Reduction method in contact mechanics

M. Heß V.L. Popov

Institute of Mechanics

Technical University of Berlin

Outline

Basic idea

2 Mapping of conforming and non-conforming contacts

- Contact without adhesion
- Contact with adhesion
- Pressure distribution

Image and a stresses and displacements within axisymmetric half-space

- Correspondence principle and complete algorithm of reduction
- Numerical calculations
- 4 Use of elastic inhomogenities to reduction
 - A simple example of reduction: Tangential contact of sphere
- 5 Summary and outlook

Mapping of conforming and non-conforming contacts Mapping of internal fields within axisymmetric half-space Inhomogenities Summary and outlook

Basic idea

Outline

- Mapping of conforming and non-conforming contacts
 - Contact without adhesion
 - Contact with adhesion
 - Pressure distribution
- 3 Mapping of stresses and displacements within axisymmetric half-space
 - Correspondence principle and complete algorithm of reduction
 - Numerical calculations
- 4 Use of elastic inhomogenities to reduction
 - A simple example of reduction: Tangential contact of sphere
- 5 Summary and outlook

Mapping of conforming and non-conforming contacts Mapping of internal fields within axisymmetric half-space Inhomogenities Summary and outbook

Basic idea

HERTZian contact – global relations

relationship between penetration, load and area of contact

Basic idea

HERTZian contact – global relations

relationship between penetration, load and area of contact

Basic idea

HERTZian contact – global relations

relationship between penetration, load and area of contact

Requirements of mapping: $R_{1D} = \frac{1}{2}R$ und $k = \tilde{E}\Delta x$

Mapping of conforming and non-conforming contacts Mapping of internal fields within axisymmetric half-space Inhomogenities Summary and outbook

Basic idea

HERTZian contact – pressure distribution

Mapping of conforming and non-conforming contacts Mapping of internal fields within axisymmetric half-space Inhomogenities Summary and outbook

Basic idea

HERTZian contact - pressure distribution

$$\frac{p_{\rm 3D}\left(r\right)}{p_o} = \sqrt{1 - \left(\frac{r}{a}\right)^2}$$

New definition of "normal stresses"

$$p_{\rm 3d}\left(r\right) = \frac{p_{\rm F}\left(r\right)}{c\sqrt{u_{\rm F}\left(r\right)R_{\rm 1d}}}$$

(POPOV / GEIKE, 2007)

Mapping of conforming and non-conforming contacts Mapping of internal fields within axisymmetric half-space Inhomogenities Summary and outlook

Basic idea

HERTZian contact - pressure distribution

$$\frac{p_{\rm 3D}\left(r\right)}{p_o} = \sqrt{1 - \left(\frac{r}{a}\right)^2}$$

New definition of "normal stresses"

$$p_{\rm 3d}\left(r\right) = \frac{p_{\rm F}\left(r\right)}{c\sqrt{u_{\rm F}\left(r\right)R_{\rm 1d}}}$$

(POPOV / GEIKE, 2007)

Guiding concept of reduction method

,As simply as possible, but nevertheless exactly".

Contact without adhesion Contact with adhesion Pressure distribution

Outline

Mapping of conforming and non-conforming contacts Contact without adhesion

- Contact with adhesion
- Pressure distribution
- 3 Mapping of stresses and displacements within axisymmetric half-space
 - Correspondence principle and complete algorithm of reduction
 - Numerical calculations
- 4 Use of elastic inhomogenities to reduction
 - A simple example of reduction: Tangential contact of sphere
- 5 Summary and outlook

Contact without adhesion Contact with adhesion Pressure distribution

Single axisymmetric contact of arbitrary shape

Boundary conditions:

$$egin{array}{rl} u_{z}(r,0) &=& \delta - f(r) \ , \ 0 \leq r \leq a \ \sigma_{zz} \ (r,0) &=& 0 \ , \ r > a \ au_{rz} \ (r,0) &=& 0 \ , \ r \geq 0 \end{array}$$

Contact without adhesion Contact with adhesion Pressure distribution

ć

Single axisymmetric contact of arbitrary shape

Boundary conditions:

$$egin{array}{rl} u_{z}(r,0) &=& \delta - f(r) \ , \ 0 \leq r \leq a \ \sigma_{zz}\left(r,0
ight) &=& 0 \ , \ r > a \ au_{rz}\left(r,0
ight) &=& 0 \ , \ r \geq 0 \end{array}$$

Integral equations

of penetration and load:

$$\delta = \int_{0}^{1} \frac{f'(x)}{\sqrt{1 - x^2}} \, dx + \frac{\pi}{2} \chi \left(1\right)$$

$$P = 2\tilde{E}a \int_{0}^{1} \left[\delta - t \int_{0}^{t} \frac{f'(x)}{\sqrt{t^2 - x^2}} \, dx\right] \, dt$$
(SNEDDON, 1965)

Contact without adhesion Contact with adhesion Pressure distribution

ć

Single axisymmetric contact of arbitrary shape

Boundary conditions:

$$egin{array}{rl} u_{z}(r,0) &=& \delta - f(r) \ , \ 0 \leq r \leq a \ \sigma_{zz}\left(r,0
ight) &=& 0 \ , \ r > a \ au_{rz}\left(r,0
ight) &=& 0 \ , \ r \geq 0 \end{array}$$

Integral equations

of penetration and load:

$$\delta = \int_{0}^{1} \frac{f'(x)}{\sqrt{1 - x^2}} \, dx + \frac{\pi}{2} \chi \left(1\right)$$

$$P = 2\tilde{E} a \int_{0}^{1} \left[\delta - t \int_{0}^{t} \frac{f'(x)}{\sqrt{t^2 - x^2}} \, dx\right] \, dt$$
(SNEDDON, 1965)

Power-series as shape function:

$$f(r) := \sum_{n=1}^{\infty} f_n(r) = \sum_{n=1}^{\infty} c_n r^n$$
(Segedin, 1957)

Contact without adhesion Contact with adhesion Pressure distribution

$$P = 2\tilde{E}\sum_{n=1}^{\infty} \int_{0}^{a} \frac{\sqrt{\pi}}{2} \frac{n\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n}{2} + \frac{1}{2}\right)} \left[\underbrace{\frac{f_{n}\left(a\right)}{\sum_{n=1}^{\infty} - f_{n}\left(r\right)}}_{\equiv\delta_{rn}} - f_{n}\left(r\right) \right] dr + 2\tilde{E}a\frac{\pi}{2}\chi\left(1\right)$$

After some simple manipulations \dots integrand has equal structure as in the 1D-model!

Contact without adhesion Contact with adhesion Pressure distribution

$$P = 2\tilde{E}\sum_{n=1}^{\infty} \int_{0}^{a} \frac{\sqrt{\pi}}{2} \frac{n\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n}{2} + \frac{1}{2}\right)} \left[\underbrace{\frac{f_{n}\left(a\right)}{\underbrace{f_{n}\left(a\right)}}}_{\equiv\delta_{cn}} - f_{n}\left(r\right) \right] dr + 2\tilde{E}a\frac{\pi}{2}\chi\left(1\right)$$

After some simple manipulations \ldots integrand has equal structure as in the \$1D\$-model!

Conclusion

With regard to relationship between load, penetration and radius of contact the indentation of half-space with an axisymmetric punch of arbitrary profile can be mapped exactly by an one-dimensional system!

Contact without adhesion Contact with adhesion Pressure distribution

$$P = 2\tilde{E}\sum_{n=1}^{\infty} \int_{0}^{a} \frac{\sqrt{\pi}}{2} \frac{n\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n}{2} + \frac{1}{2}\right)} \left[\underbrace{\frac{f_{n}\left(a\right)}{\underbrace{f_{n}\left(a\right)}}}_{\equiv\delta_{cn}} - f_{n}\left(r\right) \right] dr + 2\tilde{E}a\frac{\pi}{2}\chi\left(1\right)$$

After some simple manipulations \ldots integrand has equal structure as in the \$1D\$-model!

Conclusion

With regard to relationship between load, penetration and radius of contact the indentation of half-space with an axisymmetric punch of arbitrary profile can be mapped exactly by an one-dimensional system!

Necessary change of shape

$$\tilde{r} \longmapsto |\tilde{x}|$$
, $f_n(\tilde{r}) := c_n \tilde{r}^n \longmapsto \tilde{f}_n(\tilde{x}) := \tilde{c}_n |\tilde{x}|^n$ with $\tilde{c}_n := \varkappa_n c_n$, $n \in \mathbb{R}^+$
Shape factor: $\varkappa_n := \frac{\delta_n}{\delta_{cn}}$

Contact without adhesion Contact with adhesion Pressure distribution

Shape factor:

$$\varkappa_n \equiv \varkappa(n) := \frac{\sqrt{\pi}}{2} \frac{n\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n}{2} + \frac{1}{2}\right)}$$

Hertz:
$$\varkappa_2 = 2$$

Cone:
$$\varkappa_1 = \frac{\pi}{2}$$

Contact without adhesion Contact with adhesion Pressure distribution

Indentation by flat cylindrical punch

Penetration and load:

$$\delta = \int_{0}^{1} \frac{f'(x)}{\sqrt{1-x^2}} dx + \frac{\pi}{2}\chi(1) = \frac{\pi}{2}\chi(1)$$

$$P = 2\tilde{E}a\int_{0}^{1} \left[\delta - t\int_{0}^{t} \frac{f'(x)}{\sqrt{t^2-x^2}} dx\right] dt$$

$$= 2\tilde{E}a\delta = 2\tilde{E}\Delta x \sum_{i=1}^{x/\Delta x} i\delta$$

Contact without adhesion Contact with adhesion Pressure distribution

Indentation by flat cylindrical punch

Penetration and load:

$$\delta = \int_{0}^{1} \frac{f'(x)}{\sqrt{1-x^2}} dx + \frac{\pi}{2}\chi(1) = \frac{\pi}{2}\chi(1)$$

$$P = 2\tilde{E}a\int_{0}^{1} \left[\delta - t\int_{0}^{t} \frac{f'(x)}{\sqrt{t^2 - x^2}} dx\right] dt$$

$$= 2\tilde{E}a\delta = 2\underbrace{\tilde{E}\Delta x}_{=:k} \sum_{i=1}^{a/\Delta x} i\delta$$

Universal stiffness of normal contact: $k_{ges} := \frac{dP}{d\delta} = 2\tilde{E}a$ (PHARR / OLIVER, 1992) $k = \tilde{E}\Delta x$, 1D-model has the same stiffness!

Contact without adhesion Contact with adhesion Pressure distribution

Indentation by flat cylindrical punch

Penetration and load:

$$\delta = \int_{0}^{1} \frac{f'(x)}{\sqrt{1-x^2}} dx + \frac{\pi}{2}\chi(1) = \frac{\pi}{2}\chi(1)$$

$$P = 2\tilde{E}a\int_{0}^{1} \left[\delta - t\int_{0}^{t} \frac{f'(x)}{\sqrt{t^2 - x^2}} dx\right] dt$$

$$= 2\tilde{E}a\delta = 2\tilde{E}\Delta x \sum_{i=1}^{a/\Delta x} i\delta$$

Universal stiffness of normal contact: $k_{ges} := \frac{dP}{d\delta} = 2\tilde{E}a$ (PHARR / OLIVER, 1992) $k = \tilde{E}\Delta x$, 1D-model has the same stiffness!

Conclusion

The indentation with a flat cylindrical punch can also be mapped exactly by an one-dimensional system!

Contact without adhesion Contact with adhesion Pressure distribution

Outline

Mapping of conforming and non-conforming contacts

- Contact without adhesion
- Contact with adhesion
- Pressure distribution
- 3 Mapping of stresses and displacements within axisymmetric half-space
 - Correspondence principle and complete algorithm of reduction
 - Numerical calculations
- 4 Use of elastic inhomogenities to reduction
 - A simple example of reduction: Tangential contact of sphere
- 5 Summary and outlook

Contact without adhesion Contact with adhesion Pressure distribution

Mapping of generalized JKR-theory

Keynote:

The contact with adhesion arises from the contact without adhesion plus a rigid body translation! (JOHNSON, KENDALL, ROBERTS, 1971)

Contact without adhesion Contact with adhesion Pressure distribution

Mapping of generalized JKR-theory

Keynote:

The contact with adhesion arises from the contact without adhesion plus a rigid body translation! (JOHNSON, KENDALL, ROBERTS, 1971)

Immediate Conclusion

The contact with adhesion can be mapped exactly by a 1D-model!

Contact without adhesion Contact with adhesion Pressure distribution

Structure of unloading part resembles loading by a flat cylindrical punch

$$\begin{array}{lll} \delta & = & \delta_{\rm n.a.} - \sqrt{\frac{2a\pi\tilde{\gamma}}{E}} \\ P & = & P_{\rm n.a.} - \sqrt{8\pi\tilde{E}a^3\bar{\gamma}} \end{array} \end{array} \right\} \\ \Longrightarrow P_{\rm n.a.} - P = 2\tilde{E}a\left(\delta_{\rm n.a.} - \delta\right) \\ \end{array}$$

Contact without adhesion Contact with adhesion Pressure distribution

Structure of unloading part resembles loading by a flat cylindrical punch

$$\begin{cases} \delta &= \delta_{\text{n.a.}} - \sqrt{\frac{2a\pi\tilde{\gamma}}{E}} \\ P &= P_{\text{n.a.}} - \sqrt{8\pi\tilde{E}a^3\tilde{\gamma}} \end{cases} \end{cases} \implies P_{\text{n.a.}} - P = 2\tilde{E}a\left(\delta_{\text{n.a.}} - \delta\right)$$

Loading und pull-off in 1D-model

Contact without adhesion Contact with adhesion Pressure distribution

Outline

2 Mapping of conforming and non-conforming contacts

- Contact without adhesion
- Contact with adhesion
- Pressure distribution
- 3 Mapping of stresses and displacements within axisymmetric half-space
 - Correspondence principle and complete algorithm of reduction
 - Numerical calculations
- 4 Use of elastic inhomogenities to reduction
 - A simple example of reduction: Tangential contact of sphere
- 5 Summary and outlook

Pressure distribution

 $\sqrt{a^2 - x^2}$ $= 2 \int_{-\infty}^{\sqrt{u}} p(r) \, dy$

 $= 2 \int_{-\infty}^{\infty} \frac{rp(r)}{\sqrt{r^2 - r^2}} dr$

 \equiv

 $\sqrt{2\pi}\mathcal{A}_{2}[rp(r);x]$

WEBER-Transformation

Conversion of axisymmetric pressure distribution on two-dimensional ones by (WEBER, 1940) projection

Axisymmetr. pressure distribution

Weber-transform (line load)

Pressure distribution

Axisymmetr. pressure distribution

Contact without adhesion Contact with adhesion Pressure distribution

Weber-transform (line load)

3D-pressure calculable from 1D-spring-pressure by inverse Weber-tranform

Contact without adhesion Contact with adhesion Pressure distribution

Alternative, applicable to even exponents

Expansion of real pressure distribution ...

... in series of special Legendre polynomials (G.IA. POPOV, 1962; JAFFAR, 2004)

$$p(\bar{r}) = \frac{1}{\sqrt{1-\bar{r}^2}} \sum_{n=0}^{N} k_{2n} L_{2n} \left(\sqrt{1-\bar{r}^2}\right)$$

$$u_{z}\left(\bar{r}, \, z=0\right) \quad = \quad \frac{\pi a \left(1-\nu\right)}{2 \, G} \sum_{n=0}^{N} k_{2n} \left[L_{2n}\left(0\right)\right]^{2} L_{2n}\left(\sqrt{1-\bar{r}^{2}}\right)$$

Expansion of displacements of one-dimensional model ...

... in series of special root elements $s^m := \left(1 - ilde{x}^2
ight)^{m/2}$ (Hess, 2007)

$$\begin{split} \tilde{u}_z(s,0) &= \sum_{k=1}^K \tilde{g}_k\left(s\right) &= \sum_{k=1}^K e_k s^k \\ p\left(s\right) &= \frac{\tilde{E}}{\pi a} \frac{1}{s} \sum_{k=1}^K \varkappa_k \tilde{g}_k\left(s\right) &= \frac{\tilde{E}}{\pi a} \frac{1}{s} \sum_{k=1}^K \varkappa_k e_k s^k \end{split}$$

"3D-pressure equal to 1D-spring-pressure divided by s", but weighting necessary!

Outline

- Basic idea
- 2 Mapping of conforming and non-conforming contacts
 - Contact without adhesion
 - Contact with adhesion
 - Pressure distribution
- Mapping of stresses and displacements within axisymmetric half-space
 - Correspondence principle and complete algorithm of reduction
 - Numerical calculations
- 4 Use of elastic inhomogenities to reduction
 - A simple example of reduction: Tangential contact of sphere
- 5 Summary and outlook

Mapping of internal fields within axisymmetric half-space Inhomogenities

Correspondence principle and complete algorithm of reduction

Forminvariances

 Φ AIRY stress function

Correspondence principle and complete algorithm of reduction Numerical calculations

Elastic half-space - axisymmetry

$$\begin{bmatrix} 2G\mathcal{H}_{1}\left[u_{r}\left(r,z\right);\xi\right]\\ 2G\mathcal{H}_{0}\left[u_{z}\left(r,z\right);\xi\right]\\ \mathcal{H}_{1}\left[\tau_{rz}\left(r,z\right);\xi\right]\\ \mathcal{H}_{0}\left[\sigma_{zz}\left(r,z\right);\xi\right] \end{bmatrix} = \begin{bmatrix} \xi^{-1}\left(-1+2\nu\right)+z\\ 2\xi^{-1}\left(1-\nu\right)+z\\ -\xi z\\ --\xi z\\ -1-\xi z \end{bmatrix} \bar{p}_{0}\left(\xi\right)e^{-\xi z} + \begin{bmatrix} 2\xi^{-1}\left(1-\nu\right)-z\\ -\xi^{-1}\left(1-2\nu\right)-z\\ -1+\xi z\\ \xi z \end{bmatrix} \bar{q}_{0}\left(\xi\right)e^{-\xi z}$$

Elastic half-space - state of plane strain

ſ	$2G\mathcal{F}_{s}[u_{x}^{p}\left(x,z ight);\lambda]$		$-\lambda^{-1}\left(1-2 u ight)+z$		$2\lambda^{-1}\left(1- u ight)-z$	1
	$2G\mathcal{F}_{c}[u_{z}^{p}\left(x,z ight);\lambda]$		$2\lambda^{-1}\left(1- u ight)+z$	$p_{c}^{p}\left(\lambda ight)e^{-\lambda z}+$	$-\lambda^{-1}\left(1-2\nu\right)-z$	$\left q_{s}^{p}\left(\lambda ight) e^{-\lambda z} ight $
	$\mathcal{F}_{s}[au_{xz}^{p}\left(x,z ight);\lambda]$		$-\lambda z$		$-1 + \lambda z$	
	$\mathcal{F}_{c}[\sigma_{zz}^{p}\left(x,z ight);\lambda]$		$-1 - \lambda z$		λz	

Correspondence principle and complete algorithm of reduction Numerical calculations

Elastic half-space - axisymmetry

$$\begin{bmatrix} 2G\mathcal{H}_{1}\left[u_{r}\left(r,z\right);\xi\right]\\ 2G\mathcal{H}_{0}\left[u_{z}\left(r,z\right);\xi\right]\\ \mathcal{H}_{1}\left[\tau_{rz}\left(r,z\right);\xi\right]\\ \mathcal{H}_{0}\left[\sigma_{zz}\left(r,z\right);\xi\right] \end{bmatrix} = \begin{bmatrix} \xi^{-1}\left(-1+2\nu\right)+z\\ 2\xi^{-1}\left(1-\nu\right)+z\\ -\xi z\\ --\xi z\\ -1-\xi z \end{bmatrix} \bar{p}_{0}\left(\xi\right)e^{-\xi z} + \begin{bmatrix} 2\xi^{-1}\left(1-\nu\right)-z\\ -\xi^{-1}\left(1-2\nu\right)-z\\ -1+\xi z\\ \xi z \end{bmatrix} \bar{q}_{0}\left(\xi\right)e^{-\xi z}$$

Elastic half-space - state of plane strain

$$\begin{bmatrix} 2G\mathcal{F}_{s}[u_{x}^{p}\left(x,z\right);\lambda]\\ 2G\mathcal{F}_{c}[u_{z}^{p}\left(x,z\right);\lambda]\\ \mathcal{F}_{s}[\tau_{xz}^{p}\left(x,z\right);\lambda]\\ \mathcal{F}_{c}[\sigma_{zz}^{p}\left(x,z\right);\lambda] \end{bmatrix} = \begin{bmatrix} -\lambda^{-1}\left(1-2\nu\right)+z\\ 2\lambda^{-1}\left(1-\nu\right)+z\\ -\lambda z\\ -\lambda z\\ -1-\lambda z \end{bmatrix} p_{c}^{p}\left(\lambda\right)e^{-\lambda z} + \begin{bmatrix} 2\lambda^{-1}\left(1-\nu\right)-z\\ -\lambda^{-1}\left(1-2\nu\right)-z\\ -1+\lambda z\\ \lambda z \end{bmatrix} q_{s}^{p}\left(\lambda\right)e^{-\lambda z}$$

Approach: Boundary stresses equal in frequency space:

$$ar{p}_{0}\left(\xi
ight)\stackrel{!}{=}b\,p_{c}^{p}\left(\xi
ight)\qquadar{q}_{0}\left(\xi
ight)\stackrel{!}{=}b\,q_{s}^{p}\left(\xi
ight)$$

Correspondence principle and complete algorithm of reduction Numerical calculations

Correspondence principle – part I –

$$u_{x}^{p}\left(x,z
ight) = b^{-1}x\mathcal{A}_{2}\left[u_{r}\left(r,z
ight);x
ight]$$

$$u_{z}^{p}\left(x,z
ight) = b^{-1}\mathcal{A}_{2}\left[ru_{z}\left(r,z
ight);x
ight]$$

$$au_{xz}^{p}\left(x,z
ight) = b^{-1}x\mathcal{A}_{2}\left[au_{rz}\left(r,z
ight);x
ight]$$

$$\sigma_{zz}^{p}\left(x,z\right) = -b^{-1}\mathcal{A}_{2}\left[r\sigma_{zz}\left(r,z\right);x\right]$$

$$u_{r}(r,z) = b \mathcal{A}_{2}^{-1} \left[x^{-1} u_{x}^{p}(x,z); r \right]$$

$$u_{z}(r,z) = b r^{-1} \mathcal{A}_{2}^{-1} [u_{z}^{p}(x,z); r]$$

$$T_{rz}(r,z) = b \mathcal{A}_{2}^{-1} \left[x^{-1} \tau_{xz}^{p}(x,z); r \right]$$

$$\sigma_{zz}\left(r,z\right) \ = \ b \ r^{-1} \mathcal{A}_{2}^{-1} \left[\sigma_{zz}^{p}\left(x,z\right); \, r\right]$$

7

Mapping of conforming and non-conforming contacts
Mapping of internal fields within axisymmetric half-space
Inhomogenities
Summary and outlook

Correspondence principle and complete algorithm of reduction Numerical calculations

Correspondence principle – part I –

$$u_x^p\left(x,z
ight) = b^{-1}x\mathcal{A}_2\left[u_r\left(r,z
ight);x
ight]$$

$$u_{z}^{p}\left(x,z
ight)=b^{-1}\mathcal{A}_{2}\left[ru_{z}\left(r,z
ight);x
ight]\qquad u_{z}\left(r,z
ight)=b$$

$$au_{xz}^{p}\left(x,z
ight) = b^{-1}x\mathcal{A}_{2}\left[au_{rz}\left(r,z
ight);x
ight]$$

$$u_{z}(r,z) = b r^{-1} \mathcal{A}_{2}^{-1} [u_{z}^{p}(x,z); r]$$

 $u_r(r,z) = b \mathcal{A}_2^{-1} [x^{-1} u_x^p(x,z);r]$

$$\pi_{rz}(r,z) = b \mathcal{A}_2^{-1} [x^{-1} \tau_{xz}^p (x,z); r]$$

$$\left(x,z
ight) = b^{-1}\mathcal{A}_{2}\left[r\sigma_{zz}\left(r,z
ight);x
ight] \qquad \sigma_{zz}\left(r,z
ight) = b\,r^{-1}\mathcal{A}_{2}^{-1}\left[\sigma_{zz}^{p}\left(x,z
ight);r
ight]$$

Conclusion

 σ_{zz}^p

- By means of correspondence principle the conversion between internal fields of axisymmetry and state of plane strain/stress is possible!
- Simple Connection to 1D-model possible, because of $\sigma_{zz}^{p}(x,0) = b^{-1}\mathcal{A}_{2}\left[r\sigma_{zz}(r,0);x\right] \stackrel{!}{=} \frac{1}{\sqrt{2\pi}}p_{\mathsf{F}}(x)$: Spring-pressure divided by $\sqrt{2\pi}$ equal to plane boundary load.

Correspondence principle and complete algorithm of reduction Numerical calculations

Complete algorithm of reduction

Complete algorithm

- Indentation of 1D-spring-bed with modified punch $\implies P-\delta$ -a-relationship exact
- 2 Loading of half-plane by spring-pressure (divided by $\sqrt{2\pi}$)
- Detection of plane internal fields
- Inverse ABEL-transform of plane fields => All axisymmetric internal fields exact

Correspondence principle and complete algorithm of reduction Numerical calculations

Complete algorithm of reduction

Complete algorithm

- Indentation of 1D-spring-bed with modified punch $\implies P-\delta$ -a-relationship exact
- 2 Loading of half-plane by spring-pressure (divided by $\sqrt{2\pi}$)
- Oetection of plane internal fields
- Disadvantage of correspondence principle Inverse Abel-transform of plane fields!

Complete algorithm of reduction

Complete algorithm

- Indentation of 1D-spring-bed with modified punch $\implies P-\delta$ -a-relationship exact
- 2 Loading of half-plane by spring-pressure (divided by $\sqrt{2\pi}$)
- Oetection of plane internal fields
- Disadvantage of correspondence principle Inverse Abel-transform of plane fields!
- Advantage

Discretization of two- instead of three-dimensional system!

Correspondence principle and complete algorithm of reduction Numerical calculations

Outline

- 2 Mapping of conforming and non-conforming contacts
 - Contact without adhesion
 - Contact with adhesion
 - Pressure distribution
- 8 Mapping of stresses and displacements within axisymmetric half-space
 - Correspondence principle and complete algorithm of reduction
 - Numerical calculations
- 4 Use of elastic inhomogenities to reduction
 - A simple example of reduction: Tangential contact of sphere
- 5 Summary and outlook

Correspondence principle and complete algorithm of reduction Numerical calculations

Contact of HERTZ and HUBER 1904

Left

Analytical solution of HERTZ and HUBER

Right

Numerical results with the upgrading reduction method

Here

Plane fields by FOURIER-Integrals produced by MATHEMATICA

In principle

reduction method independant of numerical discretization method!

Chinese-German Symposium Nanumanufactoring and Nanotribology

Correspondence principle and complete algorithm of reduction Numerical calculations

Charakteristica of HERTZian contact

Stress distribution at surface (z = 0)

Correspondence principle and complete algorithm of reduction Numerical calculations

Charakteristica of HERTZian contact

Stress distribution at surface (z = 0)

Reduction method shows exactly the same results as theory! (Cf. JOHNSON, 1987)

Correspondence principle and complete algorithm of reduction Numerical calculations

Maximum of principal shear stresses

Influence of punch-profil

Change of position of maximum principal shear stresses; results produced with reduction method!

Correspondence principle and complete algorithm of reduction Numerical calculations

Contact of a sphere with adhesion

... in case of no external force

Reduction method leads to exactly the same results as ones of BARQUINS, MAU-GIS, (1982, 2000)!

Outline

- Basic idea
- 2 Mapping of conforming and non-conforming contacts
 - Contact without adhesion
 - Contact with adhesion
 - Pressure distribution
- 3 Mapping of stresses and displacements within axisymmetric half-space
 - Correspondence principle and complete algorithm of reduction
 - Numerical calculations
- 4 Use of elastic inhomogenities to reduction
 - A simple example of reduction: Tangential contact of sphere
- 5 Summary and outlook

A simple example of reduction: Tangential contact of sphere

Tangential contact of sphere – partial slip

Tangential traction (CATTANEO, MINDLIN)

A simple example of reduction: Tangential contact of sphere

Tangential contact of sphere – partial slip

Tangential traction (CATTANEO, MINDLIN)

Stick region

Sphere:
$$\frac{c}{a} = \left(1 - \frac{Q}{\mu P}\right)^{1/3}$$

Cylinder: $\frac{c}{a} = \left(1 - \frac{Q}{\mu P}\right)^{1/2}$

Chinese-German Symposium Nanumanufactoring and Nanotribology

Tang. contact of cylinder and inhomogeneous half-space

Kind of inhomogenity

 $E\left(z\right)=m_{\!\scriptscriptstyle E} z^{\alpha}$, $0<\alpha\leq 1$

Tang. contact of cylinder and inhomogeneous half-space

Conclusion

2D-stick-region agrees with 3D-tangential contact of sphere on homogeneous half-space!

Summary and outlook

Summary

Reduction method provides exactly the same results as in threedimensional case. We showed how to map

- conforming and non-conforming contacts with and without adhesion,
- the pressure distribution and
- the internal fields of axisymmetric half-space.

Summary and outlook

Summary

Reduction method provides exactly the same results as in threedimensional case. We showed how to map

- conforming and non-conforming contacts with and without adhesion,
- the pressure distribution and
- the internal fields of axisymmetric half-space.

Outlook

The reduction method is also applicable to

- inhomogeneous and layered half-space,
- to viscoelastic solids.
- Θ...

Thank you for your attention!

For further reading

- T. Geike, V.L. Popov. Mapping of three-dimensional contact problems into one dimension. Physical Review E,76:036710, 2007
- V.L. Popov. Kontaktmechanik und Reibung. Von der Nanotribologie bis zur Erdbebendynamik, 2.Auflage. Springer, 2010
- M. Heß. Über die exakte Abbildung ausgewählter dreidimensionaler Kontakte auf Systeme mit niedrigerer räumlicher Dimension. PhD thesis, 2011