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Preface 
 
 
 
 
 
The present book is a collection of open-access papers describing the foundations and applications of the 
Method of Dimensionality Reduction (MDR), first published in the Journal “Facta Universitatis. Series 
Mechanical Enginerring” in the years 2014-2018.  
The Method of Dimensionality Reduction (MDR) is a method of calculation and simulation of contacts of 
elastic and viscoelastic bodies. It consists essentially of two simple steps: (a) substitution of the three-
dimensional continuum by a uniquely defined one-dimensional linearly elastic or viscoelastic foundation 
(Winkler foundation) and (b) transformation of the three-dimensional profile of the contacting bodies by 
means of the MDR-transformation. As soon as these two steps are done, the contact problem can be 
considered to be solved. For axial symmetric contacts, only a small calculation by hand is required which 
does not exceed elementary calculus and will not be a barrier for any practically-oriented engineer. 
Alternatively, the MDR can be implemented numerically, which is almost trivial due to the independence 
of the foundation elements. In spite of its simplicity, all results are exact. The present book brings together 
papers covering the most important aspects of the MDR and providing a practical guide for its use. 

The book comprises the following papers: 

- VL Popov, M Hess: Method of dimensionality reduction in contact mechanics and friction: a users 
handbook. I. Axially-symmetric contacts, Facta Universitatis, Series: Mechanical Engineering 12 (1), 1-14, 
2014. 

- M Hess, VL Popov: Method of dimensionality reduction in contact mechanics and friction: a user's 
handbook. II. Power-law graded materials, Facta Universitatis, Series: Mechanical Engineering 14 (3), 
251-268, 2016. 

- VL Popov, E Willert, M Heß, Method of dimensionality reduction in contact mechanics and friction: a 
user’s handbook. III. Viscoelastic contacts, Facta Universitatis, Series: Mechanical Engineering, 16 (2), 
99-113, 2018. 

- J Benad, Fast numerical implementation of the MDR transformations, Facta Universitatis, Series: 
Mechanical Engineering, 16 (2), 127-138, 2018. 

- Q Li, VL Popov, Indentation of flat-ended and tapered indenters with polygonal cross-sections, Facta 
Universitatis, Series: Mechanical Engineering 14 (3), 241-249, 2016. 

- Q Li, VL Popov, Normal line contact of finite-length cylinders, Facta Universitatis, Series: Mechanical 
Engineering 15 (1), 63-71, 2017. 

- E Willert, S Kusche, VL Popov, The influence of viscoelasticity on velocity-dependent restitutions in the 
oblique impact of spheres, Facta Universitatis, Series: Mechanical Engineering 15 (2), 269-284, 2017. 

- E Willert, Dugdale-Maugis adhesive normal contact of axissymmetric power-law graded elastic bodies, 
Facta Universitatis, Series: Mechanical Engineering 16 (1), 9-18, 2018. 

- Q Li, Limiting profile of axisymmetric indenter due to the initially displaced dual motion fretting wear, 
Facta Universitatis, Series: Mechanical Engineering 14 (1), 55-61, 2016. 
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- E Willert, M Hess, VL Popov, Application of the method of dimensionality reduction to contacts under 
normal and torsional loading, Facta Universitatis, Series: Mechanical Engineering 13 (2), 81-90, 2015. 

- AV Dimaki, R Pohrt, VL Popov, Simulation of frictional dissipation under biaxial tangential loading 
with the method of dimensionality reduction, Facta Universitatis, Series: Mechanical Engineering 15 (2), 
295-306, 2017. 

- VL Popov, Analysis of impact on composite structures with the method of dimensionality reduction, Facta 
Universitatis, Series: Mechanical Engineering 13 (1), 39-46, 2015. 

The target audiences: 
This book is geared towards engineers working in e.g. mechanical engineering, the tire industry, the 
automotive industry, polymer- and elastomer manufacturing. Additionally, it functions as a reference work 
for research and teaching. 

 

Valentin L. Popov,  Markus Heß  und Emanuel Willert                                     Berlin, August 2018 
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FACTA UNIVERSITATIS  

Series: Mechanical Engineering Vol. 12, No 1, 2014, pp. 1 - 14 

METHOD OF DIMENSIONALITY REDUCTION IN CONTACT 

MECHANICS AND FRICTION: A USERS HANDBOOK.             

I. AXIALLY-SYMMETRIC CONTACTS 1 

UDC (539.3) 

Valentin L. Popov, Markus Hess  

Technical University Berlin 

Abstract. The Method of Dimensionality Reduction (MDR) is a method of calculation 

and simulation of contacts of elastic and viscoelastic bodies. It consists essentially of 

two simple steps: (a) substitution of the three-dimensional continuum by a uniquely 

defined one-dimensional linearly elastic or viscoelastic foundation (Winkler foundation) 

and (b) transformation of the three-dimensional profile of the contacting bodies by 

means of the MDR-transformation. As soon as these two steps are completed, the 

contact problem can be considered to be solved. For axial symmetric contacts, only a 

small calculation by hand is required which does not exceed elementary calculus and 

will not be a barrier for any practically-oriented engineer. Alternatively, the MDR can 

be implemented numerically, which is almost trivial due to the independence of the 

foundation elements. In spite of their simplicity, all the results are exact. The present 

paper is a short practical guide to the MDR. 

Key Words: Normal Contact, Tangential Contact, Adhesion, Friction, Partial Slip, Stress 

1. INTRODUCTION 

In the recently published book [1], the so-called method of dimensionality reduction 

(MDR) is described for the first time in detail. MDR can be traced back to the solution of 

the normal contact problem by Galin (Russian Academy of Sciences) in the 1940s [2]. 

His results were later published by Sneddon and, in this way, made public to the western 

world [3]. The method of dimensionality reduction takes these results and puts them into 

such a form that even a layman in the field of contact mechanics can use them for a 

multitude of contact mechanical problems. In doing this, it merges the ideas and results 

from Cattaneo [4], Mindlin [5], Jaeger [6], and Ciavarella [7] about a close relationship 

between normal and tangential contacts, the solutions of Galanov and Borodich [8, 9, 10] 

                                                           
Received February 20, 2014 

Corresponding author: Valentin Popov 

TU Berlin, Department of System Dynamics and Physics of Friction, Berlin, Germany  
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2 V. POPOV, M. HESS 

for adhesive contacts of axially-symmetric profiles of power functions (later found 

independently by Yao and Gao [11]), as well as the theory of Lee and Radok about the 

relationship between elastic and viscoelastic contacts [12, 13]. 

The book [1] contains all of the necessary evidence and many examples of how to apply 

the MDR. However, it has proven to be too comprehensive for practical users. There is a 

need for the fundamental ideas and "recipes" of the MDR to be presented in a concise way 

without extensive reasoning or proof, a sort of "user's handbook." This work is dedicated to 

exactly such a practical instruction for the method of dimensionality reduction. 

2. TWO INTRODUCTORY STEPS OF THE MDR 

We consider a contact between two elastic bodies with moduli of elasticity of E1 and E2, 

Poison's numbers of 1 and 2, and shear moduli of G1 and G2, accordingly. In this work, we 

restrict ourselves to the axially-symmetric profiles, which is not necessarily required. A 

generalization to profiles that are not axially-symmetric is possible, but is not considered in 

this work. We denote the difference between the profiles of bodies as z = f(r). In the 

framework of the MDR, two independent steps are conducted: 

The first step: First, the three-dimensional elastic (or viscoelastic) bodies are replaced 

by a one-dimensional linearly elastic foundation. This is considered to be a linear array of 

elements having independent degrees of freedom and a sufficiently small separation 

distance x, Fig. 1. 

 
 a) b) c) 

Fig. 1 One-dimensional foundation of different materials: elastic foundation (a), purely 

viscous foundation (b), and viscoelastic foundation (c) with an example rheology 

according to Kelvin-Voigt 

In the simplest case of the elastic contact, the foundation consists of linearly elastic 

spring elements that have normal stiffness kz 
and tangential stiffness kx 

 (Fig. 1a): 

 
2 2

* 1 2

*

1 2

1 11
withzk E x

E EE

 
     , (1) 

 
* 1 2

*

1 2

2 21
with

4 4
xk G x

G GG

 
     . (2) 

Starred values E
* 

and G
*
 denote the effective elastic moduli. Incompressible linearly 

viscous materials are presented by a linear damping element with damping coefficient  

(Fig. 1b), which is dependent on the viscosity  of the viscoelastic partner according to: 
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 4 x    . (3) 

Arbitrary combinations of these two base elements are also possible in order to satisfy 

the most complicated elastomers – Fig. 1c, for example, shows a viscoelastic foundation 

built out of elements of in parallel connected springs and dampers (Kelvin-Voigt model). 

In this paper, we will restrict ourselves to the case of "elastically similar" materials: 

 
2

2

1

1 2121

GG





, (4) 

which guarantees the independence of the normal and tangential contact problems [14]. 

This condition is always met in important cases of contacts between the bodies with the 

same elastic properties or those between a rigid body and an elastomer. 

The second step: In the second step, three-dimensional profile z = f(r) (Fig. 2, left) is 

transformed into a one-dimensional profile (Fig. 2, right) according to: 

 





x

r
rx

rf
xxg

0
22

d
)(

)( . (5) 

The reverse transformation is: 

 



r

x
xr

xg
rf

0
22

d
)(2

)( . (6) 

 

Fig. 2 The three-dimensional profile is transformed into a one-dimensional profile using the MDR 

For a less trivial example, we consider the contact of a parabolic profile with a worn 

tip (Fig. 3): 

 2 2

0 for 0

( )
for

2

r b

f r r b
b r a

R

 


  
 



. (7) 

The MDR transformed profile according to Eq. (5) is given by: 

 
2 2

0 for 0

( )
for

x b

g x x
x b b x a

R

  


 
  



. (8) 

6



4 V. POPOV, M. HESS 

 

Fig. 3 Parabolic indenter with a "worn" tip: original (solid line) and equivalent  

(dashed line) profiles for comparison 

Examples for the MDR transformation 

By inserting profiles into Eq. (5) that correspond to a cylinder, paraboloid, cone, or an 

arbitrary power function z ~ r
n
, we obtain the MDR transformed one-dimensional profiles 

which are summarized in Table 1, where: 

 
























2

1

2

2

2 n

n
n

kn    and   



0

1 d:)( tetn tn  is the gamma function. 

Table 1 The three-dimensional profile is transformed into a one-dimensional profile using 

the MDR  

 

 

3. CALCULATION STEP OF THE MDR USING THE EXAMPLE OF  

A NORMAL CONTACT WITHOUT ADHESION 

The one-dimensional profile according to Eq. (5) is now pressed into an elastic 

foundation corresponding to Eq. (1) with normal force FN (see Fig. 4). The normal 

surface displacement at point x within the contact area results from the difference between 

indentation depth d and profile form g: 
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Fig. 4 Equivalent model for a Hertzian contact 

 )()( xgdxuz  . (9) 

At the edge of non-adhesive contact x =  a, the surface displacement must be zero: 

 )(:0)( agdauz  . (10) 

This equation determines the relationship between the indentation depth and contact 

radius a. It should be noted that this relationship is independent of the rheology of the 

medium. The force of a spring at the point x is proportional to the displacement at this point:  

 xxuExukxF zzzz  )()()( * , (11) 

and the sum of all spring forces must correspond to the normal force in equilibrium. In the 

limiting case of very small spring separation distances x  dx, the summation becomes 

the integral: 

 * *

0

: ( )d 2 ( ( ))d

a a

N z

a

F E u x x E d g x x


    . (12) 

Equation (12) provides the normal force in dependence on the contact radius and on the 

indentation depth, if Eq. (10) is taken into account. 

We now define linear force density qz(x): 

 )(
)(

:)( * xuE
x

xF
xq z

z
z 




 . (13) 

The stress distribution in the original three-dimensional system can be determined 

with the help of the one-dimensional distributed load using the integral transformation 

[15]: 

 
2 2

1 ( )
( ) d

r

q x
p r x

x r

 
 


 . (14) 

The normal surface displacement (both inside and outside of the contact area) is given by 

the transformation: 

 
2 2

0

( )2
( ) d

r

z
z

u x
u r x

r x



 . (15) 
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We point out once more that one-dimensional values contain the independent variable 

x, while three-dimensional values contain radial variable r; function uz(x) inside the 

integrand of Eq. (15) means the surface displacement of the linearly elastic foundation. 

We will carry out the last two transformations using the example of a cone. The three-

dimensional profile in this case is f(r) = rtan; the MDR transformed profile is 

( ) tan
2

g x x


 . The displacement within the contact area is ( ) tan
2

zu x d x


  . The 

linear force density is *( ) tan
2

q x E d x



 

  
 

 and its derivative is *( ) tan
2

q x E


    

(for positive x). Insertion into Eq. (14) and Eq. (15) results in: 

 

2* *

2 2

d
( ) tan tan ln 1

2 2

a

r

E x E a a
p r

r rx r
 

 
       

    
 , (16) 

 

2

2 2
0

2 ( / 2) tan 2
( ) d arcsin 1

a

z

d x d a r r
u r x

r a ar x

 

 

               
        

 . (17) 

Equation (17) gives the normal surface displacement outside of the contact area. A 

similar calculation for a parabolic profile f(r) = r
2
/(2R) initially provides uz(x) = d-x

2
/R 

and, after insertion into Eq.  (15), results in: 

 

2 2

( ) 2 arcsin 1z

d r a r
u r

a r a

       
                    

. (18) 

For the contact of a flattened paraboloid, Eq. (7), we obtain the contact radius by 

using Eq. (10): 

 
22)(:0)( ba

R

a
agdau z  . (19) 

and the normal force using Eq.(12): 

 
* *

* 2 2 2 2 2 2

0 0

2 2
2 d d (2 )

3

a a

N

E E
F E d x x x b x a b a b

R R
        . (20) 

These results correspond of course with those of Eijke [18] from the three-dimensional 

theory. 

Examples for normal contacts 

Insertion of the MDR transformed profiles into Eqs. (10) and (12) and an elementary 

integration provides the results for the "classical profiles" of a cylinder [17], sphere [16], 

and cone [3] as well as the general power profile [2], which are summarized in Table 2. 

The order of the rows corresponds to the order of the calculation steps. 
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Table 2 Solutions to the normal contact problem for simple profiles  

 

4. ADHESIVE NORMAL CONTACT 

The MDR rule for the mapping of adhesive contacts will be formulated in the following. 

As with the non-adhesive contact, the MDR transformed one-dimensional profile is brought 

into contact with the linearly elastic foundation defined in Section 2. Now, it will be assumed 

that all of the springs in the contact adhere to the indenter, then the contact radius remains 

the same after a successive decrease in the normal force. From the edge of the contact 

towards the middle, however, more and more springs will be loaded in tension. As soon as 

the change in length of the outer springs reaches the maximum allowable value:  

 max *

2
( ) ( ) :

a
l a l a

E

 
     , (21) 

there will be a state of indifference between adhesion and separation (Fig. 5). Here,  is 

the separation energy of the contacting bodies per unit area. This state corresponds 

exactly to the equilibrium state of the three-dimensional adhesive contact [15]. 

In contrast to the algorithm for non-adhesive contact, Equation (10) must only be 

replaced by: 

 )()(:)()( maxmax alagdalauz   (22) 

in order to calculate the indentation depth. The normal force is given as before by Eq. (12): 


















 

aaa

N alaxxgaagExxgadExxgdEF
0

max

*

0

*

0

* )(d)()(2d)(2d))((2  (23) 
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Fig. 5 Illustration for the MDR rule for an adhesive contact 

or 







 

a

N alaxxgxEF
0

max

* )(d)(2 . (24) 

If the force is controlled during the separation, then critical value ac of the contact radius 

at the moment of the loss of stability is determined by condition dFN /da = 0: 

 
*

d ( ) 9

d 2

g a

a aE

 
 . (25) 

Inserting the critical radius obtained from this equation into Eq. (23) results in the 

maximum negative force. We will call its magnitude the adhesion force FA: 

 
*

max

0

2 ( ) ( )d

a

A c c

c

F E a l a xg x x  
 
 
 

 . (26) 

The simplest example is calculating the adhesion force between a cylinder with the 

radius a and an elastic half-space. In this case, the integral in Eq. (26) is equal to zero and 

the adhesion force is only given by the first term: * 3 *

max2 ( ) 8AF E a l a a E     , which 

corresponds to the result of Kendall [20]. Calculations for other profiles are just as simple 

and are summarized in Table 3. 

In order to stress the generality and simplicity of the calculation method, we will now 

conduct the calculation for a parabolic profile with a worn tip (Fig. 6). If we take the 

equivalent profile from Equation (8) into account, the resulting indentation depth is: 

 2 2

max *

2
( ) : ( ) ( )

a a
d a g a l a a b

R E

 
     , (27) 

 

Fig. 6 Qualitative presentation of the adhesive contact of a parabolic profile with a flattened tip 
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and from Eq. (12), the normal force is: 

 
*

* 2 2 2 2 3 *2
( ) ( )d (2 ) 8

3

a

N z

a

E
F a E u x x a b a b a E

R
 



      . (28) 

This equation corresponds to the results from the three-dimensional theory [22]. 

Examples for adhesive normal contacts 

Inserting the MDR transformed profiles into Eqs. (25) and (26) and conducting an 

elementary integration provides the results summarized in Table 3 for the "classical profiles" 

of the cylinder [20], sphere [19], and cone [21], as well as the general power function profile 

[10, 11]. The order of the rows corresponds to the order of the calculation steps. 

Table 3 Solutions for adhesive contacts for simple profiles  

 

 

5. TANGENTIAL CONTACT 

We now consider an axially-symmetric indenter that is initially pressed into an elastic 

half-space with normal force FN and subsequently loaded with tangential force Fx in the x-

direction (Fig. 7). We assume that Coulomb's law of friction is valid in the simplest  

 

Fig. 7 Qualitative presentation of the tangential contact 
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form in the contact: as long as tangential stress  is smaller than the coefficient of friction 

 times normal stress p, the surface is in a state of sticking. After slip sets in, the 

tangential stress remains constant and equal to p: 

 ( ) ( )r p r   for stick, (29) 

 ( ) ( )r p r  for slip. (30) 

It is known that for a small tangential force at the edge of the contact, a ring-shaped 

slip domain develops, which expands inwards for increasing force until the complete slip 

is exhibited. We denote the inner radius of the slip domain (or the radius of the stick 

domain) with c. 

The MDR is applied to the tangential contact as follows. The modified profile g(x) is 

pressed into the linearly elastic foundation with force FN and then tangentially displaced 

by ux
(0)

. The linearly elastic foundation is denoted by the stiffnesses according to (1) and 

(2). Every spring sticks to the indenter and is displaced along with it as long as the 

tangential force Fx = kx ux
(0)

 is smaller than Fz. After the adhesion force is reached, 

the spring begins to slip and the force remains constant and equal to Fz. This rule can 

also be incrementally formulated so that it can be applied for arbitrary loading histories: 

for a small displacement of indenter of ux
(0)

, we obtain: 

 

(0)( ) , if ( )

( )
( ) , in a stateof slip

x x x x z

z
x

x

u x u k u x f

F x
u x

k





   


 

. (31) 

The sign of the last equation is dependent on the direction of motion of the indenter. By 

following the incremental changes in the position of the indenter, we can explicitly determine 

the displacement of all the springs in the contact area; with this, all tangential forces: 

 )()( * xuxGxukF xxxx  . (32) 

and the linear force density (distributed load): 

 )()( * xuG
x

F
xq x

x
x 




  (33) 

are also known. The distribution of tangential stress (r) as well as displacements ux(r) in 

the original three-dimensional contact are determined as follows [1]: 

 



r

x
x x

xr

xu
ru

0
22

d
)(2

)( . (34) 

 
*

2 2 2 2

( ) ( )1
( ) d dx x

r r

q x u xG
r x x

x r x r


 

  
   

 
  . (35) 

If the indenter is displaced in one direction from the equilibrium position, then radius c of 

the stick domain is determined from the condition that tangential force kxux
(0)

 is equal to  

times normal force kzuz(c) (Fig. 8): 

13



 Method of Dimensionality Reduction in Contact Mechanics and Friction: A Users Handbook 11 

 * (0) *( ( ))xG u E d g c  . (36) 

The tangential displacement is equal to: 

 

(0)

*

*

, for

( )
( ( )), for

x

x

u x c

u x E
d g x c x a

G


 


  
   

 

, (37) 

the distributed load is: 

 
* (0)

*

, for
( )

( ( )), for

xG u x c
q x

E d g x c x a

 
 

  
, (38) 

and the resulting tangential force is
2
: 

 *

0

2 ( )d 2 ( ( )) ( ( ))d .

a a

x x

c

F q x x E c d g c d g x x
 

     
 

   (39) 

The normal force is still given by Equation (12) and ratio Fx /(FN) is given by:  

 

0

( )d

( ) ( )d

a

x c

a

N

xg x x
F

F
ag a g x x













. (40) 

The relative displacement ux = ux
(0)

 – ux(x) of the surfaces in contact is obtained by 

subtracting ux
(0)

 from Eq. (37): 

 

Fig. 8 Equivalent model for the classical tangential contact according to Cattaneo and Mindlin 

 
 

*

*

0, for

( ) ( ) , for
x

x c

u E
g c g x c x a

G





   
   

 

. (41) 

                                                           
2 We stress once more that all macroscopic values obtained using the procedure described above correspond 

exactly to the three-dimensional solutions of Cattaneo [4], Mindlin [5], Jaeger [6] and Ciavarella [7].  
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The relative displacement in the original three-dimensional system is calculated using Eq. 

(34) as: 

 
*

* 2 2
0

2 ( ) ( )
( ) d , for 

r

x

E g c g x
u r x c r a

G r x




  
   

 
 . (42) 

For example, for a conical, we obtain: 

 

2*

*
( ) tan 1 arcsin ,

2
x

E r c
u r c for c r a

c rG


 

      
            
       

. (43) 

Examples for tangential contacts 

Inserting the MDR transformed profiles into Eqs. (36) and (40), results in the 

relationships between radius c of the stick domain, ratio Fx /(FN), and tangential 

displacement ux
(0)

. The results for the "classical profiles" of the sphere [4, 5], cone [23], 

as well as the power function profile are summarized in Table 4. The order of the rows 

corresponds to the order of the calculation steps. 

Table 4 Solutions for the tangential contacts of simple profiles  

 

6. CONCLUSIONS 

In the present paper, we have limited ourselves to the essential rules and procedures of 

the method of dimensionality reduction. Evidence for the statements herein can be found 

in the works [1] and [15]. 

The possibilities of the MDR are much more expansive as presented in this 

composition. Further successful applications have been found for the rolling contact [24, 

25], contacts with elastomers [26], contacts of rough surfaces [27, 28], elastomer friction 

[29], thermal effects in contacts [1], acoustic emission in rough contacts [31], and wear 

[32]. Interested readers are referred to the cited literature as well as the book [1]. In many 

cases, the MDR allows an analytical solution to the problem, as shown in this work. 
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However, it can also be easily implemented numerically and used for the investigation of 

systems with complex dynamic loadings [33].  

Let us stress that the presented form of the MDR is only applicable to contacts with 

homogeneous elastic or viscoelastic half-spaces and it does not take into account size effects 

[34]. However, extensions to contacts with final bodies or heterogeneous media are also 

possible [35]. The application of the MDR to rough contacts requires a separate paper.  
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Abstract. Until recently, the only way of solving contact problems was to apply three-

dimensional contact theories. However, this presupposes higher mathematical and nu-

merical knowledge, which usually only research groups possess. This has changed 

drastically with the development of the method of dimensionality reduction (MDR), 

which allows every practically oriented engineer an access to the solution of contact 

problems. The simple and contact-type dependent rules are summarized in the first part 

of the user manual; they require contacts between elastically homogeneous materials. 

The present paper forms the second part of the user handbook and is dedicated to the 

solution of contact problems between power-law graded materials. All the MDR-rules 

are listed with which normal, tangential and adhesive contacts between such high-

performance materials can be calculated in a simple manner. 
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1. INTRODUCTION 

The classical dimensionality reduction method is designed to solve contact problems 

between elastically homogeneous materials. Although it does not appear at first sight, the 

MDR unites all three-dimensional contact theories and transforms them in such a way that 

only simple rules remain which have to be applied to equivalent, one-dimensional contact 

problems [1]. These rules are summarized in the first part of the user handbook [2], as-

suming axisymmetric profiles and compact contact areas. However, Argatov et al. [3] 

showed that the MDR is also valid for arbitrarily shaped and non-compact contact areas. 
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The enormous technological progress in recent times is closely linked to the develop-

ment of high-performance materials. In order to meet the increased demands, functionally 

graded materials (FGM) are used, which include the elastically power-law graded materi-

als. They are characterized by a modulus of elasticity which increases perpendicularly to 

the half-space surface according to the power law: 

 0

0

( ) with 0 1

k

z
E z E k

c

 
   

 
 . (1) 

where c0 denotes the characteristic depth in which elastic modulus E0 prevails inde-

pendently of the exponent of the elastic inhomogeneity (see Fig. 1).  

 

Fig. 1 Axisymmetric contact between a rigid indenter  

and an elastically power-law graded half-space  

Contact mechanics of such materials were mainly developed by Booker et al. [4, 5] 

and Giannakopoulos and Suresh [6] for normal contacts without adhesion and Chen et al. 

[7] and Jin et al. [8] for adhesive contacts. Due to the interest in investigating the behavior 

of elastically inhomogeneous, biological structures as well as the adhesive material behav-

ior in micro- and nanosystem technology the latter is still a subject of current research. An 

analytical solution of the tangential contact has not yet been published, but Hess [9] pre-

sented the solution at a recent workshop. The basic ideas were also mentioned in a further 

conference paper [10]. The key to the solution of the tangential contact lies once more in 

the superposition principle of Ciavarella [11] and Jäger [12]. Analogously to contact me-

chanics of homogeneous materials, all the above-mentioned contact theories for the calcu-

lation of contacts between power-law graded materials can again be suitably transformed 

by means of MDR, so that equivalent one-dimensional models are created which satisfy 

simple rules. The general foundations for the mapping of contacts between heterogeneous 

materials were given by Popov [13]. The derivation of all MDR-rules for the exact mapping 

of non-adhesive and adhesive normal contacts between power-law graded materials goes 

back to Hess [14, 15]. In this paper, all the rules are listed and their easy handling for the 

solution of normal, tangential and adhesive contacts is explained by means of examples. 
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2. TWO INTRODUCTORY STEPS OF THE MDR 

The basic procedure for solving contact problems by MDR is independent of whether we 

consider homogeneous or inhomogeneous materials. Only the rules look a bit different. 

Again, we would like to assume axisymmetric contacts. Furthermore, the exponent of elastic 

inhomogeneity k and characteristic depth c0 of the contacting bodies should be the same. The 

two solids should thus be able to distinguish themselves only in the Poisson's ratios ν1, ν2 and 

/ or in the moduli of elasticity E01, E02 prevailing in the characteristic depth. 

2.1. The first step: Mapping of material properties 

The power-law graded properties of the contacting bodies are taken into account with-

in the MDR by linear elastic springs of suitable stiffness. In addition to a normal stiffness, 

each spring also has an independent tangential stiffness. The spring stiffnesses related to 

the distance of springs Δx are called foundation moduli cN, respectively cT. These have to 

be chosen as follows: 

 

1
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1 2
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1 1 | |
( )

( , ) ( , )
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N N
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c x

h k E h k E c



    
    
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 , (2) 
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T T
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c x

h k E h k E c



   
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.  (3) 

Coefficients hN and hT in the foundation moduli according to Eqs. (2) and (3) are compli-

cated but well-defined functions depending on Poisson's ratio ν and exponent k of the 

elastic inhomogeneity. They are given in the appendix. The decisive factor at the founda-

tion moduli is that they depend on coordinate x (see Fig. 2). Both stiffnesses increase with 

the lateral distance from the center point of the contact to exactly the same power law 

according to which, in the original problem, the elastic modulus increases perpendicularly 

to the half-space surface. In the special case of  homogeneous half-space k  0, the fol-

lowing holds: 

 
2

(0, ) 1 and (0, )
(1 )(2 )

N i T i

i i

h h   
 

 . (4) 

Then coefficients cN and cT are constant and equal to effective elastic moduli E
* 
and G

*
 [2].  

 

Fig. 2 Series of infinitesimaly adjacent, linear spring elements whose normal and  

tangential stiffness increase with the lateral distance from the midpoint of contact  
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2.2. The second step: Transformation of profile 

The second preliminary step involves the transformation of given three-dimensional 

contact profile f(r) into an equivalent plane profile g(x). The transformation and reverse 

transformation for the profile functions are [14]: 
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 .  (6) 

For better understanding, Fig. 3 visualizes the transformation of the profile. It should 

be noted that the equivalent plane profile is sometimes called equivalent 1D profile since 

it belongs to the equivalent 1D system. 

 

Fig. 3 Tranformation of the 3D-profile into an equivalent plane profile  

2.3. Example for the MDR transformation 

As an example we consider the transformation of a profile whose shape is described 

by the power function: 

 f(r)  An r
n
   with   nℝ⁺, An  const  . (7) 

Application of Eq. (5) to the profile according to Eq. (7) leads to the following equivalent 

profile: 

 ( ) ( , ) | | ( , ) (| |)n
ng x n k A x n k f x    , (8) 

with 
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 
 

   , (9) 

where B(x,y) is the complete beta function. Eq. (8) clearly indicates that the equivalent 

profile results from a simple, vertical scaling of the original profile. The scaling factor 

(n,k) is dependent on the exponent of the power function and the exponent of the elastic 

inhomogeneity. The scaling factor increases with increasing exponent of the power-law 

profile (see Fig. 4).  
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Fig. 4 Dependence of scaling factor  on power-law exponent n for different  

exponents k of the power-law graded material (adopted from [14]) 

In the homogeneous case, the known values (1,0)/2 for the conical and (2,0)2 for 

the parabolic indenter are obtained. The equivalent one-dimensional profiles of the basic 

contact profiles are listed in Table 1. 

Table 1 Basic three-dimensional profiles and their equivalent one-dimensional profiles 

 Flat-ended Parabolic Conical Power-law 
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3. CALCULATION RULES OF MDR FOR SOLVING NORMAL CONTACTS  

BETWEEN POWER-LAW GRADED MATERIALS WITHOUT ADHESION 

The MDR procedure for solving contact problems between power-law graded materi-

als is the same as in the classical MDR for homogeneous materials.  
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Fig. 5 Equivalent 1D contact problem of the 3D contact problem  

between two power-law graded half-spaces  

The one-dimensional profile according to Eq. (5) is pressed into an elastic foundation of normal 

modulus given by Eq. (2) (see Fig. 5). The normal surface displacement at point x within the 

contact area results from the difference between indentation depth d and profile form g: 

 ,1D ( ) : ( )zu x d g x   . (10) 

At the edge of non-adhesive contact |x|a the surface displacement must be zero: 

 ,1 ( ) 0 ( )z Du a d g a   .  (11) 

This equation determines the relationship between indentation depth d and contact radius a. 

The sum of all spring forces must correspond to the normal force in equilibrium: 
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Eqs. (11) and (12) provide the penetration depth and the normal force as a function of the 

contact radius. The pressure distribution in the original three-dimensional system can be 

determined with the help of the one-dimensional displacement using the integral transfor-

mation: 
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The foundation modulus at position c0 takes into account the elastic parameters of the 

elastically inhomogeneous materials in contact. From Eq. (2) follows: 
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h k E h k E


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  

  
.  (14) 

The normal surface displacement outside of the contact area is given by the transformation: 

 
  ,1

1

2 20 2

2
2cos ( )

( , ) d for

( )

ka
z D

z k

k
x u x

u r a x r a

r x



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


  . (15) 
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3.1. Examples for normal contacts without adhesion 

3.1.1. Parabolic contact 

As the first example we consider a rigid, parabolic indenter, which is pressed into a 

power-law graded half-space. The shape function of the parabolic contact is defined by: 

 
2

( )
2

r
f r

R
  . (16) 

Using the transformation formula (5) yields the shape function of the equivalent one-

dimensional profile (see also Table 1): 

 
2

( )
( 1)

x
g x

k R



 . (17) 

Thereby the displacement of the Winkler foundation is known, so that the indentation 

depth immediately emerges from Eq. (11): 

 
2

,1 ( ) 0 ( ) ( )
( 1)

z D

a
u a d a g a

k R
   


 . (18) 

According to Eq. (12), the normal force results from the sum of the spring forces, taking 

into account the increasing foundation modulus from the center of the contact line accord-

ing to Eq. (2): 

 
2 2 3
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2 2

0
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(1 ) (1 ) (1 ) ( 1) ( 3)
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N
N N k
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



  
   

     
 .  (19) 

To calculate the pressure distribution in the contact area, we need the first derivative of 

the 1D displacement:  

 
2

,1 ,1

2
( ) ( )

( 1) ( 1)
z D z D

x x
u x d u x

k R k R
    

 
  (20) 

and the adjusted elastic parameter (one body was assumed to be rigid): 

 0

0 2

( , )
( )

1

N

N

h k E
c c





 . (21) 

From Eq. (13) by taking Eqs. (20) and (21) into account, the pressure distribution is: 

 

1
21 2

0

2 2

0

2 ( , )
( , ) 1

(1 ) ( 1)

k

k

N

k

h k E a r
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ac k R



    
   
      

 . (22) 

The application of Eq. (15) provides the normal displacement of the surface outside of the 

contact area: 
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     
      

 , (23) 

with the incomplete beta function:  

 1 1

0

B( , , ) : (1 ) d

z

x yz x y t t t     ∀x,y ℝ⁺. (24) 

It is easy to verify that from Eqs. (18), (19) as well as Eqs. (22), (23) in the particular case 

k  0 the solutions of the Hertzian contact exactly follow. 

3.1.2. Conical contact 

For the conical contact, the profile functions of the original and the equivalent system 

are listed in Table 1. They are: 

 
1 1 1

( ) tan ( ) B , | | tan
2 2 2

k
f r r g x x

 
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 
 . (25) 

Table 2 summarizes the solutions of the conical contact, which results from the MDR 

rules Eqs. (10)-(13) and (15). Again, one body was assumed to be rigid. 

Table 2 Solutions to the normal contact between a rigid conical indenter and a power-

law graded half-space 

 Conical contact 

( )d a  
1 1 1
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2 2 2

k
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Since the beta function in the pressure distribution contains some negative arguments, we 

extend the definition according to Eq. (24), in which we make use of its representation by 

hypergeometric series: 

 2 1( , , ) ( ,1 ;1 ; )
xz

z x y F x y x z
x

     (26) 

where 

 2 1

0

( ) ( ) ( )
( , ; ; ) with ( ) :

( ) ! ( )

n

n n
n

n n

a b z x n
F a b c z x

c n x





 
 


  .  

4. ADHESIVE NORMAL CONTACT BETWEEN POWER-LAW GRADED MATERIALS 

For the solution of the normal contact with adhesion between two power-law graded 

materials by means of MDR, there is only a small change to the non-adhesive normal con-

tact: the rule according to Eq. (11) for calculating the indentation depth as a function of 

the contact radius must simply be replaced by rule [14]: 

 ,1 max max

2
( ) ( ) with ( ) :

( )
z D

N

a
u a a a

c a


     . (27) 

Clearly, this means that the equilibrium state of the contact with adhesion is found when 

the elongations of the springs at the edge of contact reach defined value Δℓmax(a)  (see 

Fig. 6). 

 

Fig. 6 Illustration of the MDR rule for an adhesive contact  

between power-law graded materials 

In addition, the MDR solution provides a simple way to calculate the critical contact 

radii, and thus the (maximum) pull-off force as well as the minimum indentation depth 

The critical contact radii must fulfill the following condition:  
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 max

2
for fixed-load

( ) ( ) 3
( ) with ( ) :

2
for fixed-grips

1
c

c

c a

a g a k
C k C k

a a

k


   

  
 

 

 . (28) 

Thus, the slope of the equivalent profile at the contact edge is decisive for reaching the 

critical states. The different definition of coefficient  C k  is linked to whether a fixed-

load or fixed-grips condition is present. With conditions (27), (28) and the general rules 

of the MDR procedure (10), (12), (13) and (15), every standard contact problem with 

adhesion can be easily solved. A few examples are presented below. 

4.1. Examples for adhesive normal contacts 

4.1.1. Parabolic contact 

We refrain from re-calculating the equivalent profile for the parabolic contact at this 

point and adopt the result of Eq. (17):  
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2 ( 1)
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f r g x

R k R
  


 . (29) 

Considering the definition of the displacement of the Winkler foundation from Eq. (10), the 

indentation depth as a function of the contact radius for the adhesive contact follows from 

the separation criterion (27):  
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 , (30) 

where we abbreviated E
*
:E0 /(1ν

2
). According to Eq. (12), the normal force must again 

correspond to the sum of all spring forces. It differs from the normal force in the case of 

the non-adhesive contact only by a part which results from an additional rigid-body trans-

lation Δℓmax(a) of all springs:  
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 . (31) 

For the calculation of the critical contact radii from condition (28) (limit stability), on-

ly the slope of the equivalent profile at the contact edge is required. From Eq. (29) it fol-

lows ( ) 2  /  [(1 ) ]g a a k R    and with it from Eq. (28): 

 

1

2 2 3
0

2 *

(1 )

2 ( ) ( , )

k k

c

N

k R c
a

C k h k E

   
    

 . (32) 
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Inserting the critical contact radii according to Eq. (32) into Eqs. (30) and (31) provides 

the critical indentation depths and normal forces: 
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,  (33) 

 

 

2

3
fixed-load

1 ( )(3 ) 2
2

(1 )(5 3 )( ) (3 )
(fixed-grips)

2(3 )

c

k
R

C k k
F R

k kC k k
R

k


    

    
    

 

 . (34) 

It is needless to say that Eqs. (30)-(34) developed by MDR agree exactly with solutions 

from three-dimensional theory by Chen et al. [7]. They drew attention to the fact that, 

according to Eq. (34), the maximum pull-off force is independent of the elastic parame-

ters and independent of the characteristic depth as in the homogeneous case. For the cal-

culation of the pressure distribution according to Eq. (13), we need the one-dimensional 

displacement respectively its derivative, which we specify here again to clarify the treat-

ment of the finite jump at the contact edge (see Fig. 6):  
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 . (36) 

In Eqs. (35) and (36) H(…) denote the Heaviside function and (…) the delta distribu-

tion. After insertion of Eq. (36) in Eq. (13) and taking into account the filter property of 

the delta distribution, the pressure distribution results in: 
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.  (37) 

4.1.2. Power-law contact profile  

The equivalent profile of an indenter whose shape is a power function according to 

Eq. (7) has already been calculated in Eq. (8): 

 ( ) ( ) ( , ) | |n n
n nf r A r g x n k A x      , nℝ⁺ (38) 

wherein (n,k)  has been defined in Eq. (9). The solutions of the adhesive contact between 

a power-law graded half-space and a rigid indenter whose profile is given by Eq. (38) 

using MDR are summarized in Table 3. 

28



262 M. HESS, V. POPOV 

Table 3 Solutions to the adhesive contact between a rigid indenter whose shape  

is a power function and a power-law graded half-space 

 Adhesive contact of power-law profile 
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5. TANGENTIAL CONTACT BETWEEN TWO POWER-LAW GRADED HALF-SPACES 

We now consider a partial-slip problem between two power-law graded half-spaces 

with the same exponent k of elastic inhomogeneity, but different elastic parameters E0 and 

ν. The solids are initially pressed against each other with a normal force FN and subse-

quently loaded with a tangential force Fx in the x-direction (see Fig. 7). The axisymmetric 

gap function is given by f (r). Let us assume that normal and tangential contacts are un-

coupled, which is strictly permitted only if either [9]: 

 both materials are equal: ν1  ν2  ν  E01  E02 : E0,  

 one material is rigid and the other one has a Poisson's ratio equal to the  Holl-ratio 

[16]: E0i    νj  1/(2+k)  with  i  j or  

 both materials have a Poisson's ratio which corresponds to the Holl-ratio:  

ν1  ν2  1/(2+k). 
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Fig. 7 Tangential contact between two power-law graded half-spaces 

It is well-known that the contact region consists of an inner stick and outer slip region. In the 

stick domain all points undergo the same tangential displacement x. The (undirectional 

assumed) tangential stresses are determined by Coulomb’s law of friction: 

 stick( ) ( ) for ( , )r p r x y A     , (39) 

 stick( ) ( ) for ( , ) \r p r x y A A     . (40) 

We denote the radius of the stick domain by c.  

The equivalent model for the tangential contact is shown in Fig. 8. As already mentioned, 

each spring has normal and tangential stiffness according to Eqs. (2) and (3). We note once 

again that these stiffnesses depend on the lateral coordinate according to a power law.  

  

Fig. 8 Equivalent model for the partial-slip problem between two power-law graded  

half-spaces; each spring has normal and tangential stiffness, which are independent 

of each other  

Due to the uncoupled normal and tangential contact, we assume the solution of the normal 

contact problem according to Section 3 as already known. The MDR-rules for the solu-

tion of the tangential contact require Amonton's law for each spring. The tangential line 

load is thus defined as follows: 
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
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 . (41) 

It takes into account both the rigid-body translation of the stick area and the Coulomb 

friction in the sliding area. The calculation of the stick radius is based on the continuity of 

the tangential line load at the transition between stick and slip domain: 

 ,1

( )
lim ( ) lim ( ) ( ) ( )

( )

N
x x x x z D

x c x c
T

c c
q x q x q c u c

c c  
      .  (42) 

Analogously to the normal contact problem, the tangential force results from the sum of 

the tangential spring forces. If, instead of the spring forces, the line load from Eq. (41) is 

used, the calculation formula is:  

 ,1

0

( ) ( ) 2 ( ) 2 ( ) ( )

a c a

x x T x N z D

a c

F a q x dx c x dx c x u x dx


        . (43) 

It is also possible to deduce the pressure distribution of the original contact problem from 

the equivalent model. For this purpose, the knowledge of the tangential line load is sufficient 

since: 
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It should be noted that the tangential line load according to Eq. (41) can also be expressed 

as a difference of the vertical line loads: 

  ( ) ( , ) H( | | ) ( , ) H( | | )x z zq x q x a a x q x c c x        . (45) 

where qz (x,a) is the normal line load actually acting in the equivalent model, and  

qz (x,c) is one that belongs to a smaller contact radius, stick radius c. 

5.1. Example: Parabolic tangential contact between power-law graded half-spaces  

In the following the same power-law graded materials are assumed which allow un-

coupling of normal and tangential contact. The normal contact problem has already been 

described by means of the MDR in the examples of Section 3. The only difference is that 

one solid is assumed to be rigid. In order to be able to adopt the solution, we only have to 

adjust the stiffness, which is half as large, since both bodies are elastic. Regardless of it, 

the stiffness is shown here again: 
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The one-dimensional normal displacement of the Winkler foundation has already been 

determined (see Eqs. (20), (18)) so that the tangential line load can be specified: 

 2 2

( ) for | | (stick)

( )
( ) for | | (slip)

(1 )

T x

x
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c x x c

q x a x
c x c x a

k R
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   

 . (48) 

From the continuity requirement Eq. (42) at the points | x |c of the tangential line load it fol-

lows: 
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The maximum displacement before macroscopic sliding (full slip) begins is thus:  
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Integration of the tangential line load (48) over contact length 2a according to Eq. (43) yields: 
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,  (51) 

where we have taken into account Eqs. (49) and (50) on the right. 

 

Fig. 9 Stick radius as a function of tangential force in normalized representation  

for different exponents of elastic inhomogeneity k   

Fig. 9 shows the dependence of the stick radius on the tangential force for different 

exponents k. The tangential force as a function of the tangential displacement for the spe-
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cial case ν1  ν2  1/(2+k) is depicted in Fig. 10. In this case, the prefactor in the maxi-

mum displacement deflates and from Eq. (50) it follows: 

 
2

,max

3

2
x

k a

R


    . (52) 

In Fig. 10 the tangential shift was normalized to the maximum tangential displacement 

in the homogeneous case. As can be seen from Eq. (52), the tangential shift increases with 

increasing k. When the state of full-slip is reached, a 30% larger displacement is obtained 

for k0.9 in comparison to the homogeneous case. 

 

Fig. 10 Normalized representation of the dependence between tangential force  

and tangential displacement for different exponents of elastic inhomogeneity  

and specification of ν1  ν2  1/(2+k) 

Finally, it should be noted that we have assumed the usual approximations which are 

already contained in the classic solution of Cattaneo [17] and Mindlin [18] and have been 

discussed in detail by Ciavarella [11]. With reference to the corresponding paper we 

therefore waive an explicit listing.  

6. CONCLUSIONS 

This paper presents all the essential rules of the MDR that allow the solution of con-

tact problems between power-law graded materials. We have carefully distinguished be-

tween normal, tangential and adhesive contacts and explained the simple application of 

the rules by means of examples. It does not need to be mentioned that despite its simplici-

ty the MDR reproduces exactly all the results of the complicated three-dimensional theo-

ry. We would like to emphasize that the analytical solution of the tangential contact be-

tween power-law graded materials is an absolute novelty, since a derivation from the 

three-dimensional theory was missing so far. It was only in the run-up to the present pub-
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lication that this gap could be closed [9]. Clearly, all MDR rules for solving contact prob-

lems between elastically homogenous materials are a special case of the rules presented here. 

The presented extension of the MDR is of interest to a number of current research areas 

since functionally-graded materials are gaining in importance. These include tribology, 

nanotechnology, biostructure mechanics and medicine. Completely analogous to the calcula-

tion of wear profiles between homogeneous materials [19, 20], the investigation of fretting 

between elastically inhomogeneous materials should no longer constitute a barrier. 

The same applies to the extension of the current numerically simulated impact problems 

between elastically homogeneous spheres [21, 22] onto elastically inhomogeneous ones. 

Based on the MDR-rules presented here, which are comprehensible to everyone, the devel-

opment of asymptotic solutions [23] for complicated contact configurations between power-

law graded materials is also likely to be much easier. 

We would like to point out that the theory presented here is limited to power-law 

graded materials. The extent to which the theory can be applied to other laws of elastic 

inhomogeneity remains a challenging, future task. 

APPENDIX 

The coefficients contained in the foundation moduli according to Eqs. (2), (3) are de-

fined as follows [9, 15]: 

 

2(1 )cos 1
2 2

( , )
( , ) 1

( , ) ( , )sin
2 2
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h k
k k

C k k
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   
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   
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  (54) 

with 

 

1 3 ( , ) 3 ( , )
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 (2 )

k k k k k
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k
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and 

 ( , ) (1 ) 1
1

k
k k

 
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Abstract. Until recently the analysis of contacts in tribological systems usually 

required the solution of complicated boundary value problems of three-dimensional 

elasticity and was thus mathematically and numerically costly. With the development of 

the so-called Method of Dimensionality Reduction (MDR) large groups of contact 

problems have been, by sets of specific rules, exactly led back to the elementary systems 

whose study requires only simple algebraic operations and elementary calculus. The 

mapping rules for axisymmetric contact problems of elastic bodies have been presented 

and illustrated in the previously published parts of The User's Manual, I and II, in 

Facta Universitatis series Mechanical Engineering [5, 9]. The present paper is 

dedicated to axisymmetric contacts of viscoelastic materials. All the mapping rules of 

the method are given and illustrated by examples. 

Key Words: Contact, Friction, Viscoelasticity, Rheology, Method of Dimensionality 
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1. INTRODUCTION 

 In recent years the Method of Dimensionality Reduction (MDR) has been developed 

to efficiently deal with axisymmetric [1] and non-axisymmetric contacts [2]. The scope of 

applicability includes normal contacts with and without adhesion as well as tangential 

contacts [1], torsional contacts [3], contacts of Functionally Graded Materials [4-5] and 

viscoelastic contacts [6-8]. In preceding papers the mapping rules of MDR have been 
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summarised and illustrated for axisymmetric contacts with a compact contact area for 

homogeneous [9] and power-law graded [5] elastic materials. The present publication 

gives a similar “user’s manual” for the treatment of viscoelastic contacts. 

2. BASIC ASSUMPTIONS 

 Let us in the beginning briefly clarify the fundamental assumptions, which define the 

framework of our method. The results of the set of simple rules given in this paper to 

solve axisymmetric contact problems of viscoelastic materials will be exactly correct, if 

all assumptions are met. Yet the method can also be used if some of the assumptions are 

broken although in this case the obtained solutions might exhibit smaller or larger errors, 

depending on the precise circumstances. 

Firstly, we only consider homogeneous, isotropic, linear-viscoelastic media. Moreover, 

the deformations have to be small to ensure kinematic linearity. In this case we are also 

allowed to work within the half-space approximation. Throughout most of the paper we will 

additionally demand incompressible material behaviour, i.e. Poisson ratio ν shall be equal to 

0.5. The treatment of compressible materials will, as far as possible, be covered in a separate 

section.  

Under these assumptions the viscoelastic material can be described by a single time-

dependent shear relaxation function G(t), which gives the material’s stress response to a 

unit strain increment. Stress response σ(t) to an arbitrary deformation history γ(t) is due to 

the superposition principle given by the sum of stresses for all past strain increments 

([10], p.257),  

 ( ) ( )d ( ) ( )d .
t

t G t t G t t t t  


          (1) 

As the convolution (1) in the time domain corresponds to a product in the Laplace 

domain, Eq. (1) can alternatively be written in the following way: 

 * * *( ) ( ) ( ),s G s s s    (2) 

whereas a star denotes the Laplace transform into the s-domain, i.e. 

 
*

0

( ) : ( ) exp( )d ,G s G t st s


    (3) 

and similarly for all others. 

Also, a time-dependent shear creep function J(t), i.e. the strain response to a unit stress 

increment, can be defined ([11], p.215). The strain response to an arbitrary stress history 

is, analogously to Eq. (1), given by 

 ( ) ( ) ( )d ,
t

t J t t t t 


      (4) 

or, equivalently, in the Laplace domain 
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 * * *( ) ( ) ( ).s J s s s    (5) 

Hence both the material functions are coupled by the relation 

 2 * *( ) ( ) 1.s G s J s    (6) 

In case of harmonic oscillations, or put generally, in the frequency domain, for any 

linear viscoelastic material there is a linear proportionality between (shear) stress and 

(shear) strain – this directly follows from the material law in Eq. (1). The coefficient of 

proportionality is called “complex dynamic modulus” 

 
*

0

ˆ ( ) : ( )exp( )d ( ).G i G t i t t i G s i    


      (7) 

Its real part is referred to as “storage modulus” and the imaginary part as “loss modulus”. 

For the contact of two viscoelastic bodies with creep functions J1 and J2 both the creep 

functions simply have to be linearly superposed, 

 1 2( ) ( ) ( ).J t J t J t    (8) 

Then a combined shear relaxation function G(t) can also be defined via Eq. (6). 

Finally, we will only consider quasi-static processes, i.e. all characteristic velocities of 

the contact problem must be much smaller than the smallest speed of wave propagation in 

the viscoelastic medium, and neglect adhesion or plasticity. 

3. RHEOLOGICAL MODELS 

The viscoelastic properties of materials, as they have been briefly introduced in the 

previous section, are often represented in terms of rheological models. The basic elements 

of those models are a spring, representing ideally elastic properties, and a dashpot, 

representing ideally viscous properties.  

Combining a sufficiently large set of those basic elements, any arbitrarily complex 

(linear-) viscoelastic behaviour can be captured. Thereby only two fundamental rules of 

superposition exist: for two elements in parallel to each other, the respective relaxation 

functions have to be linearly superposed; for two elements in series the creep functions 

are superposed. The rheological model, which reproduces a given relaxation function G(t) 

shall henceforth in this paper be denoted with a simple box accompanied by the respective 

relaxation function (see Tab. 1). 

We should point out that all the values of stiffness and damping in these models are to 

be understood as continuum variables, i.e. per unit volume, which is why we will always 

speak of moduli and viscosities. 

Tab. 1 shows a compilation of the most commonly used viscoelastic material models 

and their rheological representations as well as the associated relaxation and creep 

functions. Thereby δ(t) denotes the Dirac δ-distribution while all the other designations 

are self-explanatory, based on the depicted rheological models. 
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Table 1 Rheological representations and material functions for the most common 

linear viscoelastic material models (δ denotes the Dirac δ -distribution) 

Material 

Model 
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no closed-form analytical expression for J(t) 
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4. TWO PREPARATORY STEPS OF THE METHOD 

We consider the contact of two incompressible viscoelastic bodies with combined 

shear relaxation function G(t) (or, equivalently, combined creep function J). The non-

deformed gap between both the bodies shall be an axisymmetric function z = f(r). To 

solve contact problems of this configuration within the MDR two introductory steps are 

necessary. 

Firstly, the axisymmetric gap has to be transformed into an equivalent (rigid) plain 

profile g(x) by the integral transform [9] 

 
2 2

0

( )d
( ) .

x
f r r

g x x
x r





   (9) 

This relation is the same as in the elastic case and is thus explained and illustrated by 

several examples in the first part of this user’s manual. The inverse transform of Eq. (9) 

reads [9] 

 
2 2

0

2 ( )d
( ) .

r
g x x

f r
r x




   (10) 

Secondly, a one-dimensional foundation of independent, linear-viscoelastic elements, 

each in distance Δx of each other, must be initialised, as demonstrated in Fig. 1.  

 

Fig. 1 One-dimensional foundation of linear-viscoelastic elements 

A single element of the foundation is given by the rheological model for relaxation 

function G(t), as shown in the previous section. For example, if the relaxation behaviour 

can be captured by a three-element standard solid, a single element of the viscoelastic 

foundation is given by a spring in series with a dashpot, the pair in parallel with another 

spring, as described above. The elements will have time-dependent values of normal and 

tangential stiffness (note that we assume incompressibility, i.e. ν = 0.5), 

 

2
( ) ( ) 4 ( ) ,

1

4 8
( ) ( ) ( ) ,

2 3

z

x

k t G t x G t x

k t G t x G t x





    


    


  (11) 

or in the frequency domain, 
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ˆ ˆ( ) 4 ( ) ,

8ˆ ˆ( ) ( ) .
3

z

x

k G x

k G x

 

 

  
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  (12) 

5. NORMAL CONTACT OF AXISYMMETRIC BODIES 

The equivalent profile defined by Eq. (9) is now pressed into the viscoelastic foundation 

defined by Eq. (11) by an indentation depth d(t). Without loss of generality we will assume 

that the indentation starts at time t = 0, and that the viscoelastic medium previously was 

stress-free and non-deformed. Vertical displacement w1D of an element at position x within 

the contact area of radius a is enforced by the indentation, 

 1D ( , ) ( ) ( ),     .w x t d t g x x a     (13) 

An element comes into contact (geometrically) if the displacement of the non-contacting 

surface equals the displacement enforced by the indentation, i.e. 

 n.c.

1D ( ( ), ) ( ) ( ( )).w a t t d t g a t    (14) 

For a monotonically increasing contact radius the non-contacting surface is not deformed. 

In this case the contact radius is therefore simply given by the relation 

 ( ) ( ( )),d t g a t   (15) 

which, for a monotonically increasing contact radius, is a universal relation independent of 

the material rheology, as proven by Lee & Radok [12]. If the contact radius has extremal 

values the creep behaviour of the area without direct contact must be traced and inserted into 

Eq. (14) to give correct results [6]. 

The normal force in a single element of the foundation is due to the superposition 

principle given by 

 1D

0

( , )
( , ) 4 ( ) d ,

t

N

w x t
F x t x G t t t

t


    


   (16) 

or in the frequency domain 

 1D
ˆˆ ˆ( , ) 4 ( ) ( , ).NF x xG w x       (17) 

Note that if the rheological model contains separate dashpots, like the Kelvin-Voigt 

model, stress relaxation function G(t) includes Dirac-distributions, which have to be 

evaluated in the integral using their filter properties. Instead of evaluating Eq. (16), which 

under some circumstances may require the knowledge about the entire loading history, 

one can also apply the complete set of equilibrium conditions for the single element, 

including the inner degrees of freedom. For example, the standard element shown on the 

left of Fig. 2 has one inner degree of freedom representing the material relaxation. The 

equilibrium conditions for the outer and inner degree of freedom are 
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1D 1 1D

1D 1D 1 1D

4 ( ),

0 ( ) .

NF x G w G w

w w G w

   
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  (18) 

For both force- or displacement-controlled conditions this gives a closed ordinary 

differential equation system with a unique solution. 

 

Fig. 2 Rheological standard element of the viscoelastic foundation under normal load 

(left, a) and superimposed normal and tangential load (right, b) 

Note that under force-controlled conditions Eq. (16) can be inverted to give 

 1D

0

( , )1
( , ) ( ) d .

4

t

NF x t
w x t J t t t

x t


  

 
   (19) 

The elements outside the contact area are, of course, free of forces, i.e. 

 ( , ) 0,     .NF x t x a     (20) 

An element leaves the contact (dynamically), if the upkeep of contact would require 

negative normal forces. The total normal force is obtained by summation of all the 

element normal forces, 

 

( )

( )

( , )
( ) d

a t

N
N

a t

F x t
F t x

x





   (21) 

and with the linear force density, 

 
( , )

( , ) : ,N
z

F x t
q x t

x





  (22) 

one can also calculate pressure distribution p(r,t) in the original axisymmetric system by 

the relation 

 
2 2

( , )1 d
( , ) .z

r

q x t x
p r t

x x r

 
 

 
   (23) 

We would like to stress again that all the results obtained by the described solution 

scheme will be exactly correct within the stated assumptions.  

Let us now illustrate the procedure by some examples.  
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Displacement-controlled indentation 

As the first example we consider the displacement-controlled indentation of a flat 

three-element standard solid by a rigid cone with slope θ and thus the profile 

 ( ) tan .f r r    (24) 

The indentation depth as a function of time shall be d(t) = v0t, which corresponds to a 

simple indentation test to determine the (visco-)elastic properties of a material. We would 

like to know the total normal force as a function of time and the material properties of the 

standard solid. 

Solution: The equivalent plain profile is given by 

 ( ) tan .
2

g x x


   (25) 

As the contact radius is monotonically increasing Eq. (15) can be applied to determine the 

contact radius. Hence 

 02
( ) .

tan

v t
a t

 
   (26) 

An element at position x will therefore come into contact after a time 

 
0

( ) tan .
2 ( )

c

x xt
t x

v a t


    (27) 

The indentation velocity for all the elements in contact is equal v0. Hence the application 

of equation (16) yields the desired normal force: 
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










   
    

  

    
        

     

 
  (28) 

Force-controlled indentation 

As the second example we consider the force-controlled indentation of a Kelvin-Voigt 

solid by a rigid sphere with radius R. The total normal force shall be kept constant, 

 0( ) const .F t F    (29) 

This loading situation corresponds to the ideal loading protocol of the commonly used 

Shore hardness test for elastomers. We would like to know the indentation depth as a 

function of time and the material properties. 
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Solution: The spherical profile can in the vicinity of the contact be approximated by 

the parabolic profile 

 
2 2

( )         ( ) .
2

r x
f r g x

R R
     (30) 

The contact radius will be again, due to creep, a monotonically increasing function with 

time. Hence 

 
2 ( )

( ) .
a t

d t
R

   (31) 

In a Kelvin-Voigt solid the stress state is a linear superposition of ideally elastic and 

ideally viscous stress components (this can be easily understood with the respective 

rheological model shown in Tab. 1). The total normal force is therefore 
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

  

 
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 

  (32) 

The solution of this equation with initial condition a(t = 0) = 0 is 

 
3 03
( ) 1 exp .

16

F R t
a t

G 

  
    

  
  (33) 

Application of Eq. (31) will then provide the indentation depth as a function of time. The 

solution in Eq. (33) can be written in the more general form 

 
el

0

( ( )) ˆ( ),NF a t
J t

F
   (34) 

with the elastic (Hertzian) normal force as a function of the contact radius, 

 
3

el 16
( ) : ,

3
N

a
F a G

R
   (35) 

and the non-dimensional shear creep function for the Kelvin-Voigt solid, 

 ˆ( ) : 1 exp .
t

J t


 
   

 
  (36) 

As it turns out, the general formulation (34) is correct for arbitrary axisymmetric 

indenters and arbitrary linear-viscoelastic rheologies ([11], p.232) and can therefore be 

used to analyse general Shore hardness test configurations. 
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Impact test 

As the third example in this section and in order to complete the set of applications of the 

MDR to commonly used material test of elastomers, we would like to show the application 

of the described rules to a rebound test: A homogeneous rigid sphere with radius R, mass m, 

mass density ρ and initial velocity v0 impacts onto a viscoelastic half-space, whose rheology 

can be described by a three-element standard solid model. We would like to know the 

coefficient of restitution e (as a measure of energy dissipation under dynamic loading 

conditions) as a function of the inbound velocity and the material parameters. 

Solution: This problem cannot be solved analytically. However, based on the MDR, a 

simple numerical algorithm can be implemented to give the solution of the impact problem 

in the quasi-static limit, i.e. assuming that the viscoelastic medium moves through a series of 

equilibrium states thus neglecting wave propagation in the viscoelastic material. The 

equation of motion of the sphere, in terms of indentation depth d, is simply given by 

 ( ) ( ).Nmd t F t   (37) 

For all the foundation elements in contact, the displacement is enforced by the movement 

of the plain parabolic profile equivalent to the three-dimensional sphere (see Eq. (30)), 

 
2

1D ( , ) ( ) ,     .
x

w x t d t x a
R

     (38) 

Solution of Eqs. (18) will give the corresponding element forces. They can be summed up 

to give the total normal force, which enters the equation of motion. As stated before, an 

element gets into contact geometrically and leaves contact if contact upkeep would 

require negative values of the respective element normal force. The impact ends at time T, 

if all elements have left contact. Any time integration scheme can be used to solve the 

described equation system in discrete time steps, by far the easiest one being an explicit 

Euler method. As the required computational operations are extremely simple, the time 

step can be set small enough to ensure numerical stability. The solution of the impact 

problem, i.e. the coefficient of restitution  

 
0

( )
:

v t T
e

v


    (39) 

only depends on two non-dimensional parameters, namely [13] 

 

1/5

0 1
1 22 3

: ,     ,
v G

p p
R GG



 

 
  

 
  (40) 

and is shown in Fig. 3 as a function of p1 for several different values of p2. Note that the 

physical meaning of p1 (except for a numerical factor of the order of unity) is a ratio of 

two characteristic time scales: the viscoelastic relaxation time of the three-element 

standard solid compared to the elastic impact duration with G = G∞. 
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Fig. 3 Coefficient of restitution for the normal impact of a rigid sphere onto  

a flat standard solid as a function of the two governing parameters 

6. TANGENTIAL CONTACT OF AXISYMMETRIC BODIES 

We now consider contacts with superimposed normal and tangential loading. Thereby 

the application of a tangential load is completely analogous to the previous section. The 

elements of the viscoelastic foundation are vertically and horizontally displaced. Via the 

superposition principle the tangential force in a single element can be calculated from 

tangential displacement u1D: 

 1D

0

( , )8
( , ) ( ) d ,

3

t

x

u x t
F x t x G t t t

t


    


   (41) 

Or, vice versa, 

 1D
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( , )3
( , ) ( ) d .

8
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xF x t
u x t J t t t

x t


  

 
   (42) 

Alternatively, as in the normal contact problem, the equilibrium conditions for all degrees 

of freedom of the elements can be evaluated. Coming back to the standard element 

example in Fig. 2 the equilibrium conditions in tangential direction (see the right side of 

Fig. 2) read 

 
1D 1 1D

1D 1D 1 1D

8
( ),

3

0 ( ) .

xF x G u G u

u u G u

   

  

  (43) 

Note that non-contacting surface areas also relax tangentially. In the frequency domain 

the convolution (41) reduces to a product, 

 1D

8 ˆˆ ˆ( , ) ( ) ( , ).
3

xF x xG u x       (44) 
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The tangential linear force density, 
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( , ) : ,x
x

F x t
q x t

x





  (45) 

will provide the total tangential force, 
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x x

a t

F t q x t x


    (46) 

and the shear stress distribution in the original axisymmetric system, 
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r

q x t x
r t

x x r




 
 

 
   (47) 

To account for micro-slip in the contact we assume the validity of a local Amontons-

Coulomb friction law in its simplest form for any contact point: if the local shear stress 

does not exceed the maximum value given by pressure times friction coefficient μ the 

surfaces are able to stick, 

 ( , ) ( , ),    stick;xz r t p r t    (48) 

Otherwise the surface points will slip and the frictional shear stress is known, 

 ( , ) ( , ),    slip.xz r t p r t    (49) 

Thereby it is clear that the contact area will always consist of an inner stick area with 

radius c and a slip area propagating inside from the edge of contact. 

Accounting for slip in viscoelastic frictional contacts within the framework of MDR is 

simple (and completely analogous to the elastic case): the elements of the viscoelastic 

foundation simply have to obey the same local Amontons-Coulomb law! That is, if the 

indenting plain profile is moved tangentially by an increment Δu
(0)

 from a given contact 

configuration, the contacting elements can either stick or slip, defined by the condition 

 

(0)

1D

1D

( , ) ,                              if ( , ) ( , ),

( , ) ( , )sgn( ),     else.

x N

x N

u x t u F x t F x t

F x t F x t u





     

  
  (50) 

Radius c of the stick area is given by the condition 

 ( , ) ( , ).x NF c t F c t     (51) 

Tangential fretting in a viscoelastic contact 

As an illustrative example we consider a simple case of tangential fretting: two 

axisymmetric bodies with combined relaxation function G(t) are pressed together with a 

fixed indentation depth d0. The equivalent plain profile of non-deformed gap f(r) shall be 

g(x). After the normal stresses have been relaxed to their asymptotic value, small relative 

tangential harmonic oscillations 

 (0) (0)( ) cos( )u t u t    (52) 

are enforced. We would like to know radius c of the permanent stick area. 
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Solution: Within the permanent stick area the forces in the elements of the viscoelastic 

foundation are known to be 

 (0)8 ˆ ˆ( ) ( ) cos( ),     arg{ ( )}.
3

xF t x u G t G            (53) 

Here the complex dynamic modulus, introduced in Eq. (7), has been used because the 

excitation is harmonic. The normal forces in the fully-relaxed (i.e. elastic) state are  

 0( ) 4 [ ( )].NF x xG d g x      (54) 

Hence, the radius of the permanent stick area will be given by the solution of the condition 

 (0)

ˆ2 ( )
( ) .

3

G
d g c u

G



 

     (55) 

7. CONTACT OF COMPRESSIBLE MATERIALS 

Although many (or even most) technically or biologically relevant viscoelastic media 

can – at least in good approximation – be considered incompressible, any linear isotropic 

viscoelastic material has not one but two characteristic material functions: in addition to 

shear relaxation G(t), already used throughout this paper, there is also bulk relaxation 

function K(t) giving the stress response to a unit volume strain. Accounting for 

compressibility in viscoelastic contact problems is, in general, a rather non-trivial task 

[14]. However, for normal contact problems (and only for them) it is easy to show that 

the compressible contact problem can be traced back to an equivalent incompressible one 

with the effective shear creep function 

 
*

eff 2 * *

3
( ) ( ) ( ),     ( ) .

3 ( ) ( )
J t J t J t J s

s K s G s
  

  

  (56) 

This obviously means that in the MDR model the rheological elements of the viscoelastic 

foundation simply have to be replaced by the elements shown in Fig. 4. For the diagram 

we assume two materials with relaxation functions G1(t), G2(t), K1(t) and K2(t) respectively. A 

box, as in the section on rheological models, is an abbreviation for the rheological model 

representing the relaxation function denoted near the box. 

 

Fig. 4 General rheological element representing two contacting compressible viscoelastic 

materials. A box is an abbreviation for the rheological model representing the 

relaxation function denoted near the box 
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As compressible media are not by necessity elastically similar to each other we would 

like to stress that this ascription to an equivalent incompressible problem is only exact for 

either elastically similar materials or frictionless normal contacts.  

Displacement-controlled indentation of a compressible medium 

As an example let us analyse the frictionless indentation of a general Kelvin-Voigt 

solid with the relaxation functions 

 
( ) ( ),

( ) ( ),

G t G t

K t K t









 

 
  (57) 

with the shear and bulk viscosities, η and ξ, by a rigid flat cylindrical punch with radius a. 

The indentation depth as a function of time shall be d(t) = v0t. We would like to know the 

total normal force as a function of time and the material parameters. 

 

Fig. 5 Displacement-controlled indentation of a compressible Kelvin-Voigt element 

(based on [8]) 

Solution: The equivalent MDR-profile of a cylindrical flat stamp is a rectangle of the 

same length. Hence, all the elements within contact radius a are identically deformed. The 

equilibrium condition for the inner degree of freedom for each element reads (see Fig. 5) 

 
1D 1D 0 0
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3 3 3 3
w K G w v K G v t      
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  (58) 

The solution of this ordinary differential equation with initial condition  1D 0 0w t    is 

given by 
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  (59) 

Also, for the total normal force (as the indenting body shall be a rigid flat punch, all the 

elements of the foundation with |x| < a are displaced in the same way), 

 1D 1D

( )
( ) 2 8 [ ].N

N

F t
F t a a G w w

x



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  (60) 
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In the limit of fast relaxation t >> τ  the total normal force will be 

  0( ) 8 ( ) .NF t av G b c G ct c        (61) 

8. CONCLUSIONS 

The present paper gives a concise description of the rules for the application of the 

Method of Dimensionality Reduction to contacts of linear viscoelastic materials. Although 

the given examples mostly focus on analytical solutions for accessibility, it is, of course, 

possible to implement the rules in a numerical scheme to efficiently simulate viscoelastic 

contacts with arbitrary oblique loading histories. For example, based on the method, 

comprehensive contact-impact solutions for viscoelastic materials have been obtained very 

recently and cross-checked against respective Boundary-Element simulations [13]. 
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Abstract. In the present paper a numerical implementation technique for the 

transformations of the Method of Dimensionality Reduction (MDR) is described. The 

MDR has become, in the past few years, a standard tool in contact mechanics for solving 

axially-symmetric contacts. The numerical implementation of the integral 

transformations of the MDR can be performed in several different ways. In this study, the 

focus is on a simple and robust algorithm on the uniform grid using integration by parts, 

a central difference scheme to obtain the derivatives, and a trapezoidal rule to perform 

the summation. The results are compared to the analytical solutions for the contact of a 

cone and the Hertzian contact. For the tested examples, the proposed method gives more 

accurate results with the same number of discretization points than other tested 

numerical techniques. The implementation method is further tested in a wear simulation 

of a heterogeneous cylinder composed of rings of different material having the same 

elastic properties but different wear coefficients. These discontinuous transitions in the 

material properties are handled well with the proposed method. 

Key Words: Normal Contact, Method of Dimensionality Reduction, Stress, Wear 

1. INTRODUCTION 

The Method of Dimensionality Reduction (MDR) is a simple and convenient tool for the 

calculation of contact forces between elastic and viscoelastic bodies. It is particularly easy to 

use for the simulation of axially-symmetric contacts. Since it was first proposed in 2007 [1] 

the MDR has been applied to a wide range of problems [2]. The method maps a given 

three-dimensional contact problem to an equivalent contact problem of a transformed 

indentation profile with a one-dimensional elastic or viscoelastic foundation of independent 

elements. From a numerical perspective, the solution of the contact problem in the 

transformed MDR domain is then trivial due to the decoupled degrees of freedom. A variety 
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of problems can be solved directly in this domain after the initial transformation to the 

equivalent problem was performed (see for example [3]). However, there are other problems 

which require multiple transformations to the MDR domain and back, for example due to a 

continuously changing indentation profile as it appears in wear simulations, see [4-6]. With 

such kinds of problems, the main difficulty in achieving an accurate and efficient numerical 

simulation is the implementation of the MDR transformations. These are given by Abel-like 

integral equations and it is well known that their numerical treatment is challenging [7, 8].  

This work is dedicated to providing a simple and fast numerical method for the 

implementation of the MDR transformations for axially-symmetric contact problems. The 

transformations have an integrable singularity which is handled well with the proposed method. 

The parts of this work are organized as follows: In Section 2, the MDR transformations 

are rewritten using integration by parts to a form which is well suited for numerical 

implementation. In Section 3, this numerical implementation technique is explained in detail. 

Section 4 gives some advice on optimizing the implementation for maximum speed. Section 

5 shows exemplary results of the newly proposed technique and highlights its advantages and 

weaknesses. In Section 6, a small addition to the method is presented to further improve it. In 

Section 7, the accuracy of the introduced numerical method is compared to other known 

implementation techniques which rely on the original form of the transformations. In Section 8, 

an exemplary wear simulation is conducted with the newly introduced technique and compared 

to the results of other numerical implementation methods. A conclusion is presented in 

Section 9. 

This work can be regarded as a small addition to the paper “Method of Dimensionality 

reduction in contact mechanics and friction: A users handbook” [9]. In the following, only 

homogeneous elastic material is considered. However, the MDR is applicable also to gradient 

media [10] and to viscoelastic media [11], which can be treated in a similar manner as 

described in the present paper.  

2. FORMULATION OF THE MDR TRANSFORMATIONS FOR SIMPLE NUMERICAL 

IMPLEMENTATION 

The general MDR procedure is fully described in [9]. Three main transformations occur 

in the method: The transformation of three-dimensional profile f(r) to a one-dimensional 

profile is  

 
2 2

0

( )
( )

x
f r

g x x dr
x r





 ,  (1) 

the transformation of one-dimensional foundation displacement w1D(x) to three-dimensional 

normal surface displacement w(r) is 

 1D

2 2
0

( )2
( )

r
w x

w r dx
r x




 , (2) 

and the transformation of one-dimensional force density q(x) to three-dimensional pressure 

distribution p(r) is 
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
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The singularity arising at x = r in the numerical summation can be avoided when 

rewriting Eqs. (1), (2) and (3) to 
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and 

 2 21 1
( ) log( ) ( ) log( ) ( )

r

p r r q r x r x q x dx
 



       (6) 

using integration by parts. 

The following example shall illustrate a possible numerical implementation of the three 

transformations (4), (5) and (6). 

3. EXEMPLARY NUMERICAL PROCEDURE 

Consider a uniform discretization of r∈ [0,L] and x∈ [0,L] with N points each and the 

same step size 

 
1

L
h

N



,  (7) 

so that 

 ( 1),   ( 1),      , {1,2,..., }n kr h n x h k n k N     . (8) 

The first and second derivatives of a discretized indentation profile fn = f(rn) can be 

obtained via central differences: 

 1 1

2

n n

n

f f
f

h

 
  ,  (9) 
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2

2n n n
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f f f
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h

  
  .  (10) 

Some care must be taken at the borders. To obtain f1
′
 and f1

′′
 recall that in the present 

framework of the MDR profile f is axially-symmetric and f(0) = 0. Thus, it is 

 1 0f  ,  (11) 

and 

 2

1 2

2 f
f

h
  .  (12) 
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At the other border the values for fN
′
 and fN

′′
 can remain undetermined. One-dimensional 

profile gk can now be obtained with Eq. (4). It is 

 ,       for 2,3,..., 1
2

k k k k kg x f x t k N


    ,  (13) 

where tk is the result of the integral in (4). Using the trapezoidal rule, it is 
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       
     


  (14) 

Again, some care must be taken at the borders. To obtain g1, recall that in the framework of 

the MDR it is g(0) = 0. Thus, it is 

 
1 0g  .  (15) 

At the other border the value for gN can remain undetermined. 

In a quite similar fashion, normal surface displacement wn can be obtained: The first 

derivative in Eq. (5) can be obtained as in Eq. (9) using central differences, and the integral 

can be calculated as in Eq. (14) using the trapezoidal rule. Subsequent smoothing of wn 

with wn := (wn–1 + wn + wn+1) / 3 increases the accuracy of wn. 

The third transformation to obtain pn is again similar to the first and second transformation. 

The derivatives in Eq. (6) can once more be obtained as in Eqs. (9) and (10) using central 

differences. Then it is 

 
1 1

log( ) ,       for 2,3,..., 2n n n np r q s n N
 

      (16) 

where sn is the result of the integral in (6). Using the trapezoidal rule, it is 
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  (17) 

Note that at kinks of q the term qk
′′
h = (qk+1 – 2qk + qk–1) / h converges to finite values for 

decreasing step-sizes h. Note also that the summation in Eq. (17) stops at N – 2 because qN
′′
 

and qN–1
′′
 are undetermined. This is not problematic because in the framework of the MDR 

it is q
′′
 = 0 for sufficiently large x in any way (x > a, where a is the contact radius). Once 

again, some care must be taken at the borders. One way to approximate p1 is via Taylor 

series. A first order expansion yields simply 

 3 2

1 2
2

p p
p p


  .  (18) 
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At the other border the values for pN and pN–1 remain undetermined. Again, this is not 

problematic as long as it is ensured that these last points lie outside the contact area. Then 

they can simply be set to 

 
1 0N Np p   .  (19) 

4. PERFORMANCE 

Often, the MDR transformations need to be performed repeatedly. One example is that 

of wear simulations where the transformations (1) and (3) need to be performed many 

times after each other for a changing indentation profile. In such cases, consider optimizing 

the implementation of the MDR transformations for maximum speed.  

For example, when using the transformation technique presented in the example above, 

note that the summation in Eqs. (13) and (16) can be regarded as a matrix vector product in 

which the matrix is a kernel which is independent of the indentation profile and can be 

predefined. This enables full vectorization of the transformations when they are used 

repeatedly for changing indentation profiles.  

Also consider the possibility of calculating the derivatives in the transformations such 

as (9) and (10) via matrix vector multiplication using predefined sparse matrices. 

5. EXEMPLARY RESULTS 

Fig. 1 shows the results of the previously described implementation technique for a 

conic and parabolic indenter at an exemplary indentation depth d. It becomes apparent that 

already for as few as N = 51 discretization points a fairly good approximation of the 

analytical solutions can be achieved.  

The maximum error of gk, wn, and pn with respect to the analytical solutions for g, w, 

and p decreases when the number of discretization points N is increased as can be seen in 

Fig. 2. 

For most N, the maximum error of pressure distribution pn (a thin grey oscillating line 

in Fig. 2) is given by the error at the very last discretization point lying within the contact 

area (highlighted with a star in Fig. 1). Index n of this particular point shall be denoted with 

n = s. At all other points a much better accuracy is achieved: If point s would be 

disregarded in the assessment of the maximum error, the upper limit of the grey oscillating 

line would move down from the dotted line to the dashed one. 

In the exemplary case of N = 51 which is displayed in Fig. 1 this relatively high error of 

pn at the point n = s does not immediately become apparent to the viewer due to the large 

slope of p at the end of the contact area which puts the numerical value close to the 

analytical curve even if there is a relatively high error. 
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 a) b) 

Fig. 1 Results of the MDR transformations carried out with the numerical procedure described 

above for N = 51 discretization points, exemplary input parameters of L = 1, E
*
 = 1, 

d = 0.3 and an exemplary conic indenter (left) given with f(r) = r tan(π/8) and an 

exemplary parabolic indenter (right) given with f(r) = r
2
/2. The pressure which is 

obtained at last discretization point within the contact area in this example is highlighted 

with a star 

 

  
 a) b) 

Fig. 2 Maximum error of gk, wn , and pn for a discretization of N = 51, 52, 53 … 5000, 

shown for the exemplary inputs L = 1, E
*
 = 1, d = 0.3 and the exemplary conic 

indenter (left) given with f(r) = r tan(π/8) and the exemplary parabolic indenter 

(right) given with f(r) = r
2
/2. The oscillating thin grey line shows the maximum 

error of pn. Its upper limit is marked with the dotted black line. Neglecting the error 

of  pn at the point n = s in the assessment of the maximum error would cause a much 

lower upper limit which is marked with the dashed black line. Note also that the 

maximum error of gk for the exemplary conic indenter lies at around 10
-15

 and is 

thus outside the chosen region displayed in the figure 
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6. ADJUSTMENTS 

If needed, one possible way of obtaining better results for ps is by inserting one or more 

discretization points on a finer grid after point s so that it is no longer the last point in the 

contact area. 

For example, one can use a technique such as the one illustrated in Fig. 3. Here, a new 

discretization point is added right at contact radius a, which is approximated from gk with a 

simple linear interpolation 

 1

1

( )s s

s s

s s

r r
a d g r

g g






  


 , (20) 

another discretization point is added in between rs and a at rs + (a – rs) / 2, and at both ends 

two more points are added, one at rs – (a – rs) / 2 and one at a + (a – rs) / 2. The values for 

the one-dimensional profile are interpolated linearly from gk to these points. The resulting 

five equally spaced points are marked with crosses in Fig. 3.  

 

Fig. 3 Detailed view of the graph in Fig. 1b, here with additional discretization points at 

the end of the contact area which are marked with black crosses 

The desired value for the pressure at point s can now be calculated as in Eqs. (16) and 

(17) using a new refined grid. The three inner points are used for the summation while the 

two additional outer points are only there to obtain the derivatives with the central 

difference scheme. 

Note that the above method of obtaining a more accurate value for ps does not practically 

increase the computational time. It is a simple addition of three values, and the three linear 

interpolations which are needed are also given with small algebraic equations. Compared to 

the time for the main transformation steps, the time for these additional steps is negligible. 

However, the small correction reduces the maximum error norm (see Fig. 4).  

At the end of this section it shall be noted that higher order methods for the calculation 

of the derivatives and for the numerical integration do not necessarily lead to more accurate 

results. It is observed that the use of more neighboring points than in Eqs. (9) and (10) for 

calculating the derivatives tends to decrease the accuracy of the transformations for the 

contact of the cone and the Hertzian contact. It was also observed that using Simpson’s rule 

to perform the summation in Eqs. (13) and (16) instead of the trapezoidal rule decreases the 

accuracy of the transformations.  
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 a) b) 

Fig. 4 Maximum error of gk, wn , and pn as displayed in Fig. 2 here however ps is corrected with 

the technique explained above. The old upper limit of the maximum error of pn from 

Fig. 2 is shown with the grey dotted line. The new upper limit of the maximum error of 

pn after the correction of ps is shown with the black dotted line. In the case of the cone 

(a) this upper limit falls onto the dashed line marking the maximum error of pn when the 

point s is disregarded 

7. COMPARISON WITH OTHER NUMERICAL TECHNIQUES 

Recall that at the beginning of the numerical scheme presented above the MDR 

transformations were rewritten using integration by parts. However, the MDR transformations 

can also be implemented numerically using their original form of Eqs. (1), (2) and (3) without 

rewriting them to Eqs. (4), (5) and (6). Here, two such methods which will be called 

“Method I” and “Method II” shall briefly be discussed. Their accuracy will be compared to the 

partial integration methods introduced above, which are referred to as “Method III” and 

“Method IV” in the following. 

Method I – insertion of h at singularity:  

One technique for the implementation of the transformations using their original form of 

Eqs. (1), (2) and (3) is to insert a single increment h at the singularity where x = r, as in 
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2 2
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k
n k

k k

n
k n

f f
g x h

hx r





   
   

    

 , (21) 

where the first derivative is computed as in Eq. (9) using central differences. This method, 

however, delivers only very poor results. As can be seen in Fig. 5, the technique requires a 

number of discretization points which is several orders of magnitude higher in order to 

reach the accuracy which is achieved by the other implementation techniques. This method 

is not recommended. 
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Method II – implementation of the kernel with its antiderivative: 

A far better technique for the implementation of the transformations using their original 

form is to implement the kernel of the transformation using its antiderivative. For the 

transformation to gk, this translates to 
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and for the transformation to pn, one can use 
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The first derivatives can once more be obtained via central differences. As can be seen in Fig. 

5, the Method II provides a much better accuracy than Method I. 

Method III – partial integration method: 

This technique was described in great detail in the first sections of this work. Here the 

singularity at x = r is avoided through partial integration of the transformations. This leads to 

alternative formulations of the transformations in which the second derivative of the 

three-dimensional indentation profile and the deformed elastic foundation occur. Thus, 

singularities now occur at kinks of these profiles; however, they disappear in the numerical 

integration, similarly to Method II where small increment h cancels out in Eqs. (22) and (23).  

Recall, however, that the singularity which is overcome in Method II occurs in the kernel. 

Method III, however, overcomes singularities which may occur through the shape of the 

indentation profile or the deformed one-dimensional foundation.  

Also, the singularity in Method II always influences the transformation values at all 

discretization points whereas in Method III the singularities through kinks may leave 

transformation values at some discretization points uninfluenced. 

In Fig. 5 it can be seen that with Method III the number of discretization points can 

substantially be reduced to achieve the same accuracy as in Method II. However, it stands 

out that the maximum error in Method III is still fairly close to the maximum error in 

Method II. This relatively high maximum error of Method III is generally attained at the 

end of the contact area. 

Method IV – partial integration method with small adjustment: 

The previously described relatively high maximum error of Method III is reduced in 

Method IV. The simple adjustment through the insertion of an additional discretization point at 

the end of the contact area is described in Section 6 above. In Fig. 5 it can be seen that with the 

Method IV the number of discretization points can further be reduced to achieve a certain 

desired accuracy. 
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 a) b) 

Fig. 5 Upper limits of the maximum absolute error of pn (left graph a) and the mean absolute 

error of pn (right graph b) compared for the different numerical methods: Method I – 

insertion of h at singularity, Method II – implementation of the kernel with its 

antiderivative, Method III – partial integration method (technique from this paper), 

Method IV – partial integration method with small adjustment (refined technique from 

this paper). As before, the curves are displayed for the exemplary inputs of L = 1, E
*
 = 1, 

d = 0.3 and here only for the exemplary parabolic indenter given with f(r) = r
2
/2 

8. EXEMPLARY WEAR SIMULATION 

Apart from a high accuracy, Method III and Method IV may also show an advantage 

when they are used multiple times on a changing indentation profile, such as in wear 

simulations. As an example, consider a heterogeneous cylinder which is pressed onto an 

elastic half-space with normal force FN and moves tangentially with velocity v0. The 

cylinder shall be composed of rings of different material having the same elastic properties 

but different wear coefficients k1 and k2 (see Fig. 6a). This setup has recently been studied 

with the MDR by Li et al. [6] using Archard’s law [12] 

 N

wear

0

( )
( )

F s
V k r

r
    (24) 

to model the change of the indentation profile due to wear. Therein, kwear(r) and σ0(r) are 

wear coefficient, that is, hardness, and with k(r) = kwear(r) / σ0(r) the linear wear is 

 0( ) ( ) ( )f r k r p r v t   .  (25) 

In the following, the same procedure is adopted. It shows that the numerical method 

which is used for the MDR transformations has a significant impact on the quality of the 

simulation results.  

The limiting profile and pressure reached after a long enough wear process are both 

displayed in Fig. 6b. Profile f is normalized with initial indentation depth d0 = FN / (2aE
*
) 

and the pressure distribution is normalized with p0 = FN / (2πa
2
). As can be seen in Fig. 6b, 

the use of Method II to perform the transformations leads to an oscillating error in the 

results for both the profile and the pressure (a thin grey jagged line). This error does not 

occur when Method III or Method IV are used (a smooth bold line). For an increasing 
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number of discretization points or smaller time steps in the wear simulation the oscillating 

error which occurs with Method II does not vanish although it can be smoothed out in the 

post-processing. Method III and IV, however, deliver the undistorted results straight away 

without the requirement for subsequent corrections.  

Note that these raw results of the exemplary simulation obtained using Method III and 

Method IV also reproduce results obtained for validation purposes in [6] with the 

Boundary Element Method (BEM) [13]. 

              
 a) b) 

Fig. 6 Left graph a): A heterogeneous cylinder composed of rings of different material having 

the same elastic properties but different wear coefficients k1 and k2 is pressed onto an 

elastic half-space with the normal force FN and moves tangentially with velocity v0. 

Right graph b): Simulation results for the limiting profile and pressure after a long 

enough running-in process as obtained with Method II (a thin grey jagged line), and the 

techniques from this paper – Method III and Method IV (a smooth bold line) with N = 

201 discretization points and k2/k1 = 10  

9. CONCLUSION 

A simple implementation technique for the MDR transformations is presented in this 

work. It relies on integration by parts of the transformations, a central difference scheme to 

obtain the derivatives, and the trapezoidal rule to perform the summation.  

It is shown that the results of the method for the contact of a cone and the Hertzian 

contact converge to the corresponding analytical solutions for an increasing number of 

discretization points. Therein, the highest error occurs at the border of the contact area. A 

small refinement to the numerical method has been presented to reduce this error. 

The introduced method and its refinement are then compared to other numerical 

techniques which rely on the original form of the transformations. For the tested examples, 

the newly introduced method and its refinement deliver more accurate results at the same 

number of discretization points (see Fig. 5). 

  Furthermore, it is shown that apart from a higher accuracy when used once, the 

presented method and its refinement may have another benefit when used multiple times in 
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wear simulations. In an exemplary simulation, the wear of a heterogeneous cylinder 

composed of rings of different material having the same elastic properties but different 

wear coefficients is modeled. These discontinuous transitions in the material properties are 

handled well by the newly introduced methods, whereas the tested numerical techniques 

which rely on the original form of the transformations deliver results with a high oscillating 

error (see Fig. 6). 
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Abstract. Using the Boundary Element Method, we numerically study the indentation of 

prismatic and tapered indenters with polygonal cross-sections. The contact stiffness of 

punches with flat bases in the form of a triangle and a square as well as a number of 

higher-order polygons is determined. In particular, the classical results of King (1987) for 

indenters with triangle and square base shapes are revised and more precise numerical 

results are provided. For tapered indenters, the equivalent transformed profile used in the 

Method of Dimensionality Reduction (MDR) is determined. It is shown that the 

MDR-transformed profile of polygon-based indenters with power function side is given by the 

power function with the same power; it differs from the 3D profile only by a constant 

coefficient. These coefficients are listed in the paper for various types of indenters, in 

particular for pyramidal and paraboloid ones. The determined MDR-transformed profiles 

can be used for study of other contact problems such as tangential contact, normal contact 

with elastomers, and, in an approximate way, to adhesive contacts. 

Key Words: Indentation, Contact Stiffness, Polygonal Indenter, Boundary Element 

Method, MDR Transformed Profile 

1. INTRODUCTION 

Indentation test is a very common way of probing mechanical properties of materials such 

as hardness, contact stiffness, elastic modulus and strain-stress relation [1-3]. There is a variety 

of indenter geometries used in macro- and microindentation; the most popular are spherical and 

pyramidal indenters (e.g. for the Vickers hardness test and Brinell hardness test) [4]. The 

contact stiffness of indenters with regular geometries is also important for the foundation 

design [5]. The analytical solution for contact between a rigid cylindrical flat punch and an 

elastic half space was given by Galin in 1953 (English translation see [6]). His results were later 

published by Sneddon and, in this way, made public to the western world [7]. Based on this 
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solution, Oliver and Pharr proposed an analysis method to determine the hardness and elastic 

modulus from the load-displacement curves of indentation test [8]. General relations among 

contact stiffness, contact area, and elastic modulus during indentation have been analytically 

derived only for axisymmetric indenters. For a non-axisymmetrical geometry, a correction 

coefficient is needed [9], which can be still found only numerically.  

In this paper we numerically investigate the indentation of rigid bodies with various 

geometries: the flat-ended punches in Section 2 and tapered indenters in Section 3. In both 

cases we consider different polygonal bases including triangle and square. Note that the 

assumption of a rigid indenter is no restriction as the normal frictionless contact of two 

elastic bodies with elastic moduli  E1 and E2 and Poisson numbers ν1 and ν2 can always be 

reduced to the contact of a rigid indenter and an elastic medium with an effective elastic 

modulus E
*
 determined as [10]  

 
2 2

1 2

*

1 2

1 11

E EE

  
  . (1) 

In the present paper, the indentation test is numerically simulated by the high resolution 

Boundary Element Method (BEM), which has recently been generalized to arbitrary 

contact problems including tangential contact and adhesive contact [11, 12].  

2. INDENTATION OF PRISMATIC INDENTERS WITH POLYGONAL BASE 

The normal contact stiffness between a rigid flat cylinder and an elastic half space is 

given by k=2aE
* 

[7], where a is the radius of the cylinder, and E
*
 is the effective elastic 

modulus, Eq. (1). In the case of a prismatic indenter with an arbitrary base form, the normal 

contact stiffness is given by [5]: 

 *2
A

k E


  ,  (2) 

where A is the contact area of the base. Obviously the value of β is equal to 1 for the 

flat-ended cylinder. It was proven that Eq. (2) is also valid for indenters which have a cross 

section other than a circle [5]: β=1.034 for triangle and β=1.012 for square. These results 

were numerically obtained by King in 1987. Due to the limitation of computer technology 

at that time, King used only 200 elements for simulating a triangle indenter, and the  

 

Fig. 1 Prismatic indenters with polygonal bases: m=3 (triangle),  

m=4 (square), m=5 (pentagon) and m=∞ (circle) 
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triangular area looked quite „rugged‟. Note that the stiffness of a flat punch and 

correspondingly factor β are related to the so-called harmonic capacity of the base form of 

the punch. This analogy was discussed by Argatov (2010) [13]. 

Below we repeat the calculations of King using the current high-resolution BEM and 

provide corrected values. 

Using the boundary element method we have numerically carried out the indentation 

test for different shapes of cross section of indenters: from triangle (m=3), square (m=4), 

pentagon (m=5) to circle (m=∞) as shown in Fig.1. In the simulation, the whole area was 

divided into 1024x1024 elements where at least 200000 elements were in the contact area. 

It is at least 1000 times more than in the King‟s simulations; therefore, a much more precise 

result could be obtained. The values of coefficient β for different m are presented in Fig.2 

and Table1. For the two most popular indenter shapes, the values are: 

 
1.061,  for triangle,

1.021,  for square,








  (3) 

which is larger than the values reported by King [5]. It can be seen that with the same area 

of cross section, the stiffness of triangular indenter is for 6% larger than that of a flat 

cylinder. 

 

Fig. 2 Factor β for different polygonal indenters. The two stars indicate the results obtained 

numerically by King in 1987 [5] 

Table 1 Values of constant β 

m 

polygon 

3 

(triangle) 

4 

(square) 

5 6 7 8 ∞ 

(cylinder) 

β 1.061 1.021 1.010 1.005 1.003 1.002 1.000 
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3. INDENTATION OF TAPERED INDENTERS WITH POLYGONAL BASE  

AND POWER FUNCTION SIDE SURFACE 

Now we consider the tapered indenters which have a regular polygonal base, as shown 

in Fig. 3. We begin with the most common type – a pyramid, and then extend it to indenters 

whose side profile is an arbitrary power function.  

3.1. Pyramidal indenters  

For the contact between a rigid cone with profile f (r) = tanθ·r and an elastic half space 

with effective elastic module E
*
, the dependence of normal force on indentation depth was 

analytically found by Galin [6] (see also Sneddon [7]):  

 
*

22

tan
N

E
F d

 
 , (4) 

where d is indentation depth and θ is defined in Fig. 3(c). This solution can be easily 

reproduced using the method of dimensionality reduction (MDR). In the framework of the 

MDR [14], any contact problem of an axis-symmetrical profile f(r) with an elastic 

half-space can be mapped onto a contact of a modified (MDR-transformed) profile g(x):  

 
| |

0 2 2

( )
( ) | | d

x f r
g x x r

x r





 ,  (5) 

with properly defined elastic foundation. For a conical profile, f(r) = tanθ·r, the substitution 

in Eq. (5) and integration provides the MDR-transformed profile: 

 ( ) ( / 2) | | tang x x    . (6) 

A short calculation (see. e.g. [14]) leads to Eq. (4).  

 

Fig. 3 Pyramid indenters for n=1 (a)-(c) and parabolic indenters for n=2 (d)-(f)  

with polygonal base, m=3 (triangle), m=4 (square),and m=∞ (cycle) 
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In [15], it was shown that an equivalent MDR-transformed profile does exist not only 

for axis-symmetrical indenters but also for indenters of arbitrary shape. As shown in [15] 

and [16], for this sake, quantity l=k/(2E
*
) (where k=dFN /dd is the incremental normal 

stiffness) should be determined numerically as function of indentation depth d. Inverse 

function d(l) is then exactly the unknown MDR transformed profile g(x). Let us illustrate 

this simple procedure on the example of conical indenter. By differentiating Eq. (4) with 

respect of d we get stiffness k=4E
*
d/(πtanθ) and length l=2d/(πtanθ). Inverse relation 

d=l(π/2)tanθ coincides exactly with the MDR transformed profile (6). This procedure is 

applicable regardless of whether dependence FN(d) was obtained analytically, numerically 

or experimentally. In the following, we determine dependence FN(d) numerically and 

extract from it the MDR-transformed profiles for a number of tapered profiles with 

polygonal cross-sections (Fig. 3).  

We start with consideration of pyramidal indenters. As shown in Fig. 3(a)(b), the bases 

of the indenter are regular polygons. Angle θ is defined as the angle between the ground 

plane and the 3D indenter side surface as shown in Fig.3. 

In the simulation we calculated the contacts of pyramid indenters with different 

polygonal bases varying from m=3 to 20, and for each type the angle ranges from =π/64 to 

31π/64. All the simulation results show that the one-dimensional profile is still a linear 

function which can be formulated as: 

 1D( ) | |g x c x  , (7) 

with c1D : 

 1D tanc    , (8) 

where α is dependent only on polygon order m. For the sake of comparison we can define a 

fictive rotationally symmetric 3D profile with the same inclination angle: 

 3D 3D( ) tanf r c r r    .  (9) 

Then we can write α =c1D/c3D. The values of α for different shapes of polygons are shown 

in Fig. 4(a) and Table 2. For a larger m, the shape of the pyramid indenter is close to a cone, 

the value of α is almost equal to π/2. 

 

Fig. 4 Coefficient of α for pyramidal indenter n=1 (a) and parabolic indenter n=2 (b)  

with different polygonal bases 
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Table 2 Values of coefficient α 

m 

polygon 

3 

triangle 

4 

square 

5 6 7 10 20 30 ∞ 

cycle 

α (n=1) 

pyramid 
1.133 1.356 1.422 1.485 1.510 1.542 1.564 1.568 π/2 

α (n=2) 

paraboloid 
1.052 1.493 1.690 1.791 1.848 1.928 1.981 1.993 2 

3.2. Indenters with arbitrary power function geometry 

Let us now consider the case when the side surface of the indenter is not flat but is given 

by a power function. An example of parabolic indenter (shape with power 2) is shown in 

Fig. 3(d)-(f). We first remember the corresponding solution for an axisymmetric indenter 

with an arbitrary power function shape f(r) =cn·r
n
. According to Eq. (5) its one-dimensional 

MDR-transformed profile is given by: 

 ( ) | |nn ng x c x  , (10) 

where: 

 
( 2)

2 ( 2 1 2)
n

n n

n





 

 
, (11) 

and Γ(n) is gamma function. In particular, for the cone (n=1) κ1= π/2 and for a paraboloid 

(n=2) κ2=2, corresponding to α =c1D/c3D for m=∞ as shown in Fig. 4 and Table 2. 

As in the previous Section, we define an axis-symmetrical shape with the same power-law 

shape as shown in detail in Fig. 3. To underline that we have to do with a three-dimensional 

body which is in contact with a three-dimensional half-space, we denote the corresponding 

reference shape as  

 3 3( ) n

D Df r c r  . (12) 

This shape coincides with the vertical section of the polygonal indenters (shown by dashed 

lines in Fig. 3). 

The numerical indentation tests were carried out for different indenters with power 

function n from 1 to 20 and the polygonal base parameter m from 3 to 30. The results show 

that the 1D profile for an arbitrary power function is still a power function with the same 

power. Coefficient α =c1D/c3D for the same type of indenter (fixed n and m) is constant 

(independent of coefficient c3D). An example of parabolic indenter (n=2) is shown in Fig. 4 

(b), where the values of α for triangle, square and further polygonal based profile are 

presented. In the limiting case the indenter is a spherical cylinder, and α=2 corresponding 

to κ2=2 is well-known from the MDR theory [14]. 

If we use the following parameter instead of α 

 1

3

D

n D

c

c



 , (13) 

then in the limiting case m=∞, value ξ for any power function n will be equal to 1, ξm=∞=1. 

Some values of ξ, in particular for pyramid and parabolic indenter with triangle and square 

base are shown in Fig. 5 and Table 3. 
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Fig. 5 Coefficient of ξ for indenters with power function profile 

Table 3 Values of coefficient   

n 

m 

3 

(triangle) 

4 

(square) 

5 10 20 30 

1 (pyramid) 0.723 0.866 0.923 0.986 1.000 1.000 

2 (paraboloid) 0.526 0.747 0.845 0.964 0.991 0.997 

3 0.384 0.648 0.777 0.947 0.987 0.994 

10 0.043 0.241 0.058 0.835 0.957 0.983 

20 0.002 0.058 0.190 0.695 0.918 0.964 

 

3.3. Consideration of indenters with the same base area  

In Section 2 it is found that the contact stiffnesses of triangular, rectangular indenters 

and flat cylinder with the same cross-section area are almost the same, and differ at most by 

6%. It thus appears to be sensible to try as “reference” indenters the axisymmetrical 

profiles with the same area of cross-section. This definition is slightly different from the 

definition in the previous Section. For both initial polygonal profile and the reference 

axisymmetrical profile we carry out the MDR transformation and determine the equivalent 

1D-MDR profiles. Let us explain the exact procedure on the example of a pyramid indenter 

(n=1). First, we determine the area of the indenter at different height and construct a cone 

with exactly the same cross-section areas. Then we carry out the three dimensional 

indentation test of the polygonal indenter by the BEM simulation and extract corresponding 

MDR profile g(x)m-poly and corresponding coefficient c1D,m-poly as described in Section 3. For 

the reference axisymmetrical profile, the corresponding MDR transformed profile and the 

corresponding coefficient c1D,m=∞ are determined by (5). Finally we compare this c1D,m-poly and 

the coefficient of the axisymmetric conical profile using the ratio  

 
1 , -poly

1 ,

D m

D m

c

c




 . (14) 
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In an absolute similar way comparisons were also carried out for other power function 

geometries. The results are shown in Fig.6 and Table 4. It can be seen that the coefficient 

c1D of pyramid indenter is close to that of conical indenter: it differs by at most 7% in the 

case of triangular base (c1D =0.927). It is noted that coefficient c1D cannot directly reflect the 

contact stiffness. Take an example of triangular indenter with power n=20 whose geometry is 

close to the flat triangular indenter (Fig.1a), its ζ is very small ζ =0.295 (m=3, n=20), but the 

contact stiffness at the large indentation depth is the same to the flat indenter.  

 

Fig. 6 Comparison of coefficient c1D among different indenters with the same base area 

Table 4 Coefficient ζ for different power n and polygon m 

n 

m 

3 

(triangle) 

4 

(square) 

5 6 10 20 

1 (pyramid) 0.927 0.974 0.988 0.994 1.000 1.000 

2 (paraboloid) 0.870 0.951 0.977 0.988 0.997 1.000 

3 0.817 0.931 0.966 0.981 0.996 1.000 

10 0.536 0.806 0.820 0.893 0.990 1.000 

20 0.295 0.651 0.814 0.889 0.973 0.997 

4. CONCLUSION 

Indentation of flat-ended and tapered indenters with polygonal base was numerically 

simulated using the boundary element method. The contact stiffnesses of prismatic 

punches with the same cross section area are almost same as the cylindrical indenter, where 

the triangular punch differs at most by 6%.  For pyramidal indenter and others with power 

function side, the one dimensional MDR transformed profile was generated based on the 

three dimensional simulation of indentation. It is found that the 1D profile is still a power 

function with the same power and it differs only by a constant factor. The factor was 

numerically calculated for the indenters with different power function side and different 

polygonal base. The generated MDR profiles can be used for the further contact problems, 

such as tangential contact or contact with linear viscoelastic bodies.  
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Abstract.  In this paper, the normal contact problem between an elastic half-space and a 

cylindrical body with the axis parallel to the surface of the half-space is solved numerically by 

using the Boundary Element Method (BEM). The numerical solution is approximated with an 

analytical equation motivated by an existing asymptotic solution of the corresponding 

problem. The resulting empirical equation is validated by an extensive parameter study. 

Based on this solution, we calculate the equivalent MDR-profile, which reproduces the 

solution exactly in the framework of the Method of Dimensionality Reduction (MDR). This 

MDR-profile contains in a condensed and easy-to-use form all the necessary information 

about the found solution and can be exploited for the solution of other related problems (as 

contact with viscoelastic bodies, tangential contact problem, and adhesive contact problem.) 

The analytical approximation reproduces numerical results with high precision provided the 

ratio of length and radius of the cylinder are larger than 5. For thin disks (small 

length-to-radius ratio), the results are not exact but acceptable for engineering applications. 

Key Words: Line Contact, Boundary Element Method, Finite-length Cylinder, Contact 

Stiffness, Method of Dimensionality Reduction 

1. INTRODUCTION 

The contact problem of cylinders with parallel axes or of a flat elastic body with a 
“lying” cylinder is very common in practical engineering applications, in particular in 
mechanical elements such as roller bearings, gears and cams [1, 2]. In contrast to the 
Hertz-like contacts of bodies with curvature in two directions which in engineering 
mechanics are called “point contacts”, the contact of two parallel cylinders is denoted as a 
“line contact”. Being an immediate two-dimensional analog of the Hertz contact, the line 
contact between cylinders with parallel axes is one of basic problems in contact mechanics. 
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Even if the effective dimensionality of a line contact is lower than that of the point contact 
(2D vs. 3D), the line contact is in some sense more complicated than its 3D analog since in 
the line contact the “indentation depth” cannot be defined unambiguously. This is related to 
the logarithmic divergence of the 2D fundamental solution in infinity. In other words, the 
properties of a 2D contact (line contact) are not “local” but depend on the macroscopic 
shape of the body. This dependence, however, is relatively weak (logarithmic). Therefore, 
there exist a large number of approximated solutions [3-5], which have been applied in 
many further studies, for example in elastic hydrodynamic lubrication [6, 7]. The main 
structure of all approximate solutions is relatively simple: it reproduces the logarithmic 
divergence and cuts it up at some characteristic distance, at which the contact ceases to be a 
line-contact. In the case of a true 2D contact, this is the size of the system (e.g. the radius of 
contacting cylinders). 

On the other hand, for any finite contact, e.g. that of a lying cylinder of finite length, the 
indentation depth can be determined unambiguously. The macroscopic length which in this 
case limits the “two-dimensionality” of the line contact is the length of the cylinder. One can 
anticipate that the indentation depth at a given force will be a weak logarithmic function of 
the cylinder length. Finding the exact form of this function is the main goal of this paper. 

As the solution of the underlying two-dimensional contact problem gives the basis for our 
consideration, we first provide a brief overview of earlier works on this topic. The contact of 
cylinders with parallel axes was early studied by Prescott [8] and Thomas and Hoersch [9], 
and later also investigated by many researchers, for example Lundberg et al. [10]. A good 
review of analytical solution for this contact problem can be found in Norden’s report [11], 
where the deviation of relationship between the normal load and the indentation depth is 
given in detail; this relationship is still widely used today. The same analysis is also presented 
in Puttock and Thwaite’s report [12]. In these solutions, the existing result of pressure 
distribution for elliptical contact is used for cylindrical contact with parallel axes by 
assuming one axis of ellipse is infinitely large, and then the contact area is considered as a 
finite rectangle whose length is much larger than its width. For further reference, here we 
reproduce their solution of a cylinder with radius R and length L pressed into elastic half 
space under normal load F [12]: the half width of contact rectangle b is equal to: 

 
*

4RF
b

E L
  (1) 

and indentation depth d is:  

 
* 3 2

* * 2

4
1 ln 1 ln

F E L F L
d

LE RF LE b



 

   
      

   
 (2) 

where E* is effective elastic modulus and equal to:  
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with E1 and E2 are elastic module of contacting bodies, ν1 and ν2 are Poisson’s ratio. Later 

Johnson and other authors gave other forms of force-displacement e.g.: 
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where const=1 in [4], 0.72 and 0.572 in others [13].  
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Correspondingly, the experiment investigation consisting of compression of parallel 

cylinders or indenting a cylinder into an elastic body is carried out in [11, 14]. Empirical 

equations of load-displacement are provided to verify theoretical solutions. In Thwaite’s 

compression test [15] of a contact between a cylinder and a half-space, the comparison of 

slopes (or contact stiffness) shows that the solution (2) is the closest to the experimental 

results. In Kunz’s experimental investigation [14], it is found that the approach of parallel 

cylinders is proportional to the loading force: F=cE*Ld, where c is constant c=0.175.  

In the last few decades, some numerical studies of the finite length line contact have 

been carried out to investigate the effect of contact edge and bone shape of the contact area 

and on stress distribution [16, 17]. However, a more precise solution for the line contact is 

rarely provided. Recently an analytical solution for contact problem of toroidal indenter is 

given by Argatov et al. [18] and is validated numerically by the boundary element method. 

In this paper we propose an analytical approximation of contact stiffness of a rigid cylinder 

and an elastic half space based on the results of [18]. While we overtake the general form of 

solution, we let some parameters free and determine them finally by numerical simulation 

of indentation test using the boundary element method. 

2. EFFECTIVE MDR-PROFILE FOR A FINITE LENGTH LYING CYLINDER 

2.1. Analytical approximation based on an asymptotic solution 

The main physical result of this paper will be the dependence of normal force on the 

indentation depth for a contact between an elastic half-space and a “lying” cylinder (with 

the axis parallel to the surface of the half-space.) However, we will “pack” this dependence 

in the terms of the Method of Dimensionality Reduction (MDR) [19] where the whole 

information about the system is compressed into effective plane profile g(x). The 

advantage of this presentation is that g(x) can be used not only to easy reconstruct the 

dependency of the normal force on the indentation depth but also to solve a variety of other 

related problems such as tangential contact problem with friction in the interface, adhesive 

contact problem, and contact of visco-elastic bodies. In this sense, g(x) is, so to say, the 

“visiting card” of the profile in question which allows multi-purpose use.  

Note that the possibility of mapping three-dimensional contacts onto contacts with elastic 

foundation is well known for axis-symmetric indenters with compact contact area [19]. Less 

known is that the same concept can also be used to arbitrary other profiles, as e.g. of a torus 

(not compact contact area) or a rough surface. The corresponding proof as well as examples 

of MDR-profiles for a number of non-axisymmetric contacts can be found in [18] and [20]. 

Profile g(x) determines straightforwardly force-indentation dependence F(d). Thus the 

information content of both dependencies is equal: one can either determine F(d) from g(x) 

or g(x) from F(d). Even if the information content of both the functions is the same, it is more 

convenient to have g(x) as it allows to solve much more various problems than F(d).  

In [20] the explicit procedure of “extracting” profile g(x) from dependency F(d) is 

described.  The procedure is very trivial: from known dependency F(d) one first determines 

differential contact stiffness kn(d)=dF(d)/dd and then determines the dependence of d as 

function of variable x=kn/(2E*). Dependency d(x) is exactly searched-for function g(x). In 

the present paper, this procedure is carried out numerically: first, dependency F(d) is 

determined by direct simulation using the boundary element method. Subsequently, the 
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described procedure is applied to extract g(x). Finally, numerically found profile g(x) is 

approximated analytically. 

For the analytical approximation we use the form of g(x) found in [18] for indentation 

of a torus. In [18], it is derived by an asymptotic analysis and verified through BEM 

simulations. The 1D profile for toroidal indenter is given by:   

 
2 2 2

( ) 1 exp 8ln 2
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R R R
g x
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 



     
     

   
 . (5) 

Here, R is the distance from the center of the torus tube to the center of the torus,  is the 

radius of the torus tube.   

 

Fig. 1 A rigid cylinder lying on an elastic half space 

The contact of the torus is very similar to that of a “lying” cylinder: both contacts are 

basically line ones and thus two-dimensional contacts whose logarithmic divergence is cut 

at some distance. For the torus, the role of the cut-off length plays the radius of the torus, 

while in the case of the lying cylinder this is the length of the cylinder. Equation (5) found 

for the torus thus can be used for lying cylinder with radius R and length L (Fig. 1) just by 

replacing RL and R. The differences in two configurations are taken into account by 

introducing two coefficients c1 and c2 which in the case of the torus are equal to 1, but in the 

case a lying cylinder are allowed to take some other values: 
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In a more compact form Eq. (6) can be rewritten as:  
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where we have introduced two other fitting coefficients  and  (instead of c1 and c2). 

Introducing dimensionless parameters: 
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Eq. (7) can be written in the dimensionless form:  

 ( ) 1 expg x
x x

 

   

     
   

 . (9) 

2.2. Numerical simulation of the indentation test 

Two unknown coefficients  and  in Eq. (7) will be determined by numerical simulation 

of indentation test using the boundary element method which was developed by Pohrt, Li and 

Popov for various 3D contact problems including the partial sliding contact [21] and 

adhesive contact [22, 23].  

In the simulation, the whole simulation area was divided into 512512 rectangular 

elements. The rigid cylinder was modeled as parabolic indenter f(y)=y2/(2R), where y is 

in-plane coordinate perpendicular to the axis of the cylinder. The cylinder was indented in 

an elastic half space with controlled indentation depth in 100 steps from zero (first contact) 

to 0.15R. The pressure distribution as well as the normal load and normal contact stiffness 

were calculated in each step of indentation. One example of contact configuration and 

pressure distribution is shown in Fig. 2. The concentration of pressure at the contact edge 

can be clearly observed in Fig. 2b. 

 
(a)      (b) 

Fig. 2 An example of numerical simulation for L/R=5 and d=0.1R:  

(a) contact state (b) pressure distribution 

3. RESULTS AND DISCUSSION 

We have performed indentation simulations for cylinders with 29 increasing values of 

L/R ranging from L/R =0.1 to 20 (10 linearly increasing L/R from 0.1 to 1, and 19 from 2 to 

20). Resulting MDR-profiles g(x) are shown with crosses in Fig. 3a. In Fig. 3b, all curves 

are plotted in dimensionless form in coordinates (8). It is seen that all crosses for different 

L/R collapse to a single curve thus confirming the basic structure of the solution:  
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Fig. 3b provides the numerically determined form of function (.). 

 

Fig. 3 1D profile of lying cylinder calculated by BEM simulation (cross) and fitting with Eq. (7)  

In the following, we provide analytical approximation for this function on the basis of Eq 

(9).  The values of coefficients  and  are calculated by the method of least squares. The 

agreement of fitting (black solid lines) with numerical simulation can be seen in Fig. 3. 

Values of  and  are presented in Fig. 4, where we can see that both factors are almost 

constant for large ratios of L/R but change significantly for small ratios. We thus discuss 

the cases of “long cylinders” and “short cylinders” separately. 

 

Fig. 4 Values of coefficients of α (a) and β (b) for different ratios  

of L/R obtained by fitting of Eq. (7) with numerical results 

(a) Large ratio L/R (“long cylinder”) 

From Fig. 4, one can see that  and  for larger L/R are almost constant: =/2 and 

=0.4537. Thus, for large ratios in the range of about L/R 5 we can give the following 

approximation:  

 
2

( ) 0.4573 1 exp ,   for 5
2 2

L L L
g x L R

R x x

    
      

   
,  (11) 

a) b) 

a) b) 
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or in the dimensionless form:  

 ( ) 0.4573 1 exp ,   for 5
2 2

g x L R
x x

    
      

   
 . (12) 

Numerical results and analytical approximations (11) and (12) in this range of L/R are 

shown in Fig. 5.  

 

Fig. 5 1D profile of cylinder for larger ratios of L/R:  

(a) for different L/R (b) in dimensionless form 

(b) Small ratio of L/R (“short cylinder”) 

In practical applications, many line-contact machine elements are thin plates meaning a 

small value of L/R, as e.g. cams. The results of numerical simulation and fitting for           

L/R =0.1~4 are clearly shown in Fig. 6. Coefficients  and  in this range are different (Fig.  

4); however, from the subplot of Fig. 6b we can find that the fittings agree with the 

numerical results also well, except for very small L/R (=0.1 or 0.2) (subplot in Fig. 6b), so 

we list their values in Tab. 1 for the further studies. 

 

Fig. 6 1D profile of cylinder for small ratios of L/R:  

(a) for different L/R (b) in dimensionless form  

a) b) 

a) b) 
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Table 1 Values of coefficients α and β for small L/R  

L/R Α β  L/R Α β  L/R α β 

0.1 3.8695 17.1183  0.6 2.0528 1.9139  2 1.7086 0.7936 

0.2 2.8664 6.6132  0.7 1.9928 1.6847  3 1.6518 0.6495 

0.3 2.4734 3.9560  0.8 1.9400 1.4963  4 1.6231 0.5799 

0.4 2.2714 2.8770  0.9 1.8996 1.3589  5 1.6048 0.5376 

0.5 2.1455 2.2975  1 1.8668 1.2517  6 1.5930 0.5091 

Finally, let us compare our results with those following from Eq. (2). Differentiation of 

the force with respect to the indentation depth provides the normal contact stiffness:  

 *

* 3
lnn

RF
k LE

E L



  . (13) 

Together with relation (2) we can obtain 1D profile g(x), which has also a dimensionless 

form similar to Eq. (12). This dimensionless form is shown with a dashed line in Fig. 7. 

One can see that it differs substantially from the “numerically exact” result found in the 

present paper and plotted in Fig. 7 with a bold line. 

 

Fig. 7 Comparison of 1D profile obtained from existing solution and in this paper  

4. CONCLUSION 

We have numerically simulated indentation of the finite-length cylinder lying on an 

elastic half space. The ratio of the cylinder’s length and radius was varied in a wide range 

from a thin disk (ratio 0.1) to a long pole (ratio 20). Based on the results of numerical 

simulation, the equivalent MDR-profiles containing the whole information about the contact 

problem was “extracted” and subsequently approximated analytically using an equation 

inspired by an asymptotic solution of the contact problem. For large length-to-radius ratios 

(larger than about 5), the fitting coefficients are almost constant and a general form with high 

accuracy is provided in a closed analytical form. For small length-to-radius ratios, analytical 

solution is provided which contains two constants provided in the form of a table. 

Comparison of the present solution with the already available analytical approximation 

shows that the present solution is much more precise.  
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Abstract. We analyse the oblique impact of linear-viscoelastic spheres by numerical 

models based on the Method of Dimensionality Reduction and the Boundary Element 

Method. Thereby we assume quasi-stationarity, the validity of the half-space hypothesis, 

short impact times and Amontons-Coulomb friction with a constant coefficient for both 

static and kinetic friction. As under these assumptions both methods are equivalent, their 

results differ only within the margin of a numerical error. The solution of the impact 

problem written in proper dimensionless variables will only depend on the two 

parameters necessary to describe the elastic problem and a sufficient set of variables to 

describe the influence of viscoelastic material behaviour; in the case of a standard solid 

this corresponds to two additional variables. The full solution of the impact problem is 

finally determined by comprehensive parameter studies and partly approximated by 

simple analytic expressions. 

Key Words: Oblique Impacts, Friction, Viscoelasticity, Standard Solid Model, Method 

of Dimensionality Reduction, Boundary Element Method 

1. INTRODUCTION 

Collisions of macroscopic particles determine the dynamics of granular gases. As long 

as the particle density in the granular gas is small enough and hence the impact durations 

are small compared to the mean free time between two collisions, these will in general be 

binary. In many cases the difference of the particle velocities before and after the impact 
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can be described by two coefficients of restitution, one for each the normal and tangential 

direction of the impact. Due to friction, adhesion, viscoelasticity, plasticity or other effects 

those coefficients of restitution will in general exhibit strong and non-trivial dependencies 

not only of the geometric or material parameters but of the impact velocities themselves. 

Among the vast literature about granular media only few publication lines account for this 

velocity-dependence, which is mostly because of two reasons: on the one hand, the various 

analytical methods of statistical physics applied to deal with granular media are severely 

complicated by the fact that the restitution coefficients are actually velocity-dependent. On 

the other hand, the rigorous solution of the single contact-impact problem even in the 

simplest case of spherical colliding particles is a rather non-trivial task. 

Lun and Savage [1] and Walton and Braun [2] were the first to study the effects of the 

described velocity-dependence on the granular dynamics using the granular-flow kinetic 

theory of Lun, Savage, Jeffrey and Chepurnity. However, lacking rigorous solutions, they 

only used an ad-hoc model of a restitution coefficient in normal direction exponentially 

decreasing with the impact velocity, which can be realistic only in few cases. Besides, 

they did not account for inter-particle friction during the collisions and could hence 

achieve only rough agreement with their experimental data. Only ten years later a research 

group around Brilliantov and Pöschel started a series of publications to tackle this 

problem again. Brilliantov et al. [3] gave models for the collisions of spheres accounting 

for viscoelasticity and friction. However, their material model is equivalent to a Kelvin-

Voigt body, which is only realistic if the time scale of interest is large compared to the 

relaxation time of the elastomer. As the impact times are short, this might be problematic. 

Moreover, their tribological friction model of broken welds and asperities leads to a 

stepwise linear dependence of the tangential force on the tangential displacement between 

the contacting bodies. For spherical profiles this cannot be true due to the profile shape. 

These collision models have been implemented in granular gas simulations by Schwager 

and Pöschel [4], Brilliantov and Pöschel [5] and Dubey et al. [6].  

The history of rigorous impact solutions started with Hertz [7], who solved the frictionless 

and non-adhesive normal contact problem of two parabolic surfaces and the associated quasi-

static impact problem. Hunter [8] studied the influence of the quasi-stationarity and found that 

the proportion of kinetic energy lost during the impact due to elastic wave propagation is 

negligible, if the impact velocities are small compared to the speed of sound in the elastic 

medium. Cattaneo [9] and Mindlin [10] solved the tangential contact problem of two elastically 

similar spheres in the case of a constant normal force and an increasing tangential force. The 

circular contact area will consist of an inner circular stick area and an annular region of local 

slip. The tangential traction distribution in the contact is a superposition of two Hertzian 

distributions. Their work has been extended by Mindlin and Deresiewicz [11] for various 

different and by Jäger [12] for arbitrary loading protocols. Based on the results of Mindlin and 

Deresiewicz, Maw et al. [13] and Barber [14] studied the oblique impact of elastic spheres 

without adhesion; they found out that the problem written in proper dimensionless variables 

only depends on two parameters, one describing the elastic and the other (containing a 

generalized angle of incidence and hence the impact velocities) the frictional properties. 

Moreover, the authors carried out experiments to validate their calculations. The oblique impact 

problem of elastic spheres with and without adhesion was also studied by Thornton and Yin 

[15]. A nice overview of elastic impact problems and several analytical solutions including 

torsional loading can be found in the paper by Jäger [16]. 
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In a series of publications – see for example [17, 18] and the summarizing book [19] – 

Popov and his co-workers have shown that the generalized Hertz-Mindlin problem for 

any convex axisymmetric indenter and arbitrary loading histories can be exactly mapped 

onto a contact between a properly chosen plain profile and a one-dimensional foundation 

of independent linear springs in such a way that the solution of the obtained one-dimensional 

model will exactly coincide with the one of the original three-dimensional problem. Due to 

the enormous simplification and effort reduction of analytical or numerical calculations 

achieved by this so-called Method of Dimensionality Reduction (MDR) Lyashenko and 

Popov [20] were able to give a comprehensive solution for the problem studied earlier by 

Maw and his co-workers in the no-slip regime, i.e. an infinite coefficient of friction. Those 

results have later been generalized by Willert and Popov [21] for the partial slip regime, 

i.e. a finite friction coefficient. 

The viscoelastic contact problem was first addressed by Lee and Radok [22-24]. From 

the close relationship between the fundamental equations of elasticity and viscosity the 

authors deduced a method of functional equations to obtain the solution of a viscoelastic 

problem if the solution of the associated elastic problem is known and the contact radius 

is a monotonically increasing function in time. This has been generalized to the case of 

any number of maxima and minima of the contact radius by Graham [25], [26] and Ting 

[27, 28]. An equivalent but somewhat easier formulation of Ting’s solution was given by 

Greenwood [29]. However, with every maximum or minimum of the contact radius the 

analytic calculations get more and more cumbersome. The Hertz impact problem for 

viscoelastic media was treated by Pao [30] and Hunter [31]. They used arbitrary viscoelastic 

rheologies to formulate the problem but gave only few concrete solutions. Argatov [32] 

found analytical solutions for the respective flat punch problem in the case of Kelvin-Voigt-, 

Maxwell- or standard solid model. 

The viscoelastic contact problem in the case of convex axisymmetric indenters and 

arbitrary loading protocols can also be exactly mapped within the framework of the MDR, 

which was proven by Kürschner and Filippov [33] and Argatov and Popov [34].  

Hence, the aim of the present paper is to give a comprehensive solution of the viscoelastic 

oblique impact of spheres with and without slip based on the MDR. Very recently Kusche [35, 

36] presented the no-slip solution of this impact problem using the Boundary Element Method 

(BEM). However, the BEM-calculations are numerically much more costly compared with the 

MDR. As the parameter space for the more general case with slip is larger by one dimension, 

the comprehensive solution based on BEM will be numerically very expensive. Nevertheless, 

the BEM-algorithm to solve the impact problem with slip has been implemented and can 

serve as a validation for the faster MDR-based model. 

We will use a standard solid for modelling viscoelastic properties because it exhibits 

all characteristics of general elastomers. As a limiting case the Kelvin-Voigt solid is also 

studied at some point. Finally, we will focus on the velocity-dependence of the coefficients of 

restitution as this is the main point of interest for the implementation of the obtained solutions 

into simulation algorithms for granular media. 

The paper is organized as follows: In Section 2 we will give a formulation of the studied 

problem. Section 3 is devoted to the description of the numerical model based on the MDR, 

the results of which are given in Section 5. Section 4 will present a BEM-based algorithm to 

solve the impact problem, which was used to validate the MDR model described before. 

Section 6 will give conclusions. 
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2. PROBLEM FORMULATION 

The present paper is concerned with the oblique impact of two linear-viscoelastic 

spheres of similar materials. This problem is equivalent to the one of a rigid sphere impacting 

on a viscoelastic half-space, which is why we will restrict ourselves to the latter one. 

During contact the frictional interaction between the two surfaces shall be assumed to 

obey the Amontons-Coulomb’s law with the static and the kinetic coefficients of friction 

being constant and equal to each other: μS = μF ≡ μ. The sphere shall have initial velocities 

vx0 and vz0, z pointing into the half-space, and initial angular velocity ω0. The mass, radius 

and moment of inertia of the sphere are m, R and J
S
, respectively. The point on the sphere 

which first comes into contact shall be denoted as K. 

The half-space shall possess a constant Poisson number ν and a creep function giving 

the response in shear. Actually a viscoelastic material may possess a second creep 

function for the response to hydrostatic stress, but this shall be neglected. As most 

elastomers can be considered incompressible (this will also fulfil the condition of elastic 

similarity) our assumption does not pose a considerable loss of generality. In this case we 

can introduce time-dependent shear modulus G(t). For the standard solid model G reads: 

 2
1 2( ) exp .

G t
G t G G



 
   

 
 (1) 

The Kelvin-Voigt model can be recovered from this expression via the limit 

 
2

1( ) lim ( ) ( ),KV
G

G t G t G t


    (2) 

with the Dirac δ-distribution. A scheme of the impact with notations is shown in Fig. 1. 

We will make further following assumptions: 

Quasi-stationarity: The impact velocities shall be much smaller than the speed of sound 

in the viscoelastic material. We therefore neglect all inertia effects like wave propagation. 

Half-space hypothesis: The surface gradients shall be small. For an axisymmetric contact 

with parabolic indenter shapes in the vicinity of the contact point, this can be written as  

 
max max ,d a R  (3) 

with the maximum values of indentation depth d and contact radius a. 

Very short impact: The displacement of the contact point due to the change of position 

and the rotation of the sphere shall be small compared to the contact radius. This ensures 

that the contact configuration stays axisymmetric and the contact problem can be treated 

like a tangential one. Rolling will then be accounted for only kinematically. The displacement 

in vertical direction is of the order of magnitude of the maximum indentation depth. The 

displacement in tangential direction is of the order of magnitude 

 0 0

, max

0

.x

x K

z

v R
u d

v

 
  (4) 

Hence, this assumption will be covered by the half space hypothesis if the ratio of 

tangential and vertical initial velocity of the contact point is of the order of 1 or smaller. 
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Fig. 1 Scheme of the analysed impact problem – a rigid sphere  

is impacting on a viscoelastic half-space 

3. NUMERICAL MODEL BASED ON THE MDR 

Under the assumptions made, the motion of point K fully determines the motion of the 

sphere. The normal and tangential displacements of this point shall be uK,z and  uK,x. The 

equations of motion for those displacements are elementary given by 

 

2

K,

K,

1 ,

,

x

x S

z

z

F mR
u

m J

F
u

m

 
  

 



  (5) 

where Fx and Fz are the contact forces while the dots denote the time derivative. To 

determine these forces and thereby solve the axisymmetric problem described above 

within the framework of the MDR, two preliminary steps are necessary. First an equivalent 

plain profile g(x) has to be obtained from axisymmetric indenter profile f(r) via the Abel-like 

integral transform 

 
2 2

0

d d
( ) .

d

x
f r

g x x
r x r




   (6) 

A spherical indenter in the vicinity of the contact can be described by the parabolic profile 

 
2

( )
2

r
f r

R
   (7) 

and the equivalent profile accordingly is given by the expression 

 
2

( ) .
x

g x
R

   (8) 

88



274 E. WILLERT, S. KUSCHE, V. L. POPOV 

 

Fig. 2 Single element to model 

a standard solid 

 

Fig. 3 Single element to model  

a Kelvin-Voigt solid 

As the second step the viscoelastic properties of the half-space must be replaced by a 

one-dimensional foundation of independent, linear-viscoelastic elements. In case of a linear 

standard solid with the time-dependent shear modulus given in Eq. (1) those elements 

consist of a spring in series with a dashpot, the pair in parallel with a second spring (see Fig. 

2). In case of a Kelvin-Voigt model (see Fig. 3) the spring in series with the dashpot is rigid. 

The elements are at a distance Δx of each other. This value is arbitrary if small enough. Let 

us first consider the standard solid and write down the necessary relations of the model and 

the numerical algorithm. All equations for the Kelvin-Voigt model can be derived afterwards 

by the limiting process. 

The reaction force for a single element at position xi = i Δx, with outer and inner 

displacement vectors 
iu  and 

iu  has the components 

 
, 1 , , ,

, 1 , , ,

4
( ) ,

2

2
( ) .
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i x i x i x i x
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  (9) 

The inner point must fulfil the equilibrium conditions 

 
2 , , ,

2 ,z ,z ,z

( ) 0,

( ) 0.

i x i x i x

i i i

G u u u

G u u u




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  
  (10) 

For the time integration we will use the least order explicit Euler integration scheme 

with constant time step Δt. The current time step number shall be denoted by an upper 

index j. In the beginning all displacements are set to zero. Then, in each time step, first 

the normal contact problem must be solved. For the elements in contact the normal 

displacement is enforced by the motion of K, 

 
1

, , K, , for contact.j j j

i z i z zu u u t     (11) 

The elements not in contact are free of forces, i.e. the left side of Eqs. (9) is zero, and one 

obtains 
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 1 1

, , ,

1
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( )

j j j
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

 
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where we introduce relaxation time 
2/ G  . An element gets into contact if ,

j

i zu   

K, ( )j

z iu g x  and leaves contact if , 0j

i zf  . To solve the tangential contact problem the 

tangential displacements must be calculated. The elements outside the contact area progress 

according to 

 1 1

, , ,

1
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( )

j j j

i x i x i xu u u
G t



 
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  (13) 

For the elements in contact one has to distinguish between sticking and slipping elements. 

For all the sticking elements, the displacement is enforced by the movement of K,  

 1

, , K, , forstickingcontact.j j j

i x i x xu u u t     (14) 

An element in contact is able to stick if the resulting tangential force does not exceed the 

maximum value given by the Amontons-Coulomb law, i.e. if 

 , ,z , for stickingcontact.j j

i x if f    (15) 

Any element violating this condition will slip. In this case the tangential force is known to be 

 1

, ,z ,sgn( ), forslippingcontact.j j j

i x i i xf f f     (16) 

After the total contact forces are calculated by summation over all elements, 

 

,

,

,j j

x i x
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j j

z i z

i

F f

F f

 

 




  (17) 

the equations of motion (5) can be solved in each time step. Note that it is impossible that 

contact is re-established by the viscoelastic creep. For the Kelvin-Voigt model only τ and 

hence the inner displacements must be set to zero in the equations above.  

The algorithm was implemented in MATLAB™. Only time steps j and j-1 have to be 

stored. That is why this algorithm requires only little memory space. Also all operations 

are elementary, which makes the algorithm very fast (this is also why we are able to use a 

least order explicit integration scheme without stability problems) and enables us to do 

comprehensive parameter studies on an ordinary desktop PC (the calculation of a single 

impact took around one or two seconds on a machine with an Intel i5 processor). 

4. NUMERICAL INVESTIGATION USING BEM 

The results acquired with the MDR have been validated using the Boundary Element 

Method (BEM). The BEM-solution of the described problem is numerically exact under 

the assumptions stated before: the half-space approximation, quasi-static conditions and 

elastic similarity between the contacting surfaces. Since the BEM does not rely on axis-

symmetry, this assumption is only made to have results comparable with the MDR. 
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The application of the BEM consists of two steps. Firstly the problem of calculating 

the deflection field from a given pressure distribution and vice versa must be solved. This 

can be done by utilizing the fundamental solution for a point load acting on a viscoelastic 

half-space [37-39]. The material is assumed to be incompressible and components Fx, Fy, 

Fz of the point load are applied at time zero and are kept constant. The deflection of the 

surface can then be written as 
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In difference to the MDR, the time-dependent creep function for shear J(t) has been used. 

It is clear and known that J(t) and G(t) are not independent of each other. The creep function 

can be written by using the constants introduced in equation (1) in the following form: 
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Since the geometric dependences in the viscoelastic and elastic cases are the same, the 

developed algorithm can be used with only small modifications. In elastic contact mechanics 

it is a standard procedure to integrate the fundamental solution over a rectangle, assuming 

constant pressure [40]. This analytic solution is used to find the deflection field for an 

arbitrary but piecewise constant pressure distribution [41]. This task can be performed very 

fast and efficiently by using convolution techniques on a parallel computing architecture [42-

44]. The corresponding inverse problem, namely finding the pressure distribution to a given 

deflection field can be tackled by using the biconjugate gradient stabilized method [45].  

The above described methods have been applied to the viscoelastic problem. Since the 

pressure distribution will change in time, a discretisation is necessary. If, for each time step, 

the pressure distribution is assumed to be constant, the overall solution in the deflection field 

can be obtained by adding two solutions in each time step: one to remove the prior load and 

one to add the current load. Based on the fact that the arising sum grows linearly in time, 

it is crucial to reduce the numerical effort. This can be achieved by applying the special 

form of the creep function (19) and by observing the following time step. Then an iterative 

algorithm can be developed: 
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  (20) 

Herein uz,n is the normal deflection of the surface, J∞ = J(t = ∞), J0 = J(t = 0), and  fj  is the 

deflection due to a pressure distribution pj  – each at the time tj. In the last line of Eq. (20) 
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it can be seen that an additional deformation D
z
 has to been taken into account to include 

viscoelastic behaviour (in the elastic case D
z
 is equal to zero). The unknown term in the 

last line of Eq. (20) is fj+1, which means that the pressure distribution pj+1 is unknown. 

This can be calculated with the elastic algorithms mentioned before. It should be noted 

that this algorithm can handle only materials with a finite modulus of instant deformation, 

which excludes the Kelvin-Voigt solid.  

The tangential contact can be solved very similarly to the normal contact so that the same 

scheme can be used [46]. Only the calculation of the deflection in tangential direction ux, 

caused by shear stress has to be adopted. If a partial slip is involved, the calculation is 

modified in the following way: starting with a complete stick area, the deflection is given by 

the increment of displacement in one time step. If this leads to shear stress that is larger than 

the value allowed by the Coulomb’s law, this part of the contact area will slip. In the slip 

areas the tangential stress is set to |τ| = μp. Then the stress in the remaining stick area is 

calculated again, under the consideration of the deflection caused by the shear stress in the 

slip area. This is done until the stick area does not change anymore. In all performed 

simulations, the deformation perpendicular to the plane of the motion, uy , is neglected. It 

turns out that this assumption, in the case of parabolic bodies, causes a negligible error [47]. 

At this point, the contact problem itself is solved. For the integration in time both an explicit 

Euler scheme and the velocity Verlet algorithm have been used. In comparison, they show 

no difference in the global error of the velocities at the end of the simulation and in the 

contact time itself. For an estimation of the step size Δt the MDR solution has been used. For 

the geometric discretization a matrix of 256256 points has been chosen. The comparison 

with a finer discretization shows only a slight error reduction. 

For implementation it has to be considered that the total deflection in normal direction 

within the contact area is known at every time step since the indentation depth of the 

sphere is known. Contrariwise in tangential direction: the points coming into contact have 

a pre-deformation through coupling to the points within the contact area from a previous 

time step. This can be handled by adding only the current increment of tangential 

movement at the boundary of the sphere in each time step. 

The systematic investigation of the problem has been done with the MDR. The 

processing time for the BEM is much higher compared to the MDR. Therefore, only a few 

hundred parameter sets spreading over the full range covered by the investigation done with 

the MDR have been calculated with the BEM. It turns out that the relative differences in the 

coefficients of restitution have always been smaller than 0.5%. Therefore, it is reasonable 

that the MDR can be applied. 

5. RESULTS OF THE NUMERICAL MODEL: THE RESTITUTION COEFFICIENTS 

As a solution we are interested in the coefficients of restitution in normal and tangential 

direction 
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Maw et al. [13] have shown that in an ideally elastic case (the coefficient in normal 

direction being obviously unity) the coefficient in tangential direction only depends on the 

two dimensionless parameters 
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In the case of a sphere impacting on a viscoelastic half space modelled as a linear standard 

solid, two more dimensionless parameters are of interest, describing the viscoelastic material 

properties, namely 
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with the maximum contact radius for the impact with an elastic half space, 
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Of course, any combinations of those two additional parameters would also be possible to 

choose as governing variables. For example, in the previous publication on the no-slip 

impact Kusche [35] used the parameters 
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to capture the influence of the material behaviour. However, as we are interested mainly 

in the velocity-dependence of the coefficients of restitution, it seems convenient to select 

δ1 and γ, because the latter one is velocity-independent and therefore the velocity-

dependence due to viscoelasticity can be fully covered by parameter δ1. Moreover, the 

Kelvin-Voigt model can be recovered as the limiting case γ = 0. Also limit γ → ∞ corresponds 

to the elastic result. To reduce the number of governing parameters, we restrict ourselves 

mostly to χ = 7/6, which, amongst other cases, corresponds to the case of incompressible, 

homogenous spheres. To prove that actually  

 1 1( , ) and ( , , , )z z x xe e e e         (26) 

we made comprehensive numerical studies, the results of which are shown in the upcoming 

figures. Thereby we first focus on the limiting case of a Kelvin-Voigt solid and afterwards 

look at the more general standard solid. 

In Fig. 4 the coefficient of restitution in normal direction is shown for a Kelvin-Voigt 

solid as a function of δ1. All free input parameters for the simulations, i.e. velocities, 

measures of inertia and so on, have been generated randomly. Nevertheless, the points 

create continuous curves and hence our hypothesis is proven for the normal direction. It is 

easy to interpret the results, as the coefficient of normal restitution shows the often-used 

quasi-exponentially decreasing behaviour. This, however, only remains true for this material 

model of a Kelvin-Voigt solid, which corresponds to an infinitely fast relaxation within 
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the elastomer. It was already pointed out that this is problematic as the impact times are 

considered to be small and the relaxation time has to be accounted for in some way. We 

will see the effects later in the results for the standard solid.  

 
 

Fig. 4 Coefficient of restitution in normal 

direction for the impact on a Kelvin-

Voigt solid as a function of δ1  

 

Fig. 5 Coefficient of restitution in tangential 

direction as a function of δ1 and ψ 

with χ = 7/6. Online version in colour 

Fig. 5 gives the tangential coefficient of restitution ex as a function of δ1 and ψ for the 

impact on a Kelvin-Voigt half-space. The value of χ was fixed at 7/6, all other input parameters 

for the impact problem have been generated randomly and yet the solutions create continuous, 

smooth curves. The tangential restitution has a global maximum for an impact without viscosity 

around ψ = 2. On the right side of the contour plot the behaviour gets quite simple and can be 

explained the following way: for any material model configurations are possible for which the 

contact will completely slip during the whole impact. In this case the total tangential force is 

known due to the Coulomb’s law and hence the tangential restitution coefficient for full slip 

(and any material model) is given by the relation 
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Let us now look into the results for the standard solid. We restrict ourselves again to 

the case χ = 7/6 to spare the generally least important parameter. 

Fig. 6 gives the results for the normal restitution coefficient as a function of δ1. 

Several logarithmically-equally-distributed values for γ have been chosen and all other 

input parameters for the impact problem, as always, have been generated randomly. 

Nevertheless, the solutions create continuous curves and it is easy to observe the influence 

of γ on the velocity-dependent restitution: as said before γ → ∞ corresponds to the trivial 

elastic case and γ = 0 to the monotonically decreasing Kelvin-Voigt solution. For 

intermediate values of γ the coefficient of restitution has a global minimum. After that it 

increases again with increasing δ1, i.e. increasing normal inbound velocities. This 

distinguishes the general standard solid from its limiting case with infinitely fast 

relaxation and has, for example, a very interesting consequence for a (driven) granular gas 

of viscoelastic particles: as on the increasing part of the restitution curve, the coefficient 
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of restitution is larger for larger inbound velocities, a region of locally higher internal energy 

of the granular gas, i.e. higher velocities of the particles, might dissipate less energy than 

regions of lower energy, which might result in unstable states of the granular gas.  

 

Fig. 6 Coefficient of restitution in normal 

direction as a function of δ1 

(logarithmic) and different values of γ 

for the impact with a standard solid 

 

Fig. 7 Coefficient of restitution in tangential 

direction without slip (ψ = 0) as a 

function of δ1 (logarithmic) and 

different values of γ for the impact 

with a standard solid; χ = 7/6 

 

Fig. 8 Coefficient of restitution in tangential 

direction as a function of δ1 

(logarithmic) and ψ for the impact 

with a standard solid; χ = 7/6 and  

γ = 0.0825 

 

Fig. 9 Coefficient of restitution in tangential 

direction as a function of δ1 

(logarithmic) and ψ for the impact 

with a standard solid;  χ = 7/6 and  

γ = 1 

Fig. 7 presents the results for the tangential restitution in the case of no slip, which 

have been reported by Kusche [35] with a slightly different set of governing dimensionless 

parameters. In Fig. 8 and 9 the results are shown for the behaviour with slip. For increasing 

values of γ a bulb with ex ≈ 0.5 around ψ ≈ 2 is stretching to the left, i.e. the area with less 

viscosity. The other areas are less affected by the material properties. 

Finally, we come back to the full slip solution and the different regimes for parameter ψ.  
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In the elastic case Maw et al. [13] distinguish three different regimes: for ψ < 1 the impact 

will start in a completely sticking contact and remain like this during the whole compression 

phase; for ψ > 4χ – 1 the contact will fully slip during the whole impact; the intermediate values 

correspond to a mixed regime. Now, in the viscoelastic case, the time derivatives of the contact 

forces in the MDR-model in the very first moment of contact are given by 
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Hence, for a finite instantaneous stiffness (this excludes the Kelvin-Voigt body), the impact 

will begin with sticking contact, if 

 ( 0) ( 0) 1.x zF t F t        (29) 

In case of the Kelvin-Voigt body the contact forces in the first moment of contact are 

nonzero and the no-slip condition will be 

 ( 0) ( 0) 1.x zF t F t        (30) 

Hence, this lower transition value for ψ is unaffected by viscoelasticity.  

For any standard solid characterised by the two parameters δ1 and γ – and probably any 

material behaviour – there also exists a value ψc, for which the contact will completely slip 

during the whole impact if ψ > ψc. For complete slip the tangential coefficient of restitution 

is given by Eq. (27).  

 

Fig. 10 Critical value ψc, for which the 

contact will completely slip during 

the whole impact if ψ > ψc for the 

impact with a standard solid 

 

Fig. 11 Relative error between the 

numerical result for ψc and the 

analytic approximation (31)  

In Fig. 10 the value of 
c  is shown for different materials. Obviously this transition value 

strongly correlates with the normal restitution coefficient. The global maximum is elastic case 
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ψc = 11/3, and a very good approximation (with a relative error always smaller than 0.2%, see 

Fig. 11) is given by the expression 

 2 (1 ).c z ze e       (31) 

6. CONCLUSIONS 

Based on the numerical models we investigated the oblique impact of linear-viscoelastic 

spheres under the assumptions of quasi-stationarity, the validity of the half-space hypothesis, 

Amontons-Coulomb friction and short impact times. Numerical models based on both the 

Method of Dimensionality Reduction (MDR) and the Boundary Element Method (BEM) have 

been implemented. As expected both methods in their results only differ within the margin of a 

numerical error. Due to the enormous reduction of mathematical and computational effort 

achieved by the MDR we were able to perform comprehensive parameter studies for the 

examined impact problem. It is found that the problem solution, i.e. the coefficients of normal 

and tangential restitution, written in proper dimensionless variables will depend on exactly four 

different values, at least two of which contain explicit dependencies on the inbound velocities. 

By accounting for the finite relaxation time within the elastomer it is possible to increase the 

normal restitution coefficient with increasing inbound velocities. This is in contrast with most 

viscoelastic collision models used in the literature about granular media and may have 

interesting applications in granular chains or gases. 

As in the elastic case, three different regimes are possible depending on the inbound 

velocities: the contact may fully slip during the whole impact, completely stick during the 

compression phase or be in a mixed regime. Viscoelasticity reduces the angle of incidence 

necessary to ensure complete slip but does not affect the transition between the two other 

regimes. The transition to full slip strongly correlates with the coefficient of normal restitution. 

Of course, in practice the here-given assumptions pose severe restrictions, especially the 

half-space hypothesis, the assumed short impact time and the assumption of perfectly linear 

material behaviour. Nevertheless, the proposed model and its solution to the best our 

knowledge are the first – from a contact-mechanical point of view – rigorous and self-

consistent approach to the topic despite the extensive existing literature dealing with it. 

The proposed methods can without problems be applied to more general forms of the 

time-dependent shear modulus, for example represented in a Prony series. 

REFERENCES 

1. Lun, C.K.K., Savage, S.B., 1986, The Effects of an Impact Velocity Dependent Coefficient of Restitution on 

Stresses Developed by Sheared Granular Materials, Acta Mechanica, 63(1), pp. 15–44. 

2. Walton, O.R., Braun, R.L., 1986, Stress Calculations for Assemblies of Inelastic Spheres in Uniform Shear, 

Acta Mechanica, 63(1), pp. 73–86. 

3. Brilliantov, N.V., Spahn, F., Hertzsch, J.M., Pöschel, T., 1996, Model for Collisions in Granular Gases, Physical 

Review E, 53(5), pp. 5382–5392. 

4. Schwager, T., Pöschel, T., 1998, Coefficient of Normal Restitution of Viscous Particles and Cooling Rate of 

Granular Gases, Physical Review E, 57(1), pp. 650–654. 

5. Brilliantov, N.V., Pöschel, T., 2000, Velocity Distribution in Granular Gases of Viscoelastic Particles, Physical 

Review E, 61(5B), pp. 5573–5587. 

97



 The Influence of Viscoelasticity on Velocity-Dependent Restitutions in the Oblique Impact of Spheres 283 

6. Dubey, A.K., Brodova, A., Puri, S., Brilliantov, N.V., 2013, Velocity Distribution Function and Effective 

Restitution Coefficient for a Granular Gas of Viscoelastic Particles, Physical Review E, 87, 062202. 

7. Hertz, H., 1882, Über die Berührung fester elastischer Körper, Journal für die reine und angewandte 

Mathematik, 92, pp. 156–171. 

8. Hunter, S.C., 1957, Energy Absorbed by Elastic Waves during Impact, Journal of the Mechanics and Physics of 

Solids, 5(3), pp. 162–171. 

9. Cattaneo, C., 1938, Sul Contato di Due Corpo Elastici, Accademia dei Lincei, Rendiconti, Series 6, 27, pp. 

342–348, 434–436 and 474–478. 

10. Mindlin, R.D., 1949, Compliance of Elastic Bodies in Contact, Journal of Applied Mechanics, 16, pp. 259–268. 

11. Mindlin, R.D., Deresiewicz, H., 1953, Elastic Spheres in Contact under Varying Oblique Forces, Journal of 

Applied Mechanics, 20, pp. 327–344. 

12. Jäger, J., 1993, Elastic contact of Equal Spheres under Oblique Forces, Archive of Applied Mechanics, 63(6), 

pp. 402–412. 

13. Maw, N., Barber, J.R., Fawcett, J.N., 1976, The Oblique Impact of Elastic Spheres, Wear, 38(1), pp. 101–114. 

14. Barber, J.R., 1979, Adhesive Contact during the Oblique Impact of Elastic Spheres, Journal of Applied 

Mathematics and Physics (ZAMP), 30, pp. 468–476. 

15. Thornton, C., Yin, K.K., 1991, Impact of Elastic Spheres with and without Adhesion, Powder Technology, 65(1-

3), pp. 153–166. 

16. Jäger, J., 1994, Analytical Solutions of Contact Impact Problems, Applied Mechanics Review, 47(2), pp. 35–54. 

17. Popov, V.L., Heß, M., 2014, Method of Dimensionality Reduction in Contact Mechanics and Friction: A Users 

Handbook. I. Axially Symmetric Contacts, Facta Universitatis, Series Mechanical Engineering, 12(1), pp. 1–14. 

18. Popov, V.L., Pohrt, R., Heß, M., 2016, General Procedure for Solution of Contact Problems under Dynamic 

Normal and Tangential Loading Based on the Known Solution of Normal Contact Problem, Journal of Strain 

Analysis for Engineering Design, 51(4), pp. 247–255. 

19. Popov, V.L., Heß, M., 2015, Method of Dimensionality Reduction in Contact Mechanics and Friction, Springer, 

Heidelberg, ISBN 978-3-642-53875-9. 

20. Lyashenko, I.A., Popov, V.L., 2015, Impact of an Elastic Sphere with an Elastic Half Space Revisited: 

Numerical Analysis based on the Method of Dimensionality Reduction, Scientific Reports, 5, 8479. 

21. Willert, E., Popov, V.L., 2016, Impact of an Elastic Sphere with an Elastic Half Space with a Constant 

Coefficient of Friction: Numerical Analysis Based on the Method of Dimensionality Reduction, ZAMM 

Zeitschrift für Angewandte Mathematik und Mechanik, 96(9), pp. 1089–1095. 

22. Lee, E.H., 1955, Stress Analysis in Visco-Elastic Bodies, Quarterly Applied Mathematics, 13(2), pp. 183–190. 

23. Radok, J.R.M., 1957, Visco-Elastic Stress Analysis, Quarterly Applied Mathematics, 15(2), pp. 198–202. 

24. Lee, E.H., Radok, J.R.M., 1960, The Contact Problem for Viscoelastic Bodies, Journal of Applied Mechanics, 

27(3), pp. 438–444. 

25. Graham, G.A.C., 1965, The Contact Problem in the Linear Theory of Viscoelasticity, International Journal of 

Engineering Science, 3(1), pp. 27–46. 

26. Graham, G.A.C., 1967, The Contact Problem in the Linear Theory of Viscoelasticity When the Time-Dependent 

Contact Area Has any Number of Maxima and Minima, International Journal of Engineering Science, 5(6), pp. 

495–514. 

27. Ting, T.C.T., 1966, The Contact Stresses between a Rigid Indenter and a Viscoelastic Half Space, Journal of 

Applied Mechanics, 33(4), pp. 845–854. 

28. Ting, T.C.T., 1968, Contact Problems in the Linear Theory of Viscoelasticity, Journal of Applied Mechanics, 

35(2), pp. 248–254. 

29. Greenwood, J.A., 2010, Contact between an Axisymmetric Indenter and a Viscoelastic Half Space, International 

Journal of Mechanical Sciences, 52(6), pp. 829–835. 

30. Pao, Y.H., 1955, Extension of the Hertz Theory of Impact to the Viscoelastic Case, Journal of Applied Physics, 

26(9), pp. 1083–1088. 

31. Hunter, S.C., 1960, The Hertz Problem for a Rigid Spherical Indenter and a Viscoelastic Half Space, Journal of 

the Mechanics and Physics of Solids, 8(4), pp. 219–234. 

32. Argatov, I.I., 2013, Mathematical Modeling of Linear Viscoelastic Impact: Application to Drop Impact Testing 

of Articular Cartilage, Tribology International, 63, pp. 213–225. 

33. Kürschner, S., Filippov, A.E., 2012, Normal Contact between a Rigid Surface and a Viscous Body: Verification 

of the Method of Reduction of Dimensionality for Viscous Media, Physical Mesomechanics, 15(4), pp. 25–30. 

34. Argatov, I.I., Popov, V.L., 2015, Rebound Indentation Problem for a Viscoelastic Half-Space and Axisymmetric 

Indenter – Solution by the Method of Dimensionality Reduction, ZAMM Zeitschrift für Angewandte 

Mathematik und Mechanik, 96(8), pp. 956–967. 

98



284 E. WILLERT, S. KUSCHE, V. L. POPOV 

35. Kusche, S., 2016, The Boundary Element Method for Visco-elastic Material Applied to the Oblique Impact of 

Spheres, Facta Universitatis, Series Mechanical Engineering, 14(3), pp. 293–300. 

36. Kusche, S., 2016, Simulation von Kontaktproblemen bei linearem viskoelastischem Materialverhalten, Doctoral 

Dissertation, Technische Universität Berlin 

37. Talybly, L., 2010, Boussinesq’s viscoelastic problem on normal concentrated force on a half-space surface, 

Mechanics of Time-Dependent Materials, 14(3), pp. 253–259. 

38. Gasanova, L., Gasanova, P., Talybly, L., 2011, Solution of a viscoelastic boundary-value problem on the action 

of a concentrated force in an infinite plane, Mechanics of Solids, 46(5), pp. 772–778.  

39. Peng, Y., Zhou, D., 2012, Stress Distributions Due to a Concentrated Force on Viscoelastic Half-Space, Journal 

of Computation & Modeling, 2(4), pp. 51–74. 

40. Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge. 

41. Pohrt, R., Li, Q., 2014, Complete Boundary Element Formulation for Normal and Tangential Contact 

Problems, Physical Mesomechanics, 17(4), pp. 334-340. 

42. Cho, Y. J., Koo, Y. P., Kim, T. W., 2000, A new FFT technique for the analysis of contact pressure and 

subsurface stress in a semi-infinite solid, KSME International Journal, 14(3), pp. 331–337. 

43. Liu, S., Wang, Q., Liu, G., 2000, A versatile method of discrete convolution and FFT DC-FFT for contact 

analyses, Wear, 243(1-2), pp. 101–111. 

44. Wang, W.Z., Wang, H., Liu, Y.C., Hu, Y.Z., Zhu, D., 2003, A comparative study of the methods for calculation 

of surface elastic deformation, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of 

Engineering Tribology, 217, pp. 145–154. 

45. van der Vorst, H.A., 1992, BI-CGSTAB: A Fast and Smoothly Converging Variant of BI-CG for the Solution of 

Nonsymmetric Linear Systems, SIAM Journal of Scientific and Statistical Computing, 13(2), pp. 631–644. 

46. Kusche, S., 2016, Frictional force between a rotationally symmetric indenter and a viscoelastic half-space, 

ZAMM Zeitschrift für Angewandte Mathematik und Mechanik, DOI: 10.1002/zamm.201500169. 

47. Munisamy, R.L., Hills, D.A., Nowell, D., 1994, Static axisymmetric Hertzian contacts subject to shearing 

forces, Journal of Applied Mechanics, 61(2), pp. 278–283. 

99



FACTA UNIVERSITATIS  

Series: Mechanical Engineering Vol. 16, No 1, 2018, pp. 9 - 18 

https://doi.org/10.22190/FUME171121003W 

© 2018 by University of Niš, Serbia | Creative Commons Licence: CC BY-NC-ND 

Original scientific paper 

DUGDALE-MAUGIS ADHESIVE NORMAL CONTACT OF 

AXISYMMETRIC POWER-LAW GRADED ELASTIC BODIES 

UDC 539.3 

Emanuel Willert  

Berlin University of Technology, Berlin, Germany 

Abstract. A closed-form general analytic solution is presented for the adhesive normal 

contact of convex axisymmetric power-law graded elastic bodies using a Dugdale-

Maugis model for the adhesive stress. The case of spherical contacting bodies is 

studied in detail. The known JKR- and DMT-limits can be derived from the general 

solution, whereas the transition between both can be captured introducing a 

generalized Tabor parameter depending on the material grading. The influence of the 

Tabor parameter and the material grading is studied. 
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1. INTRODUCTION 

 Propelled by the technological demand for versatile high-performance materials and 

the study of biological materials and contact solutions, living nature developed in several 

circumstances, Functionally Graded Materials (FGM), i.e. media with continuously 

inhomogeneous mechanical properties, have encountered a lot of scientific interest and 

research in the past years. The use of FGM is proven to be possibly beneficial in physical 

[1] and biological [2] applications. Whereas rigorous solutions for non-adhesive contact 

problems of FGM, at least for some special forms of inhomogeneity, have been available 

for quite a long time [3-5], the adhesive contact of FGM is still in the focus of current 

research [6-9]. These latter studies, nonetheless, only concern the limiting case of a 

negligible range of the adhesive interaction, established by Johnson, Kendall and Roberts 

(JKR, [10]) in 1971. After Derjaguin, Muller and Toporov (DMT, [11]) a few years later 

presented a different theory of long-range adhesive interactions giving a different result 
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for the critical pull-off force in a parabolic contact, a discussion started, which was only 

finally resolved by Maugis [12], who – based on a model of the adhesive stress first 

introduced by Dugdale [13] – was able to show the transition between what was proven 

by Tabor [14] to be correct descriptions of limiting cases. The present paper generalizes 

Maugis’ solution for the adhesive contact of homogeneous spheres to arbitrary 

axisymmetric bodies with elastic-grading in form of a power-law. As the contact problem 

of interest can be ascribed to the frictionless, non-adhesive normal contact of power-law 

graded elastic materials a solution procedure based on the Method of Dimensionality 

Reduction (MDR) can be applied. 

2. GENERAL AXISYMMETRIC SOLUTION 

We consider elastic grading of the Young modulus E with depth z in form of a power-

law: 

 0

0

( ) ,     1 1.

k

z
E z E k

z

 
    

 
  (1) 

Thereby constants E0 and z0 as well as Poisson ratio ν may be different for the contacting 

bodies. Exponent k, however, needs to be the same for both of them. As the exponent may 

take positive or negative values, both soft surfaces with a hard core and hard surfaces with 

a soft core can be studied.  

It has been shown that the frictionless normal contact of axisymmetric power-law 

graded elastic bodies can be exactly mapped onto a plain contact of a rigid profile g with 

a one-dimensional foundation of independent linear springs, each in distant Δx from each 

other [15,16]. Thereby the equivalent plain profile g = g(x) within this mapping procedure 

called Method of Dimensionality Reduction (MDR) can be calculated from the 

axisymmetric gap f = f (r) between the non-deformed three-dimensional bodies by the 

integral transform: 
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Stiffness Δkz of a single spring at position x is given by the expression: 
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  (3) 

with: 
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  (4) 

Dimensionless auxiliary function H can be determined from exponent k and Poisson’s 

ratio according to: 
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with: 
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and  
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and Gamma function Γ. 

Note that the spatial distribution of the spring stiffness in Eq. (3) obeys the same 

power-law as the elastic grading. If equivalent profile g is pressed into the foundation of 

springs by an indentation depth d the vertical spring displacement w1D(x) in the area of 

direct contact is elementarily given by:  

 1D ( ) ( ),     ,w x d g x x a     (8) 

with contact radius a. Normal force FN as well as the local distributions of pressure p and 

relative displacement w in the original three-dimensional system can be calculated from 

w1D(x) according to: 
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  (9) 

The second of these latter Eqs. (9) can be inverted to give: 
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If we now assume a Dugdale model of a constant adhesive stress σ0 within the 

adhesive zone with radius b: 

 adh 0( ) ,     ,p r r b     (11) 

the corresponding displacements in the MDR model are due to Eq. (10) given by: 
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  (12) 

Hence, the one-dimensional displacements in the Dugdale-Maugis adhesive contact are: 
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For the three-dimensional stresses to be finite at the edge of direct contact these 

displacements must be continuous at x = a, which results in: 
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The total external normal force is due to the first of Eqs. (9) given by: 
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with the hypergeometric function: 
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Radius b of the adhesive zone is not known a priori but can be determined from the 

condition that the gap between the deformed surfaces at r = b has to equal the range h of 

the adhesive stresses. As the gap between the deformed surfaces can be easily calculated 

from three-dimensional relative displacement w, indentation depth d and axisymmetric 

non-deformed gap f, we obtain the additional relation  

 ( ) ( ).h w r b d f r b       (17) 

to close the equation system. Evaluating Eq. (17) with the help of the third of Eqs. (9) and 

using the identity: 
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one obtains: 
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Equations (14), (15) and (19) completely solve the given contact problem. In the 

homogeneous case k = 0 they are reduced to the axisymmetric generalization of Maugis’ 

results given very recently by Popov et al. [17]. The stresses in the area of direct contact 

could theoretically be calculated inserting Eq. (13) into the second of Eqs. (9).  

3. THE JKR LIMIT 

It is of course possible to retrieve the known solution in the JKR limit of adhesion 

from the relations derived in the previous section. For this purpose we study the limit of 

negligible adhesion range h → 0, whereas the surface energy per unit area, Δγ = σ0h, is 

kept constant. In this case the radius of the adhesive zone can be written in the form: 

 (1 ),b a     (20) 

with a small parameter ε. Using the linearization: 

 ( ) ( ) ( ) ,g a x g a g a x      (21) 

performing the integration and neglecting all terms of higher than first order in ε leads to: 
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Hence, 
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and therefore: 
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which perfectly coincides with the known solution in the JKR limit [8]. The normal force 

via the same mechanism is also reduced to the known relation: 
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Note that Eq. (23) is actually independent of the profiles of the contacting bodies. 

4. PARABOLIC CONTACT 

Let us now consider the specific case of parabolic contact with the radius of curvature 

R, i.e.: 
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104



14 E. WILLERT 

The equivalent profile is accordingly: 
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Thus, evaluating the general solution derived above, the solution of the Dugdale-Maugis 

adhesive normal contact problem in case of power-law elastic grading is given by: 
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Radius b of the adhesive zone can be determined from the condition: 
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Introducing the normalized variables 
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with the critical values in the JKR limit under force-controlled boundary conditions [6]: 
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and the generalized Tabor parameter for power-law elastic grading, i.e. the ratio of the 

characteristic height of the adhesive neck and the adhesion range:  
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Equations (28) can be written in the form: 
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The compatibility condition (29) in dimensionless variables reads: 
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which in the homogeneous case coincides with Maugis’ solution [12] (Maugis uses a 

slightly different scaling for normalization). The JKR limit is given by the known 

relations [17]: 

 

1

JKR 2 2

3

JKR 3 2

3 4
,

1 1

2 .

k

k

k

k
d a a

k k

F a a








 

 

 

  (35) 

As the adhesive force in the DMT limit, 

 
DMT

adh 2 ,F R     (36) 

is independent of the elastic contact properties (it is actually the force for the adhesive 

contact of rigid spheres derived by Bradley [18]), the DMT limit of Eqs. (33) reads: 

106



16 E. WILLERT 

 

DMT 2

DMT 3

3
,

1

4
.

3

k

k
d a

k

F a
k








 


  (37) 

To illustrate above findings and the influence of material grading Figs. 1 and 2 show 

the implicitly defined force-indentation relations as well as the respective JKR- and DMT 

limits for two different values of the power-law exponent k. 

 

Fig. 1 Force-indentation-curves for the Dugdale-Maugis adhesive normal contact of power-

law graded elastic spheres for k = -0.5 and several values of the Tabor parameter Λ  

 

Fig. 2 Force-indentation-curves for the Dugdale-Maugis adhesive normal contact of power-

law graded elastic spheres for k = 0.5 and several values of the Tabor parameter Λ 
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Note that the DMT limit is only well-defined for positive indentation depths although 

the branch without direct contact (and therefore negative indentation depths) can be seen 

as its “natural” continuation. To denote this slight distinction a small gap is left between 

the DMT limit and the curve without direct contact in Fig. 1. Obviously the convergence 

for higher values of the Tabor parameter towards the JKR limit is much faster for larger 

values of k. For k = 0.5 there is already no noticeable difference between the solution for 

Λ = 1 and the JKR limit. Also the normalized indentation depths are getting much higher 

for larger values of k. Interestingly, the critical pull-off forces in the JKR- and DMT limit 

are the same for k → 1 (as it was pointed out already in [6]). In this case the left branch of 

the JKR curve and the curve without direct contact will be practically indistinguishable. 

5. CONCLUSIONS 

Based on the MDR a closed-form analytic solution has been obtained for the Dugdale-

Maugis adhesive normal contact of arbitrary convex axisymmetric, power-law graded elastic 

bodies. As the most common and probably most relevant special case the contact of 

spherical or parabolic bodies has been studied in detail. The common limits for very large 

(JKR) or very small (DMT) values of the Tabor parameter are derived from the general 

solution. In dimensionless variables the relations between indentation depth, contact radii 

and normal force only depend on the Tabor parameter and exponent k of the elastic grading. 

Thereby the convergence for larger values of the Tabor parameter towards the JKR limit is 

faster for higher values of k. 

 The presented solution is of course based on strong contact-mechanical assumptions 

(half-space hypothesis, absence of friction or roughness) and quantitatively problematic 

physical models (power-law grading with either infinitely stiff or infinitely soft surfaces, 

Dugdale model for the adhesive stress); it is, however, to the author’s best knowledge, the 

only tool, to rigorously study the influence of both material grading and adhesion range in 

a closed form, for example in micro- or nano-applications, for which the range of the 

(adhesive) molecular forces becomes relevant. And although other models might seem 

physically more appropriate, they will probably neither allow for analytic treatment nor 

show a qualitatively different behavior.  

For future work it would be interesting to compare the obtained analytical results with 

numerical or experimental findings. 
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Abstract. Recently the final worn shape of elastic indenters due to fretting wear was 

analytically solved using the method of dimensionality reduction. In this paper we extend 

this model to dual-motion fretting wear and take into account that the indenter is initially 

pressed with constant indentation depth and moved horizontally with constant 

displacement. Two key parameters, the maximal indentation depth during oscillation 

and the stick area radius in the final state as well as the liming shape of indenter are 

analytically calculated. It is shown that the oscillation amplitudes and the initially 

indented or moved displacements have an influence on the final shaking-down shape. 

Key Words: Fretting Wear, Dual-motion, Tangential Force, Oscillation 

1. INTRODUCTION 

Fretting wear is a surface destruction process in the frictional contacts subjected to 

oscillating load with small amplitude [1]. This phenomenon occurs very often in the 

vibrating connections of mechanical elements, such as clamping devices, interference fit 

joints, gear or bearing contacts and electrical connectors, etc. [2-4]. Fretting leads to 

material loss, crack formation as well as fatigue failure [5]. In the last few decades many 

experimental and theoretical investigations have been intensively carried out to understand 

this process, for example, by using the finite element method or that of the boundary 

element [6, 7]. However, there are still some unsolved basic problems, especially under 

complicated loading [8]. Recently, a new method known as that of dimensionality reduction 

(MDR) was applied to analyzing the process of fretting wear as well as its final ‘shake 

down’ state for arbitrary axisymmetric shape of elastic or viscoelastic indenter [9-11]. In 
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paper [9] a general theoretical solution of the limiting profile due to fretting wear was given 

for an arbitrary axisymmetric indenter. For the case of an elastic indenter under the 

tangential oscillation [10], a rapid numerical procedure based on the MDR was later 

developed to simulate the wear process, and its results for the final state of wear also 

verified the solution in [9]. Furthermore, a similar MDR-based procedure was suggested for 

a gross-slip wear problem and the results are exactly same to the solution obtained by the 

full FEM formulation, and it is for several orders of magnitude faster than the FEM [12]. 

Fretting wear of viscoelastic indenters was analyzed in papers [13] and [14], where the 

analytical solution of limiting profile due to dual-motion oscillation was presented in [13], 

and the numerical simulation of fretting wear under the tangential oscillation was carried 

out in [14]. These final worn shapes for spherical indenters under multiple-mode fretting 

conditions have been validated by experimental investigation [15]. Till now most work 

focuses on fretting wear only under the tangential oscillation and less on dual-mode fretting. 

In this paper, we consider the fretting wear of elastic indenter oscillating in both tangential 

and normal directions, and take into account the factor that the indenter has initially 

constant displacements in both normal and tangential direction.  

2. WEAR CRITERION IN FRETTING CONTACT 

This paper is an extension of the solutions in [9]; therefore, firstly we give a very brief 

discussion of wear condition in [9]. We consider a contact between a rigid axis-symmetrical 

body and an elastic half space. Under the normal load the indenter is pressed into the half 

space and then oscillates tangentially. It is known that, if the oscillation amplitude is small 

enough, there will be an annular slip-zone generated at the boundary of contact area and a 

circular stick-zone at the inner area, as illustrated in Fig.1.  

 

Fig. 1 Schematic representation of the stick-slip area in fretting contact 

The stick and slip condition can be determined by the classic Amontons’ law: if 

tangential stress  is smaller than normal pressure p multiplied by a constant coefficient of 

friction µ, τ < µp, the surfaces of contact bodies stick together, and in the slip region the 

tangential stress remains constant and equal to product µp: 

 
, in stick area

, in slip area  






p

p

 

 
  (1) 

According to the Reye-Archard-Khrushchov wear law [16, 17], the wear volume is 

proportional to the normal force (or pressure), the relative tangential displacement and of 

contacting bodies and reversely proportional to the hardness. From this law, the wear in the 
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local contact area vanishes when the normal pressure becomes zero or there is no relative 

displacement between two bodies. As described in [9], this no-wear condition can be 

written as:  

 
either     0

No wear condition: 
or          0x

p

u




 
  (2) 

In the process of fretting wear, the surfaces in the stick area have no relative 

displacement, so that no wear occurs in this contact area during the whole process. Due to 

slip at the boundary wear occurs in this area, but the normal pressure will reduce to zero 

finally; therefore, there is no wear any more in this local contact area in the final state. In this 

paper we analyze this limiting profile of indenter.  

3. SOLUTION FOR PRE-STRESSED DUAL-MOTION PROBLEM  

The analytical solution of limiting profile in [9] was obtained based on the method of 

dimensionality reduction (MDR). Using this method the three-dimensional normal and 

tangential contact problems for axis-symmetric bodies can be mapped into one-dimensional 

contact with a properly defined foundation [18-21]. According to the rules of the MDR, 

three-dimensional pressure distribution p(r) can be calculated from the profile of 

one-dimensional indenter g(x): 

 
*

2 2

( )
 ( ) d

 




r

E g x
p r x

x r
.  (3) 

From no-wear conditions, Eq. (2), it follows that there are two parts in the contact areas 

in the final state: in the inner contact area with radius c no wear occurs because of no 

relative displacement Δux=0, so that the final profile keeps its initial form g∞(x) = g0(x) for 

r < c; at boundary r > c the pressure in the final state reduces to zero, p(r) = 0. From Eq. (3), 

p(r) = 0 means that g′(x) = 0 and g(x) = const for c < x < a and the value of const is equal to 

maximum indentation depth dmax achieved during the whole oscillation process. Thus, the 

one-dimensional MDR-transformed profile in the final shakedown state has the form 

 
0
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( ),      for 0
( )

,      for 

g x x c
g x

d c x a


 
 

 
  (4) 

According to the reverse transformation in the MDR, the three-dimensional limiting 

shape can be calculated as [9] 

 

0

0
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( ),                                                  
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


 

 
  

 
 

.  (5) 

Eq. (5) gives the solution for limiting shake-down-state shape of the indenter. Given an 

initial three-dimensional profile of indenter, its limiting shape can be determined if the two 

parameters are known: radius c of the stick area in the limiting state and maximum 

indentation depth dmax. In the following we discuss how these two governing parameters can 

be determined in our pre-stressed dual-motion problem.  
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Such a contact is taken into consideration. The indenter is pressed into an elastic 

half-space with an indentation depth d0, and moved horizontally with a distance x0, then 

oscillates harmonically according to 

 (0)

0 0 sin( )z z zd d u d u t        (6) 

in vertical direction and  

 (0)

0 sin( ) x x xu x u t   (7) 

in horizontal direction.  is phase shift between normal and tangential oscillations. This 

movement is illustrated in Fig. 2. Here we consider small amplitude of oscillations under the 

assumption that uz
(0) 

< d0 and ux
(0)

 < x0, and all these four parameters are positive. Now we 

calculate the two important parameters.  

(1) The maximum indentation depth. This one can be easily obtained by Eq. (6):   

 (0) (0)

max 0 0
( )

max{ sin( )}z z z
t

d d u t d u      .  (8) 

 

Fig. 2 Illustration of dual-motion of the indenter 

(2) Radius c of the stick area. According to Eq.(1), radius c can be determined by the 

condition that tangential force kxux(c) of springs at each time moment is smaller than or 

equal to coefficient of friction µ multiplied by normal force kzuz(x):  

 * (0) * (0)

0 0( sin( )) ( sin( ) ( ))x x z zG x x u t E x d u t g c              (9) 

Solving this inequality with respect to g(c) gives 
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g c d u t x u t

E
  


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or 
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(0) (0)
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( ) min sin( ) ( sin( ))z z x x

t

G
g c d u t x u t

E
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

 
     

 
  (11) 

From Eq.(11), it can be seen that the value of g(c) is dependent on phase shift . If it is 

not fixed, that means phase shift  is not constant but changes all the time, then g(c) has a 

very simple and general form 

 
*

(0) (0)

0 0*
( ) ( )z x

G
g c d u x u

E
    .  (12) 
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However, if the phase shift is constant, the solution of Eq. (11) is not easy to calculate. 

Here we consider only a special case of same oscillation frequencies: ωx = ωz = ω. Solving 

the Eq. (11) gives  

 

2
* * *

2(0) (0) (0) (0)

min 0 0* * *
( ) 2 cosz z x x

G G G
g c d x u u u u

E E E


  

 
      

 
.  (13) 

Now the two parameters, radius c of the stick area in the limiting state and maximum 

indentation depth dmax are obtained. Substitute Eqs. (8) and (13) to the limiting profile Eq. 

(5), then the three-dimensional limiting shape of the indenter can be calculated. It is seen 

that the two parameters as well as the limiting shape depend on oscillation amplitudes uz
(0) 

and ux
(0)

, phase shift  between normal and tangential movements, and also the initial 

pre-indented and –displaced distance d0 and x0. 

Radius c  of the stick area is briefly discussed here. From Eq.(13), the smallest stick radius 

is given when phase shift  = π, and the value are the same to (12) in the case of no-fixed 

phase. The maximum stick radius (minimum wear volume) is realized at  = 0: 

 
* *

(0) (0)

0 0* *
( ) z x

G G
g c d x u u

E E 
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If the phase  = ±π/2, the stick area is given by  

 

2
* *

(0)2 (0)2
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 
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z x

G G
g c d x u u

E E 
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It is noted that these results of the stick area as well as the related limiting profile are 

independent of the frequencies of normal and tangential oscillations.  

With an example of parabolic indenter we show how the limiting profile can be calculated in 

the case of pre-displaced dual-motion. The one-dimensional profile of spherical indenter with 

radius R is given by g(x) = x
2
/R [18]. From Eq. (8) the maximal indentation depth is equal to 

dmax = d0+uz
(0)

. If the phase shift between normal and tangential oscillations is  = π, then the 

stick radius is calculated by 

Eq. (12) as c
2
/R = d0–uz

(0)
– 

(x0+ux
(0)

)G
*
/(µE

*
). Substituting 

these two parameters dmax and c 

into basic solution, Eq. (5), 

the final profile in this case is 

then obtained. An example of 

this final shape is shown in 

Fig. 3. The worn shape of the 

indenter can be clearly seen, 

that is, this part lies in the slip 

area and the strongest wear is 

almost in the middle of the 

slip region. 
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Fig. 3 An example of limiting shape of parabolic indenter  
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4. CONCLUSION 

We extended the basic solution of limiting shape of axis-symmetric profiles due to 

fretting wear in paper [9] to the case of pre-stressed dual-motion fretting wear. It means that 

the indenter is pressed into the half space with initial indentation depth and initial tangential 

displacement; it oscillates in both vertical and horizontal directions. The emphasis of the 

analysis is placed on two parameters – the maximum indentation depth during the 

oscillation process and the radius of the stick area in the final state, which determine the 

limiting shape of worn profile according to basic analytical solution in [9]. For the 

particular case in this paper we derived and obtained the relation of these two parameters, 

and it is shown that they depend on the oscillation amplitudes, the phase shift between 

normal and tangential movements, as well as on the initially indented and displaced 

distance. Especially the different phase shift between normal and tangential oscillations for 

the same frequency will result in a different size of the stick area as well as a different 

limiting profile. With an example of parabolic indenter oscillating on a half space, we 

present its final worn shape. The worn area is clearly observed and the volume of material 

loss can be further calculated by comparison with the initial shape of profile.  

Acknowledgements: The author thanks V.L. Popov for valuable discussions. 
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Abstract. Recently the method of dimensionality reduction (MDR) has been introduced 

to solve axisymmetric contact problems easily and exactly. The list of tasks that this 

method can deal with comprises normal, tangential, adhesive and rolling contacts with 

simply connected contact areas between elastic or viscoelastic bodies. Due to its 

simplicity and easy applicability the MDR provides the possibility of fast and comprehensive 

studies of contact problems in technological or biological systems, for example bearings, 

artificial hip joints, wheel-rail systems or others. Within the complicated three-dimensional 

contact theory those studies, in most cases, cannot be done without a tremendous 

mathematical or numerical effort.  

In view of all this, the torsional contact problems have been disregarded until now, 

although it is known that torsion is a major reason of wear and possible failure of 

system components. Therefore, in the present paper, we extend the MDR to contacts of 

axisymmetric profiles under superimposed normal and torsional loading. 

Key Words: Contact Mechanics, Method of Dimensionality Reduction, Torsion, 

Friction, Stick, Slip 

1. INTRODUCTION 

Pure torsional contacts or normal and torsional contacts coupled by friction were not 

given much attention in the past, although torsional loading is known to be a major reason 

of wear and fatigue.  

In [1] Lubkin gave the shear stress distribution for the torsional contact between two 

elastic spheres with partial slip. Hetényi and McDonald Jr. calculated the stresses and 

displacements for the full-sliding contact between an elastic sphere and an elastic halfspace 

using Hankel transforms [2]. Also based on Hankel transforms, i.e. Bessel functions,  Kartal 
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et al. analyzed the torsional contact with partial slip between flat-ended elastic cylinders [3]. 

Jäger determined the stress distributions in the form of Abel transforms for the torsional 

contact with partial slip between axisymmetric bodies of arbitrary profile shape [4]. He 

thereby used a superposition of flat-punch-solutions to solve the contact problem of 

arbitrarily shaped bodies. In the experimental work [5] Trejo et al. investigated the friction 

between an elastomer and a randomly rough surface using a torsional contact configuration. 

In a series of recent papers, Popov and collaborators have introduced the so-called method 

of dimensionality reduction (MDR), which allows solving normal contact problems of 

axisymmetric elastic and viscoelastic bodies as well as tangential contact problems with a 

constant coefficient of friction for arbitrary loading histories [6, 7]. In the monographs [8] and 

[9], the MDR has been summarized and many applications have been provided. Moreover, an 

introduction into its usage in the form of a user's handbook can be found in [10].  

In the present paper, we are showing that the contact with torsion (rotation around the 

normal axis to the contact plane) can also be described with the MDR as long as there is 

no slip in the contact or the thickness of the slip annulus at the edge of the contact is small 

compared to the contact radius.  

The paper is organized as follows: In the Section 2 we reproduce, for convenience of the 

reader, the derivation of the MDR equations for the normal contact following [9]. In the Section 

3 the application of the MDR to contacts with torsion without slip is discussed. In the Section 4 

the torsional contact with a narrow slip region is considered. Section 5 closes the paper. 

2. METHOD OF DIMENSIONALITY REDUCTION FOR THE NORMAL CONTACT 

In this section, the equations of the MDR for the normal contact of axisymmetric profiles 

f (r) with a compact area of contact are deduced. Thereby we follow the idea of Jäger [11] to 

derive the solution of an axisymmetric contact problem by summation of differential flat punch 

solutions.  

A flat punch of radius a, indenting an elastic half space with effective elastic modulus 

E
*
 by indentation depth d, produces displacement uz   
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The resulting pressure distribution will be 
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and the total normal force 

 *2NF E ad . (3) 

Hence, contact stiffness kz is 

 *d
( ) 2

d

N

z

F
k a E a

d
  . (4) 

Note that this equation is valid for any profile shape, if a is understood as the current 

contact radius.  
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Let us assume a contact between a rigid indenter of shape z = f (r) and an elastic half 

space. The indentation depth due to normal force FN will be d and contact radius a. For 

any given profile shape any of those three parameters will unambiguously define the other 

two. Especially, the indentation depth is a definite function of the contact radius, which 

we will denote by  

 ( )d g a . (5) 

Firstly we show that the complete solution of the normal contact problem will be 

unambiguously determined by function d = g(a). 

Analyzing the complete process of indentation from its very first moment until the 

final indentation, the current values of the normal force, indentation depth and contact 

radius are given by NF , d  and a . During the indentation process, the indentation depth 

changes from d = 0 to d  = d, the contact radius accordingly from a  = 0 to a  = a and 

the normal force from NF  = 0 to NF = FN. The final normal force can be written as 

 
0 0

d d
d d

dd

NF a

N
N N

F d
F F a

ad
   . (6) 

If we take into account that the differential contact stiffness of an area with radius a  is 

given by (4) and the indentation depth by (5), we get 

 *

0

d ( )
2 d

d

a

N

g a
F E a a

a
  , (7) 

which gives after partial integration  

  * *

0 0

2 ( ) ( )d 2 ( ) d

a a

NF E a g a g a a E d g a a
   

       
   

  . (8) 

Let us calculate the pressure distribution within the contact area. An infinitesimal 

indentation d d  of an area with radius a  will, due to (2), produce the pressure 

 
*

2 2

1
d ( ) d

E
p r d

a r



. (9) 

The pressure distribution at the end of the indentation process is given by the sum of all 

infinitesimal pressure components, 

 
* *

2 2 2 2
( )

1 1 d ( )
( ) d d

d

d a

d r r

E E g a
p r d a

aa r a r 
 

 
  . (10) 

Hence, function d = g(a) unambiguously defines the pressure distribution and therefore 

the total normal force as well. That is why the solution of the contact problem is reduced 

to the determination of this function. 

This can be done as follows: Infinitesimal indentation dd  mentioned above will, due 

to (1), produce surface displacement at r a a    

 
2

d ( ) arcsin dz

a
u a d

a

 
  

 
. (11) 

Again, the total displacement can be understood as a sum of all infinitesimal indentations: 
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0 0

2 2 d ( )
( ) arcsin d arcsin d

d

d a

z

a a g a
u a d a

a a a 

   
    

   
   (12) 

On the other hand, this displacement is given by ( ) ( )zu a d f a  : 

 
0

2 d ( )
( ) arcsin d

d

a
a g a

d f a a
a a

 
   

 
 , (13) 

which gives after partial integration 

 
2 2

0

2 ( )
( ) d

a
g a

f a a
a a




 . (14) 

This is an Abel integration equation, which can be inverted [12]:  

 
2 2

0

( )
( ) d

a
f a

g a a a
a a





 . (15) 

The MDR is mainly an interpretation of the equations (5), (8), (10) and (15), which, 

on the one hand, can be interpreted as just a mnemonic rule. However, in many ways it 

has a deeper physical meaning.  

Let us assume an elastic foundation of independent equal springs, each at distance x 

from each other and with stiffness kz = E
*
x, as shown in Fig. 1. 

Also, we define a one-dimensional profile g(x) as a formal transformation of the three-

dimensional axisymmetric profile z = f (r) according to 

 
2 2

0

( )
( ) d

x
f r

g x x r
x r





 . (16) 

This transformation is illustrated in Fig. 2. 

 

Fig. 1 Equivalent elastic foundation  

 

Fig. 2 Axisymmetric three-dimensional profile and one-dimensional analogue  

within the framework of the MDR (see Eq. (16)) 
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The transformed profile is now pressed into the elastic foundation described above. 

This is shown in Fig. 3. The surface displacement in normal direction at any point x will 

be given by the difference of indentation depth d and profile shape g(x): 

 1 ( ) ( )D

zu x d g x   . (17) 

 

Fig. 3 MDR-model for the normal contact 

For contacts without adhesion the displacement vanishes at the edge of the contact: 

 1 ( ) ( ) 0D

zu a d g a   . (18) 

The normal force in a single spring is given by 

 *( ) ( ( )) ( ( ))N zF x k d g x E d g x x       , (19) 

from which the total normal force in the equilibrium state can be calculated by summation 

over all springs. In limiting case 0x    the sum will be the integral 

 * 1 *

0

( )d 2 ( ( ))d

a a

D

N z

a

F E u x x E d g x x


    . (20) 

It can be seen easily that the equations (18), (20)  and (16) reproduce (5), (8) and (15). 

Hence, transformed profile g(x) is the geometrical interpretation of dependence d = g(a) 

for the given three-dimensional profile shape. By the equivalence of the equations presented 

above it is also shown that, instead of analyzing the three-dimensional contact problem, the 

described equivalent one-dimensional problem can be solved, obtaining the correct and exact 

results for the original contact. 

In the next paragraph we are going to show how this can be done, by the same method, 

for torsional contact as well. 

3. DESCRIPTION OF THE TORSIONAL CONTACT  

WITH THE METHOD OF DIMENSIONALITY REDUCTION  

Again, we start with the known solution for the torsional contact of a rigid flat 

cylinder. If a rigid flat-ended punch is pressed on an elastic half space and rotated around 

the axis of the cylinder by angle , the produced torsional moment, surface displacement 

and stress distribution will be given by equations [13] 

 316

3
zM Ga  , (21) 
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 2

2

                                                 

( ) 2
arcsin 1

 ,

      ,

r r a

u r a a
r a r a

r r









      

    
    

 , (22) 

 2 2

4
    

( )

0                      

 ,

 ,      

G r
r a

r a r

r a








 
 

, (23) 

where G is the shear modulus. In the case of rotational symmetry and of no slip, the torsional 

contact problem completely decouples from the normal contact problem.  

We analyze the torsional contact problem that is analogical to the normal contact 

problem described in the previous section, i.e. we imprint rotational surface displacement  

u(r) = r(  (r)) into an elastic half space and want to determine the shear stresses due 

to this displacement. (r)  is the deviation of the torsional angle from the pure constant 

rotation with . This displacement is understood as a sum of infinitesimal torsional loadings 

of flat punches [4]. In analogy to (5) we introduce the function 

 ( ).a    (24) 

The complete torsional moment after the process of torque loading can be calculated as  

 3

00 0

16d d ( ) d ( )
d d d

d 3d d

a a

z

z

M

z

M a a
GM M a a a

a a

 
     . (25) 

We introduce variable uy(x) in the following differential way: 

 
d    0 < 

d ( )
0         

 ,

 ,
y

x x a
u x

x a

 
 


. (26) 

At the end of the described process of infinitesimal torsional loadings this field will be 

 
( )

d ( )
( ) d d

d

a

y

x x

a
u x x x a

a








   . (27) 

Dividing (27) by x  and differentiating with respect to x  we get 

 
( ) ( )d d ( )

( )
d d

y yu x u ax
x a

x x x a


  
    

 
. (28) 

Equation (25) can then be written in the following way: 

 3

0

( ) ( )16 d
( ) d

3 d

a
y y

z

u a u a
M G a a a a

a a a


  
     

  
 , (29) 

which gives after partial integration 

 
0

( d16 )y

a

z GM u aaa  . (30) 

It is obvious that this equation can also be interpreted within a one-dimensional model.  
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Let us assume an elastic foundation with tangential stiffness 

 8yk G x   . (31) 

The force of a single spring is given by 

 ( )y y yF k u x    (32) 

and the resulting torsional moment by     

 8 ( )z yM Gxu x x   . (33) 

The total moment can be calculated again by integration and will be 

 
0

8 ( )d 16 ( )d ,

a a

z y y

a

M G x u x x G x u x x


      (34) 

which coincides with (30).  

To complete the solution of the described torsional contact problem, let us calculate 

function (a) and the stress distribution. According to (23)  the stress distribution can – 

analogically to the previous section – be calculated from function ( )a :    

 
2 2

4 d ( )
( ) d ,

d

a

r

G r a
r a

aa r








  (35) 

or with equation (28) 

 
2 2

( ) ( )4 d
( ) ( ) d  ,

d

a
y y

r

u a u aG r
r a a a

a a aa r
 



  
     

   
  (36) 

which is equivalent to 

 
2 2 2 2

( ) ( )4 d
( ) d .

d

a
y y

r

u a u aG r r
r a

a a aa r a r




  
    

   
   (37) 

The displacement at the edge of the contact, i.e. at r a a  , will be, according to (22), 

 
2

2

0

2 d ( )
( ) ( ( )) arcsin 1 d  .

d

a
a a a

u a a a a a a
a a a

  


    
      

   
  (38) 

In the next section we will analyze the case of slip in the contact area. This will inevitably 

lead to requirement  (a) = 0. This given, (27) can be written as 

 ( ) ( ( ))yu x x x    (39) 

and partial integration of (38) will give 

 
2

2 2 2
0

4
( ) ( ) d  .

a
a

a a a
a a a




 


  (40) 

This is again an Abel integration equation, which can be inverted [12]:  

 2

2 2
0

1 d d
( ) ( ( )) .

2 d

a
r

a r r
a r a r

 


  (41) 
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4. TORSIONAL CONTACT WITH A NARROW SLIP REGION 

The boundary conditions at the surface of the half space in the presence of slip can 

generally be written in the form 

 
( ) 0 ,            for  ,

( ) ( ) ,     for  

r r c

r p r c r a



 

 

  
 , (42) 

with the radius of stick domain c and coefficient of friction . From (41) it is obvious that  

 ( ) 0 ,          for  x x c   .  (43) 

Hence, the shear stresses within the contact area will be 
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d
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d  ,    for   

d
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a

c

a

r

G r

a r

G r

a

a
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a
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r
a c r a

a







 



 
















 . (44) 

Note, that (44)  can always be written in the form 

 
 ( ) ( )  ,    for   

( )
( ) ,                    for  

a c

a

p r p r r c
r

p r c r a






  
 

 
 . (45) 

Here pa(r) and pc(r) denote known pressure distribution p(r) with respective contact radii 

a and c. Thus the shear stress distribution in the whole contact area is known. The contact 

problem will be solved completely, if the integral equation  

 
2

*

22 2

d ( ) 1 d ( )
d (

d

4
) d

d

a a

a

r r

a E g aG r

a r
a p r a

a aa r







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 
    (46) 

can be solved for function ( )a . 

In case of a very small area of the slip domain, i.e. if a c a , this solution is 

elementary, because r  a  and therefore  

 d d  ,         for g c x a      (47) 

with 
*

4

E

Ga


  .  

    Geometrically, (47) together with (43) describes the following indentation process: 

First the indenter is pressed into the half space in a pure normal direction until the radius 

of stick domain c is reached. After that any infinitesimal indentation is a superposition of 

normal and torque loading, bound by (47). The solution of (47) with the boundary conditions 

(24) and (5) is given by 

 ( ) ( ( ) ),         for x g x d c x a        . (48)  
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Hence, 

 
 ,                 for   

( )
( ) ,       for  

y

z

x c
u x x

u x c x a






 
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 . (49) 

Again, as we assumed a c a , it is x a in the slip domain and therefore 

 *

 ,                   for   
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( ) ,       for  
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u x E
u x c x a
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






 
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

  (50) 

If we choose *
 = 2 as the equivalent coefficient of friction in the MDR-model for torsion, 

(50) can be written in the form 

 *

 ,                      for   

( )
( ) ,       for  y z

z

y

x x c

u x k
u x c x a

k








 
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 . (51) 

The radius of the stick domain is given by  

 * * *8 2 ( ( ) ( )) ( ( ) ( ))G c E g a g c E g a g c       , (52) 

which agrees with the condition of no slip for the springs at the edge of the stick domain 

in the MDR-model. That is why this torsional contact problem with a finite coefficient of 

friction can be described by the MDR.  

We emphasize again that the derivation starting with (47) is only valid for a c a . 

In the case of general partial slip the solution for ( a ) in the slip domain is given by 

the inverse Abel transform of (46) [12]: 

 
2 2

( )d
( ) ( ) ,             for  

2

a

x

p r r
a x c x a

G r x


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
   (53) 

However, the resulting necessary spring displacement of the MDR-model 

 
2 2

( )d
( ) ( ( ) ( )) ,            for  

2

a

y

x

x p r r
u x x a x c x a

G r x


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
   (54) 

cannot be interpreted as easily as in the case described above in (47) - (51). 

5. CONCLUSION 

In the present paper, we have extended the method of dimensionality reduction to 

contacts subjected to a superimposed normal and tangential loading. For the case of the 

simultaneous normal and torsional loading we have shown that the consideration of the 

original three-dimensional contact problem can be replaced by a contact with a one-

dimensional elastic foundation with a properly defined coefficient of friction and normal 

and tangential stiffness if the slip annulus is small compared to the contact radius.  
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Abstract. The paper is concerned with the contact between the elastic bodies subjected 

to a constant normal load and a varying tangential loading in two directions of the 

contact plane. For uni-axial in-plane loading, the Cattaneo-Mindlin superposition principle 

can be applied even if the normal load is not constant but varies as well. However, this is 

generally not the case if the contact is periodically loaded in two perpendicular in-plane 

directions. The applicability of the Cattaneo-Mindlin superposition principle guarantees the 

applicability of the method of dimensionality reduction (MDR) which in the case of a uni-

axial in-plane loading has the same accuracy as the Cattaneo-Mindlin theory. In the 

present paper we investigate whether it is possible to generalize the procedure used in the 

MDR for bi-axial in-plane loading. By comparison of the MDR-results with a complete 

three-dimensional numeric solution, we arrive at the conclusion that the exact mapping is 

not possible. However, the inaccuracy of the MDR solution is on the same order of 

magnitude as the inaccuracy of the Cattaneo-Mindlin theory itself. This means that the 

MDR can be also used as a good approximation for bi-axial in-plane loading. 

Key Words: Friction, Dissipation, Tangential Contact, Biaxial In-plane Loading, 

Circular Loading, Cattaneo, Mindlin, MDR 

1. INTRODUCTION 

Friction is a dissipative process transforming mechanical energy into heat and material 
changes of the contacting partners. The energy dissipation may be connected with material 
dissipation (wear) [1] or utilized for structural damping [2]. Studying both wear and 
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damping requires the solution of a tangential contact problem. The simplest case of a 
tangential loading is an increasing uni-axial tangential loading at a constant normal force. 
This problem has been solved first by Cattaneo [3] and later independently by Mindlin [4]. 
They have shown that a tangential stress distribution can be represented as a superposition 
of two solutions for the normal contact problem of the same geometry, only multiplied with 
the coefficient of friction. This reduction to the normal contact problem is exactly the 
feature which allows the application of the method of dimensionality reduction (MDR) [5], 
(see also Chapter 5 devoted to tangential contact in [6]). However, Cattaneo and Mindlin 
have not noticed a small inconsistency in their solution. In their theory, it is assumed that 
the frictional stresses in the slip domain are all directed in the direction of the applied 
tangential force. With the exception of the unrealistic case where both the contacting 
materials have Poisson ratio zero, this assumption violates the condition that at every 
position in the slip domain, the slip is directed in the direction opposing the tangential 
stresses. The reason for this is the presence of an additional slip motion perpendicular to the 
direction of the applied force. This was first pointed out by Johnson [7] who showed that 
the maximum inclination of slip angle is on the order of magnitude ν/(4-ν) which is equal to 
0.09 for ν=1/3 and 0.14 for ν=1/2. He concluded that the error is not large and that the 
Cattaneo-Mindlin solution is a good approximation. Later comparisons with numerical 
solutions have shown that the above mentioned inconsistency may have an important 
influence on the distribution of wear but has almost no impact on the macroscopic force-
displacement relations [8]. A detailed analysis can be found also in [9].   

In the present paper we consider a more complicated problem of bi-axial oscillating 

loading (superimposed loading in two in-plane directions). The aim of the paper is twofold: 

on one hand, we are interested in a better understanding of the energy dissipation in bi-

axially loaded contacts; on the other hand, we would like to check the applicability of the 

dimensionality reduction method to this class of problems. At present, there are only a few 

numerical studies providing the dependencies of dissipated friction energy on the 

parameters of loading [10]. The applicability of the MDR would provide a simple tool for 

simulating arbitrary loading histories with applications in the dynamics of structures with 

frictional contacts. 

2. ENERGY DISSIPATION IN A SINGLE-POINT CONTACT FOR CIRCULAR MOVEMENT 

Let us start by considering a single isotropic linearly elastic massless element which 

can deform in normal direction as well as in two tangential directions. We will call this 

element a “spring”. The spring should have out-of-plane stiffness kz and isotropic in-

plane stiffness kx=ky. It is first pressed against a rigid half-plane with a normal force Fz 

and then moved in the direction of the x-axis. We will assume that at the immediate 

contact point between the spring and the substrate, there is friction characterized by a 

constant coefficient of friction μ. When the free end of the spring is moved horizontally, 

it first deforms elastically until the in-plane displacement achieves the critical value 

 0 /z xl F k  . (1) 

After this, the lower contact point starts sliding and the force remains constant. 

If the spring is moved on a circle with radius R<l0, then it remains in the stick state at 

any time. However, if the radius of movement exceeds critical value, R≥l0, the contact 

130



 Simulation of Frictional Dissipation under Biaxial Tangential Loading... 297 

point will slip. In the stationary state, it will move in a circle with a smaller radius rc, 

while the in-plane displacement of the spring remains constant and equal to l0. The 

frictional force is assumed to be opposite to the elastic force and at the same time it has to 

be directed opposite to the velocity vector. Therefore, the contact point between the 

spring and the half-plane will move in the direction of the elastic displacement. On the 

other hand, this velocity will be directed tangentially to the inner circle with radius rc, 

which means that the elastic displacement of the spring is directed tangentially to this 

circle, as shown in Fig. 1. The dissipation power is then obviously given by the equation 

 2

macro macro 0cos 1 ( / )z zW v F v F l R       , (2) 

where vmacro is the absolute velocity of the spring motion. For one cycle of motion with 

radius R>l0 the value of the dissipated energy is  

 2

cycle 02 1 ( / )zW W t R F l R      , (3) 

where Δtcycle is the time needed to perform one cycle of circular motion. If the initial position 

of the spring does not correspond to the stationary one, it moves on a spiral asymptotically 

approaching the circle with radius rc as shown in Fig. 1b. 

 

Fig. 1 a) The scheme of a circular motion of a single spring; b) The results of the numerical 

simulation: the evolution of the trajectory of a single spring during a circular motion 

3. ENERGY DISSIPATION IN A CURVED CONTACT FOR CIRCULAR MOVEMENT 

Generally, a non-conforming contact between elastic solids cannot be modeled with a 

single spring. In the case of uni-axial in-plane loading, the contact problem can be reduced 

to a contact of a rigid plane profile with a series of independent springs. This method is 

known as the method of dimensionality reduction [5, 6, 11]. It replaces a contact between 

two continuum bodies with an ensemble of independent one-spring problems and thus 

reduces the general contact problem to the above one-spring problem (see Fig. 2). 
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Fig. 2 Mapping of a three-dimensional contact into one-dimensional one  

 If the MDR-procedure was applicable to the bi-axial in-plane loading, then we could 

compute the energy dissipation rate just by summing Eq. (2) over all effective springs of 

the MDR-model. Let us assume at this point that this is indeed possible and calculate the 

dissipation in a circularly moving and curved contact. Later we will check and discuss the 

accuracy of this procedure.  

We consider the movement of a parabolic indenter having the shape z=f(r)=r
2
/(2r0). 

According to the MDR-rules [5, 6], in the equivalent MDR model it is to be replaced by 

the plane profile 

 
2

2 2
00

( )d
( )

x
f r r x

g x x
rx r


 


 . (4) 

This profile is brought into contact with an elastic foundation consisting of independent 

springs, each spring having normal stiffness Δkz and equal tangential stiffnesses Δkx and 

Δky for the displacements along the x -axis and y -axis (not shown in Fig. 2) which are 

defined according to the rules 

 
* *,      z x yk E x k k G x        , (5) 

where  

 
2 2

1 2

*

1 2

1 11

E EE

 
    and 

1 2

*

1 2

(2 ) (2 )1

4 4G GG

 
  , (6) 

with E1 and E2 being the Young’s moduli, G1 and G2 the shear moduli and ν1 and ν2 the 

Poisson’s ratios of the contacting bodies. Further, throughout the paper, we assume that 

the contacting materials satisfy the condition of “elastic similarity” 

 
1 2

1 2

1 2 1 2

G G

   
 , (7) 

which guarantees the decoupling of normal and tangential contact problems [12].  

If the indentation depth is d, then the vertical displacement of an individual spring at 

position x is given by  

 
,1 ( ) ( )z Du x d g x   (8) 

and the normal force of a single spring equals to 

 
*( ) ( ( )) ( ( ))z zF x k d g x E x d g x       . (9) 
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The dissipation power in one spring at the position x is given by Eq. (2) which we 

rewrite here as 

 

2 2
*

*

macro *

( ( ))
1 ( ( )) 1z

z

x

F E d g x
W F v E x d g x

R k RG

    
             

   
. (10) 

Let us assume that we have a situation with partial slip. Radius c of the stick region is 

determined by the condition 

 
*

*

1
( )

G
d g c R

E
 


 (11) 

whence 

 
2 *

*

0

1c G
d R

r E
 


. (12) 

The whole dissipation power is thus equal to  

 

2* 2 2
2 2macro

2 2

0

2
( ) 1 d

a

c

v E a x
W a x x

r a c

  
   

 
 , (13) 

where 0a r d  is the contact radius. Evaluation of the integral yields  

 macro

3
( )

2
zW v F c   , (14) 

where  

 

21 2
2

2

1
( ) (1 ) 1 d

1
c

c
c


 

 
    

 
  (15) 

with c c / a . Function ( )c  is shown in Fig. 3. From (14) we see that the energy 

dissipation power is given by the formally calculated "nominal power" vmacroμFz multiplied 

with function 
3

2
( )c , which only depends on the reduced radius of the stick area. 

 

Fig. 3 Dependence  c  
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4. CALCULATION OF STRESSES IN THE FRAMEWORK OF MDR 

The above MDR-solution is based on the Coulomb criterion for sticking and sliding 

for the springs of the effective one-dimensional elastic foundation. This MDR model 

gives the correct solution to the three-dimensional problem only if the conditions for 

sticking and sliding are fulfilled also for in-plane stresses in relation with normal stresses 

in the initial (truly three-dimensional) problem. We thus begin our analysis by checking 

the fulfillment of the sticking conditions and go later to an additional validation by 

comparison with results of direct 3D simulation given in [10].  

According to the MDR rules, the distribution of normal pressure p in the three-

dimensional problem may be calculated using the following integral transformation [11]: 

 
2 2

( )1
( ) dz

r

q x
p r x

x r

 
 

 
 , (16) 

where qz(x)=ΔFz(x)/Δx is a linear density of the normal force. A similar transformation is 

valid for the tangential stress:  

 
2 2

( )d1
( ) x

x

r

q x x
r

x r

 
  

 
 , (17) 

where qx(x)=ΔFx(x)/Δx is a linear density of the tangential reaction force, respectively. 

The proof for these rules can be found in Appendix D of Ref. [5]. This proof can be easily 

generalized to an arbitrary two in-plane dimensions and shows that the transformation (17) 

can be applied separately to each component of tangential stress, so we can obtain 

tangential stresses in y-direction similar to Eq. (17): 

 
2 2

( )d1
( )

y

y

r

q x x
r

x r

 
  

 
 . (18) 

Thus, for calculating the stress component we have to determine first the linear force 

densities qx(x)=ΔFx(x)/Δx and qy(x)=ΔFy(x)/Δx. 

Let us denote the coordinates of a spring tip as (ux,tip, uy,tip) and the coordinates of the 

upper point of the spring as (ux, uy). Assume that in an iteration step the coordinates of the 

spring ux and uy, are changed by δux and δuy, so that  

 
x x x

y y y

u u u

u u u

  


  
. 

 

(19) 

If new coordinates xu  and/or 
yu  now lie outside a circle having a central point (ux,tip, uy,tip) 

and a radius l0(x): 

 0 ( ) ( ) /z xl x F x k   ,   (20) 

then the spring tip will start to slide in the direction of the tangential reaction force (see 

Fig. 4) until it reaches the point , ip ,tip( , )x t yu u : 

 
2 2

, , 0( ) ( ) ( )x x tip y y tipu u u u l x    . 

 

(21) 
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In other words, the new equilibrium point lays on the straight line connecting the points 

(ux,tip, uy,tip) and ( , )x yu u , at distance l0(x) from ( , )x yu u (see Fig. 4). 

 

Fig. 4 The slip displacement of a single spring in XY plane under lateral motion 

The components of the tangential reaction force of the spring can be found as follows: 

 

,

,

( ) ( )

( ) ( )

x x x x tip

y y y y tip

F x k u u

F x k u u

   

   

. (22) 

We have studied the frictional energy dissipation for the parabolic indenter with the 

following fictive parameters: r0=1 m, E
*
=1 GPa, d=0.001 m, ν=0.28, μ=0.3. The indenter 

was initially moved to the point (Ux0, 0) and then subjected to an in-plane harmonic 

displacement  

 
0

0

( ) cos( )

( ) sin( )

x x

y y

U t U t

U t U t

 


 
. (23) 

Controlling the tangential reaction forces in Ox and Oy directions, it is possible to 

introduce the force-dependent governing parameters, following the paper of Ciavarella [10]:  

 / zQ F  and /M x yR Q Q , (24) 

where 

 2 2max ( ) , max ( ) ,x x y y x yQ F t Q F t Q Q Q    . (25) 

Note that the value of Q, defined in Eq. (25), does not correspond to any real 

tangential force acting on the indenter, but it serves only as a governing parameter in the 

parametric study of the problem under consideration. 

With Eq. (22) we determine linear force densities qx(x)=ΔFx(x)/Δx and qy(x)=ΔFy(x)/Δx. 

We then calculate the tangential stress components given by Eqs. (17) and (18) and finally 

the absolute value of the tangential stress: 

 2 2( ) ( ) ( )MDR x yr r r      (26) 
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The corresponding dependencies are presented in Fig. 5 together with the normal stress 

distribution multiplied with the coefficient of friction and the formal Mindlin solution 

with the same radius of stick region (dashed lines in Fig. 5). One can see that the obtained 

stress distributions do not exactly fulfill the conditions for stick and slip. In most ranges 

of radii smaller than the stick radius, the tangential stress is smaller than the normal stress 

multiplied with the coefficient of friction; there is only a small region inside the stick radius 

with  too high. Thus the stick condition is fulfilled not exactly but in good approximation. 

However, for radii moderately larger the stick radius, the tangential stress is higher than the 

normal stress times the coefficient of friction, which means that the sliding condition is not 

fulfilled. At even larger radii, the condition that in the sliding region the tangential stress 

must be equal to normal stress times the coefficient of friction is fulfilled with good accuracy. 

Thus, the tangential stress distribution has a qualitatively correct shape but it does not exactly 

match the stick und slip conditions.  

The mentioned discrepancy is observed only in a relatively narrow interval of radii. 

Thus, the integral influence of this error may be moderate. This situation can be compared 

with the solution by Cattaneo and Mindlin which also has a local error, but the global error in 

the force-displacement relations is moderate and is generally tolerated.  

 

Fig. 5 The distributions of normal pressure and the absolute value of tangential stress. P0 is the 

pressure under the axis of the indenter. The dashed line indicates the formal Mindlin 

solution with the same radius of stick region. RM = 1. a) Q/μFz=0.5; b) Q/μFz=0.9 

In order to estimate the possible global error, let us determine the integral discrepancy 

between the obtained stress distribution and the Cattaneo-Mindlin distribution [3] (which 

fulfils the stick and slip conditions):  

 
MDR CM CM

0 0 0

100% 2 ( )rd 2 ( )rd / 2 ( )rd

a a a

r r r r r r            , (27) 

where  τCM(r) corresponds to the Cattaneo-Mindlin solution. This discrepancy is shown in 

Fig. 6. The integral difference between tangential stresses, predicted by the theory of 

Cattaneo-Mindlin, and the MDR results, is about two percent for low values of Q/μFz and 

RM. This means that the above MDR theory has a good accuracy at least for oscillations 

with small amplitude comparable to the full slip displacement. 
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Further, let us compare the results of MDR simulation with the full three-dimensional 

calculations. The tangential stresses are calculated using MDR as described above for the 

following set of parameters: RM = 1, Q = 0.9, which correspond to the same values as used 

in Ref. [10]. Comparison of the MDR results with results of full three-dimensional 

simulations is presented in Fig. 7. 

In Fig. 7, on the left hand side, the stress-field simulated by the MDR is presented and 

so is, on the right hand side, the stress field from the three-dimensional simulation [10]. 

While both results are in a good qualitative agreement, one can also see some differences. 

Firstly, the stick radius in the MDR results does not decrease after the start of the in-plane 

rotation, which can be connected to the application of the tangential displacement instead 

of tangential forces in 3D simulation. Secondly, the tangential stresses in the stick area in 

the MDR solution are higher than those in the full 3D calculation. However, the 

mentioned discrepancies between the MDR results and full 3D calculations are moderate. 

We can conclude that the MDR can be also used with “engineering accuracy” for contact 

problems with bi-axial in-plane loading. 

 

Fig. 6 The integral difference (27) between tangential stresses,  

predicted by the Cattaneo-Mindlin theory, and the MDR results 

5. NUMERICAL SIMULATION OF DISSIPATION UNDER NON-CIRCULAR MOTION 

In this paragraph we apply the MDR within its range of accuracy for studying energy 

dissipation in a contact subject to biaxial tangential loading with different oscillation 

amplitudes in two perpendicular directions. In order to normalize values of dissipated energy 

we use the solution of Mindlin [3] for friction energy dissipation during one cycle of a 

uniaxial tangential loading: 
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In the performed calculations we have varied the governing parameters (24) in a wide 

range of values. The results of simulation, accompanied with the corresponding results of the 

full 3D simulations, given in Ref. [10], are shown in Fig. 8a. It can be seen that the MDR 

results are in a good agreement with the results of the full 3D simulations, except for the curve 

for RM = 1 which also is in a qualitative agreement but shows distinctive quantitative 

differences. 

 

 

 

Fig.7 The distributions of tangential stresses in the contact area - the results of the MDR 

simulation in the left column, the results of the full 3D simulation, from Ref. [10], 

in the right column: a) after the initial displacement; b) after one revolution;  

c) after two revolutions; RM=1, Q=0.9.The inner circle indicates the stick area 
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Fig. 8 a) The normalized dependencies of the energy, dissipated during one cycle of the 

circular motion, compared with the data from Ref. [10] (indicated by the crosses); 

b) The normalized dependencies of the energy, dissipated during one cycle of the 

circular motion, reduced into the universal curve. The normalizing factor W1,C is given 

by Eq. (29) 

 

We have found that for various values of RM, the dependencies of W on Q/μFz can be 

reduced to a universal curve (Fig. 8b). The results are normalized to the value of the 

energy W1,C dissipated during one cycle of uniaxial loading with Q/μFz=1: 
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 


   . (29) 

The universality of the given curve holds for relatively small amplitudes of oscillations. 

When the amplitude of oscillations becomes comparable with the value of amplitude needed 

for gross slip transition, the deviations from the universal curve appear (see Fig. 8b). We 

suggest a power-law approximation of the data shown in Fig. 8b as follows: 

 
3.5

1,0.45 ( / )c zW W Q F  ,  (30) 

which fits the results of numerical simulations well for Q/μFz < 0.7. Note that in Fig. 8b 

the curve for RM = 0 coincides with the results of Cattaneo and Mindlin.  

6. CONCLUSIONS 

By analyzing the stick and slip conditions and comparing with three-dimensional 

calculations we have explored the question whether the MDR is applicable for the 

simulation of bi-axial in-plane loadings. We have found that the corresponding mapping is 

not exact (there are local violations of stick and slip conditions) but has an acceptable 

accuracy comparable with the accuracy of the Cattaneo and Mindlin solution for tangential 

contact. Comparison with three-dimensional simulations shows a good qualitative 

agreement but some quantitative deviations. We have found that the dependencies of the 

dissipated energy on the amplitude of loading, obtained for various values of RM, fit into 

one universal curve. This curve may be approximated by a power law in the range of small 

values of Q/μFz < 0.7. The obtained results may be helpful for a better understanding of the 

mechanics of tangential contacts under bi-axial loading. 
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Abstract. In the present paper, we discuss the impact of rigid profiles on continua with 
non-local criteria for plastic yield. For the important case of media whose hardness is 
inversely proportional to the indentation radius, we suggest a rigorous treatment based 
on the method of dimensionality reduction (MDR) and study the example of indentation 
by a conical profile. 
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1. INTRODUCTION 

Constitutive relations for materials are mostly formulated in terms of stresses and 
deformations. Correspondingly, the critical behavior of materials is generally described 
by parameters having the dimension of stress such as yield stress, fracture stress or 
hardness. Further, the constitutive relations are in most cases assumed to be local 
relations. However, it is well known that the processes of plastic deformation, damage 
and fracture, independently of the detailed mechanism, are always non-local processes. 
For dislocation plasticity, this immediately follows from the mechanism of deformation 
by formation of shear zones [1]. Each elementary event of plastic deformation is a non-
local process [2, 3]. The same is valid for fracture processes: both the initial concept of 
Griffith [4] and its later microscopic [5] and macroscopic [6] generalizations are 
intrinsically non-local. In the past, there was much effort to address the non-locality in the 
frame of gradient generalizations of both theory of elasticity and plasticity [7, 8, 9, 10]. 
Practitioners often take the non-locality into account by introducing critical stresses 
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depending on the size of the system or the size (or depth) of indentation. Thus, in [12], it 
is shown that the strength of micro contacts of Au-Au and Au-Pt is proportional to the 
contact radius for the contact radiuses between 10 and 100 nm, meaning that the 
“fracture stress” is inversely proportional to the contact radius. While for metals this size 
dependence is observed only at a sufficiently small scale, for composites it can be valid 
already at the macroscopic scale. The same is valid for plastic yielding: the nonlocal 
nature of plastic deformation leads to the size dependence of the “yield stress”. In [11], it 
is shown that the indentation hardness of polydimethylsiloxan (PDMS) is inversely 
proportional to the indentation depth over three decimal orders of magnitude. Similar 
dependencies are observed by nanoindentation of Au [13]. Such dependence of the 
characteristic parameters on the size of the system shows of course an inconsistency in 
the theory and should be replaced by an appropriate non-local formulation.  

In the following we confine ourselves to the processes of plastic deformation and 
damage prior to the complete fracture of a structure. The whole spectrum of non-local 
yield criteria and thus the dependence of the hardness on the size of an indenter can be 
very roughly divided into three classes: 
(a) Constant hardness σc, 
(b) Hardness, which is inversely proportional to indentation radius a : σc = qc / a,  
(c) Hardness, which is inversely proportional to indentation area: σc = fc / a2. 

In the cases (b) and (c), the hardness is in reality not a proper material parameter. It is 
rather quantity qc having the dimension of surface energy density in the case (b) and 
quantity fc having the dimension of the force in the cases (c), which now characterize 
unambiguously the plastic properties.  

From the point of view of mechanisms of plasticity, the cases (a), (b) and (c) correspond 
to the situations where the plastic flow is governed by: 

(a) Volume processes, the characteristic critical quantity having the dimension of 
energy per volume or stress, 

(b) Surface processes, the characteristic critical property having the dimension of 
energy per area, 

(c) Line processes, the characteristic critical property having the dimension of energy 
per unit length. 

All known criteria for plastic yielding either coincide with one of these classes or can 
be considered as their combinations. 

In the present paper, we concentrate our attention only on the “intermediate” class of 
constitutive relations (b) and describe how the impact on materials with such non-local 
plastic criteria can be described using the method of dimensionality reduction (MDR)  
[14, 15, 16, 17].  

2. METHOD OF DIMENSIONALITY REDUCTION 

At the first glance, the non-local plasticity criterion (b) seems to be more complicated 
than the local criterion (a). However, the non-locality in three-dimensional systems can 
sometimes lead to a much simpler theoretical description than in the case of local 
relations. In a series of publications by Popov, Hess and co-authors (see e.g. [20, 14, 15, 
16]), it is shown that the mechanical properties which in a three-dimensional system are 
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proportional to the contact diameter, can be easily mapped onto a contact with a one-
dimensional elastic foundation. For example, this is the case for the contact stiffness of 
an arbitrary contact with an elastic half-space. The contact stiffness is proportional to the 
diameter of the contact and thus can be described naturally by a one-dimensional model. 
The same property is present in contact conductivity (both electrical and thermal) which 
thus can be described in the framework of MDR [21]. In the publications [14] and [22], it 
is shown that the mapping of the contact properties from 3D to 1D is exact for arbitrary 
bodies of revolution provided some rules are considered for recalculation of the material 
properties and profiles of the contacting bodies. In the case of plastic deformation with 
the indentation hardness inversely proportional to the contact radius (and thus the 
indentation force proportional to the radius), we again have a property, which is directly 
proportional to the contact radius. It is therefore logically to assume that the indentation 
with such a yield criterion will be correctly described within a one-dimensional model.  

In the following, we shortly recapitulate the basics of the method of dimensionality 
reduction and then formulate its extension to the description of plasticity. If applied to a 
contact of a body with an elastic or viscoelastic half-space, the MDR consists of two 
main independent steps: 

I. First, a viscoelastic half-space is replaced by a one-dimensional series of parallel 
springs with stiffness zkΔ  and dash pots with damping constant Δγ  (Fig. 1): 

 ,   *
zk E xΔ = Δ 4 xγ ηΔ = Δ , (1) 

where  is the effective elastic modulus  *E

 
2 2
1

*
1 2

1 11 v
E EE

2v− −
= + , (2) 

E1 and E2 are the Young’s moduli of contacting bodies, ν1 and v2, their Poisson-ratios, 
and η the dynamic viscosity of the medium.  

 
Fig. 1 Equivalent one-dimensional visco-elastic foundation 

II. Secondly, the form of the indenter must be recalculated according to the following 
rule of Hess: If a body of revolution is described by equation z = z(r), then the equivalent 
one-dimensional profile is defined as 
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 1 2 2
0

( )( ) d
x

D
z rz x x r
x r

′
=

−
∫ . (3) 

It is proven in [14] and [22] that the contact of the modified 1D profile will provide 
exactly the same relations between the normal force, the indentation depth, and the 
contact radius as in the initial full three-dimensional problem. If the three-dimensional 
profile is described by a power-function with an arbitrary positive power  n

 , (4) ( ) n
nz r c r=

the equivalent one-dimensional profile is a power-function with the same power, but a 
modified coefficient: 

 
1

1 2 2
0

( ) d
x n

n
D n n

nrz x c x r c x
x r

−

=
−

∫ %=

nc

, (5) 

where 
 n nc κ=%  (6) 
and  

 2
1

2 2

( )
2 ( )

n

n n

nΓπ
κ =

Γ +
. (7) 

( )nΓ  is the Gamma-function 

 . (8) 1

0

( ) dn tn t e
∞

− −Γ = ∫ t

In particular, for a cone (n = 1) we get κ1 = π /2 and for a parabolic profile (n = 2) κ2 = 2. 
This last case is known as the rule of Popov [14] (Fig. 2). 

R

Fn
Fn

R 1
d

a

a b  
Fig. 2  (a) A three-dimensional contact and  

(b) its one-dimensional representation in the MDR 

The solution of the one-dimensional problem provides not only correct relations 
between the global properties (total force, indentation depth and contact radius), but allows to 
determine the exact three-dimensional distributions of stress. In the elastic foundation, 
normal forces f (x) of separate springs are immediately determined for any contact 
configuration. We can define linear force density q(x) by dividing these forces with 
spacing xΔ :  
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 ( )( ) f xq x
x

=
Δ

. (9) 

In [14], it is shown, that normal stress σzz(r) in the contact area can be obtained from 
linear force density q(x) by the following integral transformation: 

 
2 2

1 ( ) ( ) dzz
r

q xr
x r

σ
π

∞ ′
=

−
∫ x . (10) 

3. PLASTICITY CRITERION IN THE METHOD OF DIMENSIONALITY REDUCTION 

As stated above, basically all properties which in three dimensions are proportional to 
the contact radius, can be easily mapped to an appropriate one-dimensional system. For 
plasticity, this is the case if the indentation force is proportional to the indentation radius: 

 2
N c cF a qπσ π= = a . (11) 

It is easily seen that we reproduce this behavior by introduction of the following criterion 
for plastic yielding of the one-dimensional model described in the previous Section: 

 
2c cf q xπ

= Δ . (12) 

Note that while the three-dimensional criterion is a non-local one, the corresponding 
criterion in the equivalent one-dimensional model occurs to be local. Further numerical 
investigation of the model could lead to another coefficient of proportionality in Eq. (12), 
but they cannot change the functional form of this relation.  

With criterion (12), the complete problem of an indentation in a “visco-elastic, non-
locally plastic” medium is reduced completely to a contact problem with a one dimensional 
elastoplastic foundation with independent elements. 

4. IMPACT OF CONICAL PROFILES ON THE MATERIAL WITH A NON-LOCAL YIELD 
CRITERION 

 As an illustration, let us consider an impact of a conical profile of the form  

 tanz rθ= ⋅  (13) 

with an elastoplastic medium with the non-local yield criterion (11). According to the 
rule of Hess, the equivalent one-dimensional profile is given by  

 tan
2

z π θ x= ⋅ . (14) 

For indentation depth d, the displacement of a spring having coordinate x will be  

 tan
2zu d xπ θ= − ⋅ . (15) 
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The contact radius is obtained from condition zu ( a ) d= , hence,  

 2
tan

da
π θ

= . (16) 

The spring forces which are still in the elastic state are equal to  

 *( ) tan ,     for  
2 2 cf x E x d x f q xπ θ⎛ ⎞= Δ − ⋅ < Δ⎜ ⎟

⎝ ⎠

π  (17) 

After achieving the critical value, the spring force remains constant and equal to  

 ( )
2 cf x qπ x= Δ . (18) 

Up to the indentation depth  

 *2
c

c
qd
E
π

= , (19) 

there will be no plastic yielding of any spring. Thus, there exists a critical indentation 
force Fc for starting the plastic yielding:  

 
2

* *
*

0 0

12 ( )d 2 ( ( / 2)tan )d
tan2

c ca a
c

c z c
qF E u x x E d x x
E

π
π θ

θ
= = − ⋅ =∫ ∫ . (20) 

After exceeding the critical force, the inner part of the contact will be in the state of 
plastic yield. Radius c of the plastically deformed area is given by the condition 
f (c) = π qcΔx / 2, hence 

 *

1 2
tan

cqc d
Eθ π

⎛ ⎞= −⎜ ⎟
⎝ ⎠

,   * tan
cqa c

E θ
− =  (21) 

The normal force is given by  

 * 22 ( )d (
tan

a
c

N z c c c c c
c

q )F E u x x cq F cq F d dπ π
θ

= + = + = +∫ − . (22) 

After achieving the critical state, the normal force increases linearly with the indentation 
depth.  

We do not consider at this point the complete dynamic problem of an impact, which 
generally can also depend on the structure stiffness. We limit ourselves to the case of a 
very rapid impact, when the indentation depth is much larger than the critical one. In this 
case we can write FN ≈ 2qc  d /tanθ. The work of plastic deformation up to the maximum 
indentation will be  

 
max 2

max

0

2 d( )
tan tan

d
c cq qW d d d
θ θ

≈ =∫ . (23) 
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The area of contact will be equal to 2 2
max max max2

4
tan

A a dπ
π θ

= = .  

Thus, the damaged area will be proportional to the impact energy: 

 max
4
tanc

A W
q

≈
π θ

. (24) 

This differs from the result for the media with the local plastic criterion, where the impact 
energy is proportional to the expelled volume [18, 19]. 

5. CONCLUSION 

In the present paper, we considered an indentation of a rigid profile into an elasto-
plastic medium with a non-local yield criterion. We considered only the case where the 
non-locality leads to the inverse proportionality of the indentation hardness to the 
indentation radius. For such media, we have suggested a generalization of the method of 
dimensionality reduction and analyzed the case of indentation of a rigid conical indenter. 
As the method of dimensionality reduction is also valid for tangential contacts [23], the 
proposed method can be easily generalized for the case of impacts with a tangential 
component of impact velocity. 
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