresholds, such that

(1) each agent enters [does not enter] if his signal exceeds [falls short of] the threshold, and

(2) an agent receiving the threshold signal is indifferent.

Players are denoted by i € {l,..., N}, denote the type of player i by k(i) . In equilibrium,

players of the same type have the same threshold. Denote the equilibrium threshold of type

k by x*.We have N =12.The number of types varies over 1, 2, 4, and 12.

In our games, we can order types such that k(i) < k(j) if and only if vi(n) > vj(n) for

all n, with at least one strict inequality. For example, in the games with four types, players ABC

belong to Type 1, players DEF are Type 2, and so on. Due to the order of types, x* < x**'.

(1) Given that the true realization of & =0, the probability that player ; enters is

prob(x; > x*) :l—CI)(xk(-/)/o-) (1)
with @ denoting the cumulative standard normal distribution. For any given value of g, this is
the probability for a subject entering that we use in the Maximum-likelihood estimation.
Before we can do so, we need to find the thresholds that are associated with a particular o.
This comes from condition (2). The second step is then to find the o that maximizes the

likelihood of observations.

(2) An arbitrary agent i is indifferent at signal x, = x**’, if and only if
E(v,(n)+0|x,)=0. (2)

E(v,(n)|x,)= T {iprob(n —1other agents enter | 0)-v, (n)} -f(@|x,)do (3)

—_oln=1

0—x,

and E(@|x,)=x,;, where f(0|x,)= ¢( j and ¢ is the non-cumulative standard normal

distribution. Note that we can reformulate

E(w,(n)|x,)= ﬁ:vi (n)]2 prob(n—1other agents enter|0)- (0| x,)d6 . (4)

Denote the conditional probability that (n — 1) other subjects enter conditional on

signal x; by
pi(n—1|x,)= I prob(n—1other agents than i enter|0)- f(0|x,)d0. (5)

The tricky part is to describe this probability.
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Some helpful notation: Denote the conditional probability that another agent of type

k enters given state @ by
_ kG) _
p;‘ = prob(x; 2 x99y =1- d{uj, (6)
o

and the conditional probability that m agents of other types than k(i) enter, for a given state
0,by p7(m|0).

12 types with 1 agent each (Games 17-20): Note that the other games are special cases
with subjects of the same type having the same threshold in equilibrium. So, | do not lay out

those games explicitly.

Games 17-20 are actually dominance solvable and have a unique equilibrium. The
global game may vyield a better description of behavior anyway. It basically accounts for
strategic uncertainty in a game where deduction should eliminate this uncertainty. We know,
however, from observations that people are uncertain and do not put probability 1 on others’
rationality, leave alone higher-order rationality. The logit equilibrium captures this already
(see also Kuibler & Weizsacker, 2004).

So, let us continue the assumption that players are uncertain about which game they
are playing (that is: @ is uncertain). As an equilibrium can be described by a vector of thresholds

x* < x*', we can continue to use the indifference condition

N ® N
E(,(n)|x,)= ZVi(n)- jprob(n —1other agents enter | 0) f (0| x,)d0 = Zvi (n)-p~ (n—1]x,)=—x,
n=l —0

n=l1

and

prob(n—1other agents enter|0) =
P (n—1|0) = prob(n—1 agents from other types than i enter | 0)

which is the probability that n — I of the other signals are below the individual thresholds x*,
k # k(i). For each agent (of another type), this probability is given by p). The probability

P '(n—1] ) is the solution to a combinatorial problem.

Any combination of n — I of other agents must be accounted for with the probability
that these n — I agents enter. The latter is the product of p;f for the n — I different agents £.

So, p '(n—1|0) is the sum_(over all possible combinations of n — I of other agents) of the

products of these agents’ entry probabilities,

5 (n-110)= 5y ( M2 11 a—p:»j.

all combinations of n—1 other agents \ kecombination kecombination

Let us here use the letters i, j, k, ... for agents and types (because each agent is one type).
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p7(010) =T~ ps), and P (A10)=3| py-[]0-p5) |-

k#i k#i k'#i
k'#k

Define the set of players excluding i, k, k£’, and so on by
K-{i,k,k'y={j|j#inj#kAnj#k'}.Then,

p2IO=D P> by H(l—pé')J :

ki k'>k, JeK—{ik k"

ki JeK—{ik.k\k"

pGlo=> pfé-Z[péf-Z(pﬁ"- H(l—pé)j :

Py ) R, kKK
ki ki

p410)=> pé-Z[pﬁ'- PRFZEDS (pf.f"'- H(l—pé)j :
JjeK—{

por frot) ot} RUSEM eK i kA K
ki ki ki

prGl1O)=) pé-Z{pé"-Z po- 2o L 2Py T1a=pl||]].

p(6]0)=

& A R e e :
DI A=pp)- | A=py)- D [ A=p)- D [ A=p)-[ 2 (A=p;") [T20 1{]|}
ki K>k, KSk, S KIS FeK —{ik kn k" kM kY
k'#i k"#i k"#i k""#i

5 10=| 4= 3| a-p) ¥ (1—pi;")-2(<1—pis”')- Hp-;J ,
k#i /I‘f:ilk, /]g:i{c', /]z:::i{c", jeK-{i,k,k' k", k"}

prBlO=X0-pp)- Y. (l—piz')-Z(U—pis")- Hpéj :
k=i lngc iif{ jeK—{i k,k'k"}

PO1O=> | 1-py)-D| U-ps)- Hpé) :

k#i k'>k, jeK—{ik.k'}
k'#i
p010)=3 | a-pp-[1rs |- and pra1o)=11ps-
k#i k'#i k#i
k'#k

Using these equations, we first calculate the vector of thresholds (x*),, |, for each game

and for a discrete grid of values for o € {1,2,...,20}. Then, we use Equation (1) to calculate for
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each o the likelihood of entry in the respective global-game equilibrium and the likelihood
for the observed number of entrants. Summing up the log-likelihoods over all games and
players yields the log-likelihood function displayed in Figure 2. Because the likelihood function
is rather flat, a finer grid around the maximizing integer value of & would not substantially
increase the maximum log-likelihood.
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Appendix C. Instructions and Quiz
Instructions

Welcome to this experiment in the economics of decision-making. Please read these
instructions carefully as they explain how you earn money from the decisions you make in
today’s experiment. No talking is permitted for the duration of today’s session. If you have a
cell phone, please turn off the ringer.

You are 12 participants in today’s session and your earnings depend on your own decisions
and on the decisions of the other participants.

1. Rules of the games

Today’s session consists of 20 small games. In each game you have to decide between two
options: “enter” or “not enter”.

If you do not enter, your payoff is 34 experimental currency units (ECU), independent of what
the other participants decide. If you enter, your payoff will depend on your role in this game
and on the decisions of the other participants in the same game.

In each game, there are 12 roles, called A, B, C, ..., L. You and each of the other 11
participants in this session will be randomly assigned to one of the 12 roles such that each role
is assumed by one participant. The random role assignment will be done for each game
independent of the roles or decisions in previous games, except that you will never get the
same role in two consecutive games.

The payoffs for “enter” will be displayed in a table of the following format:

number of entrants

role 1 2 3 4 5 6 7 8 9 10 11 12
A 39 40 41 42 43 44 45 46 47 48 49 50
B 37 38 39 40 41 42 43 44 45 46 47 48
C 35 36 37 38 39 40 41 42 43 44 45 46
D 33 34 35 36 37 38 39 40 41 42 43 44
E 31 32 33 34 35 36 37 38 39 40 41 42
F 29 30 31 32 33 34 35 36 37 38 39 40
G 27 28 29 30 31 32 33 34 35 36 37 38
H 25 26 27 28 29 30 31 32 33 34 35 36
I 23 24 25 26 27 28 29 30 31 32 33 34
J 21 22 23 24 25 26 27 28 29 30 31 32
K 19 20 21 22 23 24 25 26 27 28 29 30
L 17 18 19 20 21 22 23 24 25 26 27 28

The rows display the possible payoffs for all participants. For each participant, there are 12
possible payoffs. The payoff each participant receives is determined by the total number of
participants who decide to enter.

In each of the 20 games, your role will be highlighted boldface. So, for the above game, your
role is “D”. For example, if 6 participants (including yourself) decide to “enter” in this game,
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then you receive a payoff of 38 ECU. If you are the only one who decides to “enter,” you
receive 33 ECU. If all 12 participants decide to “enter,” then you get 44 ECU.

If the participant with role G decides to “enter” and there are 6 participants (including
participant G) who enter in this game, then participant G receives 32 ECU.

Recall that the payoff from not entering is always 34 ECU, independent of what the other
participants decide.

In order to make your decision, click on one of the two circles indicating “enter” or “not
enter” and confirm your decision by clicking the red OK-button. You may change your
decision until you click the OK-button.

If you have not made your decision within 3 minutes, there will appear a line asking you to
decide and confirm your decision.

Only when all participants made a decision and confirmed it, the session will continue with a
new game.

2. End of a game

Once all 12 participants have made and confirmed their decisions, the game ends. At the
completion of the game, you will not be informed of the outcome of the game. Instead, you
will receive this information for all games only after the completion of all 20 games.

Once you confirm your decision by clicking the OK-button, you will see a screen asking you
to wait for the next game until the other participants made their decision. If you were the last
player to decide in this game, the next game will start immediately after you click the OK-
button.

Once a game ends, the next game starts and all participants will be assigned new roles and see
a new screen containing a payoff table with their own roles highlighted.

3. Information phase

Once all 20 games have been completed, you will receive a list containing the results of the
games. This list will show the game number (1-20) and display for each game: your role (A-
L), your decision (“enter” or “not enter’”’), the number of participants who chose to “enter” in
this game, and your own payoft for this game.

The screen will also show you the sum of your payoffs over all 20 games.
Example:

Game no. yourrole yourdecision number of participants who entered  your payoff (ECU)

1 D enter 6 38
2 B not enter 9 34
3 H enter 3 26
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Note that you will never learn which roles the other participants had in the various games, nor
how they decided in any of the games. You will be informed only of the total number of
entrants.

4. Payment

Once you complete the receipt, you will be paid. For every 40 ECU that you earned in the
experiment, you will receive 1 Euro. The amount will not be rounded up or down.

5. Questions

It is important that you understand the instructions. If you have a question about any aspect of
these instructions, please raise your hand and we will come to you and answer your question in
private.

Never ask questions aloud!

6. Quiz

To make sure that you understood the instructions, we ask that you answer the following quiz
questions in the spaces provided. The numbers in these quiz questions are merely illustrative;
the actual numbers in the experiment may be quite different. In answering these questions,
please feel free to consult the instructions. After all participants have completed this quiz, the
first game will start.

Please look at the following payoff table.

a) What is your own role in this game?

b) What is you payoff if you enter and 9 participants (including yourself) enter in this game?

c) What is the payoff to player B if he enters and there are 5 players in total who enter in this
game?

d) What is the payoff to the player with role A, if he does not enter?

e) What is your payoff if you do not enter?
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