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Abstract. Cavitation is a common phenomenon in fluid machinery and lubricated 

contacts. In lubricated contacts, there is a presumption that the short-term tensile 

stresses at the onset of bubble formation have an influence on material wear. To 

investigate the duration and magnitude of tensile stresses in lubricating films using 

numerical simulation, a suitable simulation model must be developed. The chosen 

simulation approach with bubble dynamics is based on the coupling of the Reynolds 

equation and Rayleigh-Plesset equation (introduced about 20 years ago by 

Someya).Following the basic approach from the author’s earlier papers on the negative 

squeeze motion with bubble dynamics for the simulation of mixed lubrication of rough 

surfaces, the paper at hand shows modifications to the Rayleigh-Plesset equation that 

are required to get the time scale for the dynamic processes right. This additional term 

is called the dilatational viscosity term, and it significantly influences the behavior of 

the numerical model. 
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1. INTRODUCTION 

Cavitation is a common phenomenon in fluid machinery and lubricated contacts. In 

the context of fluid machinery, the focus is on cavitation erosion, in which pressure 

shocks lead to material failure [1]. In lubricated contacts, on the contrary, there is a 

presumption that the short-term tensile stresses at the onset of bubble formation have an 

influence on material wear.  

To investigate the duration and magnitude of tensile stresses in lubricating films using 

numerical simulation, a suitable simulation model must be developed. The author 

proposed such a cavitation model for numerical simulations of mixed lubrication that 

includes tensile stresses in the lubrication film at the onset of bubble growth [2].  
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Generally speaking, simulation models for the cavitation dynamics in lubricated 

contacts can be roughly clustered into two groups: either without or with bubble 

dynamics, the first one being the standard case for most fluid film bearing calculations. 

Cavitation is a crucial phenomenon in the calculation of the load carrying capacity of 

plain bearings. The literature available on this subject is extensive. For most bearing 

calculations, the tensile stresses present for a short time are not relevant; in this respect, 

“pressure equals zero” is used for calculations when there is no positive pressure. 

The presented simulation model belongs to the second group – having the bubble 

dynamics as one key feature included in the model. The aim here is to calculate, besides 

macroscopic forces between moving rough surfaces, also the tensile stresses that may 

affect the wear in mixed lubrication applications. Also, for adhesion problems in 

lubricated contacts (the so-called oil stiction problem), the tensile stresses in the 

lubricating film are necessarily taken into account when two surfaces separate. 

The original model of the author yielded qualitatively reasonable results, but three key 

issues remained [3]. 

1. The characteristic time for the decline of tensile stress seems rather short. There is 

no reliable source of information on the characteristic time scale for the processes 

studied but results from the oil stiction problem and experiments hint to larger 

characteristic times than those observed with the original model. This will be 

discussed in detail in Sections 2.2 and 4.3. 

2. Numerical simulations work well with circular plates, but spherical plates cause 

numerical stability problems in the original model. 

3. Experimental evidence with quantitative results for time evolution of pressure on 

very short time scales are missing for the squeeze motion studied here. 

The paper at hand deals with the first two open issues from this list. 

2. CAVITATION IN LUBRICATION FILMS – SOME BASICS 

2.1 Cavitation means formation and destruction of cavities 

In lubricated contacts, conditions can occur in which the lubricant becomes 

temporarily discontinuous. In the lubricating film, a coexistence of liquid and cavities is 

created and perishes. The phenomenon called cavitation can be divided into gas and 

vapor cavitation [4,5]. Cavitation occurs when the pressure locally falls below a certain 

limit. Gas cavitation can be observed in aerated lubricants at pressures below the ambient 

pressure. The cavities then contain dissolved gases. Vapor cavitation occurs at dynamic 

load conditions when the pressure falls below the vapor pressure. Vapor of the lubricating 

fluid is then present in the cavities. Vapor cavitation is a dynamic process; vaporization 

does not occur abruptly. Therefore, lubricants can also transmit tensile stresses for a short 

time. 

2.2 Tensile stresses are observed in negative squeeze motion 

The classical solution for normal force F and pressure p when squeezing a viscous 

fluid (dynamic viscosity ) between two parallel circular plates (Fig. 1, velocity V, plate 

radius L, distance h) is 
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 𝐹 =
3𝜂𝜋𝑉𝐿4

2ℎ3
 (1) 

and 𝑝 = 𝑝amb −
3𝜂𝑉

ℎ3
(𝐿2 − 𝑟2) (2) 

with ambient pressure 𝑝amb [6] and radial coordinate r. When the upper plate approaches 

the base plate, the pressure is always positive (squeeze motion). When the plates are 

separated (negative squeeze motion), the pressure at the center of the plate falls below the 

vapor pressure 𝑝v for 

 𝑉 >
ℎ3

3𝜂𝐿2
(𝑝amb − 𝑝v) (3) 

and cavitation starts. 

 

Fig. 1 Negative squeeze motion for the setup with circular plate (pull-off experiment) 

Time-dependent cavitation in a simple arrangement of parallel plates has been 

experimentally studied by Hays and Feiten [7], Parkins and May-Miller [8], and Chen et 

al. [9]. Hays and Feiten considered the case of constant velocity, while the other two 

groups studied the case of periodic motion. The experiments confirm that the lubricating 

film can transmit a tensile stress. Due to the tensile stress, bubble growth occurs and 

finally the macroscopically visible disruption of continuity. The tensile stress approaches 

zero within a short time. 

In the experiments, the cavitation region arises in the center and disappears there. All 

experiments focus on the characterization of cavitation patterns; in particular, no data are 

provided that can be used to check numerical investigations sufficiently well. 

The experiments under practical conditions have shown that cavitation can occur in 

bearings, e.g. in connecting rod bearings in internal combustion engines, and that this is 

sometimes associated with considerable damage [10]. 
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2.3 Tensile stresses are reproduced in simulation models with bubble dynamics 

An overview of research results on the simulation of cavitation dynamics can be 

found in the publications [2,3]. There is one common feature of all simulations known to 

the author: they do not reproduce the fine spatial structures as observed in experiments. 

As mentioned before, simulation models for the cavitation dynamics in lubricated 

contacts can be roughly clustered into two groups: either without or with bubble 

dynamics. Approaches without bubble dynamics usually use the Reynolds equation 

complemented with some additional conditions to define the cavitated areas, and do not 

reproduce tensile stresses in the fluid. 

The approach with bubble dynamics, on the other hand, reproduces tensile stresses in 

the fluid film in negative squeeze motion. The building blocks of bubble dynamics-based 

simulation models are the Reynolds equation and Rayleigh-Plesset equation. The idea of 

combining the two equations for lubrication problems goes back to Someya about 20 

years ago [11]. It has been used for journal bearings and squeeze film dampers; it is 

essentially required for correct numerical calculations of the negative squeeze motion (i.e. 

the separation of two plates) or the oil stiction problem. 

3. MODELING THE CAVITATION DYNAMICS IN THE SQUEEZE MOTION 

3.1 The idea in a nutshell: Reynolds equation and bubble growth 

As said before, a simulation model that reproduces tensile stresses must account for 

the dynamics of bubble growth and decay. Starting from the Rayleigh-Plesset equation 

[12,13] for the bubble radius R 

 𝑅
𝑑2𝑅

𝑑𝑡2
+
3

2
(
𝑑𝑅

𝑑𝑡
)
2

=
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−
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−

2𝛾
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and the Reynolds equation for compressible fluids  

 
1

𝑟

𝜕
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𝜂

𝜕𝑝

𝜕𝑟
) = 12ℎ

𝜕𝜌

𝜕𝑡
+ 12𝜌𝑉 (5) 

partial differential equations can be derived for density   and  pressure p in the pull-off 

experiment. Both quantities depend on time t and radial coordinate r. The subscript liq 

indicates the liquid state.  characterizes the surface tension. 

This approach for the cavitation problem in lubricating films in the pull-off 

experiment was first presented in [2]. The work of Someya [11] was not known to the 

author at that time. Instead, the approach was inspired by the work of Sauer on cavitation 

in fluid machinery [14]. 

The spatial discretization of the partial differential equations with the differential 

quadrature method [15] leads to a system of differential and algebraic equations solved 

with a solver for differential-algebraic systems of equations (DAE). 

As shown by numerical experiments, a simulation model based on the above 

equations yields extremely short times for the pressure drop [2] and numerical stability 

problems for the spherical cap (unpublished research results from the author). It will be 

shown that adding an additional term (dilatational viscosity term) solves both problems. 
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The stability problem will be discussed in a subsequent publication, dealing with the 

spherical cap in more detail. The dilatational viscosity term has been used by different 

authors in the context of cavitation in lubricants, beginning with Someya [11]. According 

to Someya, the dilatational viscosity term is related to the Marangoni effect. When the 

bubble expands under negative pressure, the dilatational viscosity increases the resistance 

against bubble growth and rupture.  

In the paper by Gehannin et al. [16], two terms change compared to the above-

mentioned Rayleigh-Plesset equation. First, an additional term is added with the 

dilatational viscosity (following Someya’s approach), and second, the constant vapor 

pressure is replaced by a more complex expression.  

With respect to the dilatational viscosity, Gehannin et al. follow the explanations of 

Someya [11] and add the term 

−
4𝜅

𝜌liq𝑅
2

𝑑𝑅

𝑑𝑡
 

to the right-side of the Rayleigh-Plesset equation, with  characterizing the dilatational 

viscosity term. 

Adding this term to the simulation model has a significant impact on the time scale on 

which tensile stresses exist during the negative squeeze motion. Numerical experiments 

with a single bubble and the additional term, recently undertaken by the author, give three 

main insights: (1) the characteristic time scale for the bubble dynamics is about 1000 

times larger than in earlier numerical experiments. (2) The inertia term with the second 

derivative of the bubble radius and the surface tension term can be neglected. (3) When 

solving the Rayleigh-Plesset equation for the first derivative of the bubble radius, 

catastrophic cancellation may occur if not dealt with appropriately. 

3.2 Continuum with microstructure - coupling bubble dynamics with the 

Reynolds equation 

The Rayleigh-Plesset equation describes the behavior of a single, spherical bubble in 

an incompressible fluid of infinite extension. It applies to the growth of the bubble in the 

first phase, where mechanical effects dominate: inertia, pressure difference, viscosity, and 

surface tension. 

Modeling cavitation by bubble growth assumes that the bubbles in the lubricating film 

are far enough apart for the Rayleigh-Plesset equation to be applicable in good 

approximation. Individual bubbles, characterized by position and radius, are not 

described. Instead, a density  or a vapor fraction  is assigned to a location, more 

precisely to a radial coordinate r, in the framework of a continuous description method. 

Between density and vapor fraction exists the relation 

 𝜌 = 𝛼𝜌vap + (1 − 𝛼)𝜌liq (6) 

where index vap indicates to vapor state. Correspondingly, for the time derivative 

 
𝜕𝜌

𝜕𝑡
=
𝜕𝛼

𝜕𝑡
(𝜌vap − 𝜌liq) (7) 

Formally, via 
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 𝑅 = √
3

4𝜋𝑛0

𝛼

1 − 𝛼

3

 (8) 

each location is assigned a bubble radius, with 𝑛0 characterizing the concentration of 

bubble nuclei. From the Rayleigh-Plesset equation follows the time evolution of the 

bubble radius and hence the time evolution of the density. 

4. NEGATIVE SQUEEZE MOTION FOR THE CIRCULAR PLATE 

Now the pull-off experiment (negative squeeze motion) shown in Fig. 1 will be 

studied in detail. A circular plate is pulled upward with constant velocity in the simplest 

case. At the boundary, the pressure is always the ambient pressure. 

This simple arrangement is studied by Boedo and Booker [17] using the finite element 

method and a very simple cavitation model. The arrangement has practical significance 

for the study of the adhesion behavior of lubricated contacts (oil stiction problem), as it is 

relevant in the simulation of rapidly opening valves.  

4.1 Dimensionless model equations: Coupling of the Rayleigh-Plesset equation 

and Reynolds equation 

The equations constituting the simulation model are made dimensionless as follows. 

All quantities with a bar on top are corresponding dimensionless quantities. For the 

lengths, the reference quantity is the plate radius. There is one exception: for the bubble 

radius is 

 𝑅 = 𝛬
𝑅

𝐿
 (9) 

although in the practical implementation =1 has always been used so far. 

For pressure, the ambient pressure is taken as reference value. For the reference time 

 𝑇ref =
𝜂liq

𝑝amb

 (10) 

is set. For the dimensionless bubble radius and the dimensionless concentration of bubble 

nuclei, we have 

 𝑅 = √
3

4𝜋𝑛0
 

𝛼

1 − 𝛼

3

 (11) 

and 𝑛0  =  
𝑛0 𝐿 

3

𝛬3
 (12) 

The dimensionless velocity is 

 𝑉̅ = 𝑉
𝑇ref
𝐿

 (13) 
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The differential equation for the bubble radius, neglecting the term with the second 

derivative of the bubble radius and the surface tension term, can be reduced to the form 

 𝑅′ = −
4

3𝑅
(𝜁1 +

𝜁2

𝑅
) + √

16

9𝑅
2 (𝜁1 +

𝜁2

𝑅
)
2 2

3
𝜁1 + (𝑝

v
− 𝑝) (14) 

Eq. (14) is the dimensionless form of Eq. (4) considering all mentioned simplifications to 

the Rayleigh-Plesset equation. Reynolds equation (5) is not repeated here, as its form 

does not change by making the equation dimensionless. The dimensionless constants are 

defined as 

 𝜁1 =
𝜂liq
2 𝛬2

𝑝amb𝐿
2𝜌liq

 (15) 

and 

 𝜁2 =
𝜅𝜂liq𝛬

3

𝑝amb𝐿
3𝜌liq

 (16) 

For practical implementation, again note that for small bubble radius, the difference is 

formed from two numbers of nearly equal size. To avoid the catastrophic cancellation 

effect, the program code needs to be written appropriately. 

For the time derivative of the vapor volume fraction the relation  

 
𝜕𝛼

𝜕𝑡
= 3𝛼(1 − 𝛼)

1

𝑅

𝑑𝑅

𝑑𝑡
+

ℎ2

12𝜂

𝜕𝑝

𝜕𝑟

𝜕𝛼

𝜕𝑟
 (17) 

is used according to Eq. (12) from [2]. This gives the change in density over time needed 

for the Reynolds equation. 

4.2 Dynamics of tensile stresses are plausibly reproduced 

Selected simulation results for the circular plate are discussed below.  For the selected 

dynamic viscosity, 𝑇ref = 0.35 μs. Initial distance is ℎ = 10−2at 𝑡 = 0. The lubricant film 

thickness is thus 1% of the plate radius. The velocity is constant 𝑉 = 10−4. For the start 

value of vapor fractionα0 two different values, 10-8 and 10-3 are chosen. In diagrams with 

the spatial coordinate as horizontal axis (i.e. Fig. 2 and Fig. 4), the curves show different 

time moments between 0 to 200 as indicated in the diagrams. 

For 𝑡 = 0 the system starts with the theoretical pressure distribution without 

cavitation (Fig. 2 for α0 = 10−8). The pressure distribution is not given as an initial 

condition but results from the given α distribution as part of the solution of the DAE 

system. With increasing time, the tensile stress decreases more and more. The massive 

decrease of the tensile stress happens in a time of the order of 0.1 millisecond. In the 

context of this work, the characteristic time for pressure drop is defined as the time 

required for the decay of force to 1% of the initial value. The initial value α0 = 10−3 

gives a similar pressure distribution (quite contrary to previously published calculations 

without dilatational viscosity). 
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Fig. 2 Pressure distribution for the negative squeeze motion 

For 𝑡 = 400, the dimensionless pressure in the center is about -1.4. The 

dimensionless force drops from -463 at 𝑡 = 0 to -3.7 for 𝑡 = 400 (0.14ms); the drop in 

force to 1% of the initial value occurs within 0.13ms (Fig. 3).Thus the characteristic time 

for pressure drop is here 0.13 ms. Fig. 4 shows the corresponding time evolution of vapor 

fraction and bubble radius as function of radial coordinate and time. 

Vapor ratio, bubble radius and thus density do not change significantly during the 

phase of rapid decrease of tensile stress. Essentially, there are two phases. In the first 

phase the tensile stress drops rapidly, then in the second phase the density changes 

appreciably, while the pressure is nearly zero. 

 

Fig. 3 Macroscopic force as function of time for the negative squeeze motion 
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Fig. 4 Spatial distribution of vapor fraction (left) and bubble radius (right) 

4.3 Additional term in the Rayleigh-Plesset equation leads to significantly larger 

characteristic times 

In the earlier simulations, the pressure drop occurs in a time interval of order 𝑡 ≈
10−1 or 𝑡 ≈ 0.035  μs [2]. In the new simulations considering dilatational viscosity, a 

comparable pressure drop occurs about 1000 times slower! The now observed 

characteristic times of the tensile stress drop in the order of 0.1ms matches the times 

reported by Resch and Scheidl for the oil stiction problem [18]. A characteristic time of 

the order of 0.1 ms is also more plausible when thinking of the experimental observations 

[7-9]. Thus, including dilatational viscosity in the simulation model is key. 

5. CONCLUSIONS 

An existing model for the numerical simulation of cavitation in mixed lubrication 

contacts that reproduces tensile stresses on short time scales has been developed further. 

As assumed earlier adding the dilatational viscosity term to the Rayleigh-Plesset equation 

significantly increases the characteristic time of the existence of tensile stresses in the 

negative squeeze motion. The larger time scale seems more realistic when looking at the 

related problem of oil stiction and early experimental evidence. Furthermore, initial 

simulations for the spherical cap indicate that the previously stated numerical stability 

problems can be overcome by the additional term with the dilatational viscosity. Further 

work needs to be done to study the spherical cap in negative squeeze motion in detail, 

including a comparison of density evolution on larger time scales. 



10 T. GEIKE 

From today’s perspective, the two major directions of further research are (1) the 

simulation of the elasto-hydrodynamic problem of rough surfaces including the cavitation 

dynamics and (2) studies on the effect of short-time tensile stresses in lubricants on the 

material wear.  

For the first topic, the boundary element method (BEM) seems to be the right choice 

for modeling the elastic part. Only the surface is discretized in the BEM. Hence the 

method allows to model surface roughness with very fine meshes and it is often more 

efficient for contact problems than the methods requiring the discretization of the entire 

volume. To make BEM simulations with cavitation dynamics efficient, it is also 

advisable to undertake further studies of the negative squeeze motion regarding the 

relevance of terms (inertia, viscosity, surface tension).  
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