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a b s t r a c t

The mechanical behavior and texture evolution of lamellar Cu–Ag polycrystals are numerically investi-
gated for a uniaxial compression test by three dimensional finite element simulations. In the representa-
tive volume element (RVE), the lamellar structure is generated inside the grains. A crystal plasticity
material model for large deformations is used at each integration point. In this work, two cold drawn tex-
tured Cu–Ag polycrystals are modeled by periodic Voronoi tessellations in the finite element (FE) soft-
ware ABAQUS. The FE calculations use periodic boundary conditions to simulate the mechanical
behavior of the textured polycrystals. The numerical model is validated by experimental compression
tests for a constant strain rate of 10�4 s�1 at room temperature. The numerical results in terms of texture
of each phase and the mechanical behavior have been compared with the experimental results.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Two-phase metals are widely used in magnetic science and
technology, automobile and aerospace industries, since they can
show high strength, high hardness and sufficient ductility
[40,18,41]. Two-phase Cu–Ag composites are used as conductor
materials for the application in the magnets [40,2,18,41,13]. With
the increase of Ag content in the Cu–Ag composite, i.e., for an
eutectic composition Cu–72 wt%Ag, the strength is increased by
the formation of alternate layers of Cu and Ag thus forming a
lamellar structure inside the material [16,19]. Several procedures
are available for fabricating such materials including different
types of ingot metallurgy [8,20,21], and powder metallurgy [5].
The eutectic (lamellar) two-phase polycrystals have shown unique
mechanical properties, which are beyond the characteristics of
their individual phases [36,8,15].

Cu and Ag have the same lattice structure (face centered cubic)
and both have the same slip geometry. Therefore various Cu and Ag
alloys can be cold deformed to produce the fine Cu/Ag lamellae
[40]. During the cold drawing operation there is a significant
refinement in the lamellar structure which consequentially results
in increased strength and strain [6]. During the deformation pro-
cess of such lamellar Cu–Ag polycrystals, the initial microstructure,
which includes the grain size and morphology, the lamellae width
and distance between the adjacent lamellae and the orientations of
each phase/grain are crucial for the determination of the effective
mechanical behavior. The Cu/Ag lamellae interactions and the vol-
ume fraction of each phase are also essential since they influence
the effective mechanical behavior. In metal forming processes,
forces are applied to the work piece such that the induced com-
pressive stresses in the material are greater than the yield point
stress and less than the ultimate stress. Therefore the material
undergoes inhomogeneous plastic deformations which are used
for changing the shape of the material. To understand and identify
such complex deformation behavior various multiscale approaches
have been developed. However, the microstructures consisting of
two phases with an eutectic structure occur in many materials
of technological interest (Ti–Al, Cu–Ag, Zr–Nb, etc). The strength
of such eutectic microstructure consisting of a fine lamellar struc-
ture show higher strength than expected from a simple rule of
mixture [40]. The crucial questions for modeling two phase lamel-
lar structures are: How do the lamellae orientations of the individ-
ual crystallite relate to the lattice arrangement of the grain, and
how to combine three scales (lamella scale, grain scale and macro
scale) to render the macroscopic properties of two phase polycrys-
tals. The answers to these questions are of interest for the design of
lamellar composites and for the prediction of the mechanical
behavior and texture of two phase polycrystals. The mechanical
behavior and texture evolution of single phase metals are
addressed in many studies. Crystal plasticity models have been
chosen for calculating the texture evolution by using the Taylor
model [30–32,42] and self-consistent modeling [34,35]. Finite ele-
ment method with implemented crystal plasticity model has been
used to capture the grain interactions [30,39]. In the case of two
phase composites, the presence of the second phase can also effect
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the texture evolution. A viscoplastic self-consistent polycrystal
model has been applied by [8] to study the texture development
of lamellar Cu–Ag composites, where the two phase polycrystal
simulations are compared with the corresponding experimental
measurements. However, the disadvantage of this approach is that
the morphology of the lamella cannot be modeled inside the grain.
Texture evolution during non-crystallographic shear banding in a
plane strain compressed Cu–Ag composite using crystal plasticity
finite element simulations has been recently studied by [27,28].
However, the effect of the lamellar morphology on the polycrystal
simulations is still not considered.

In the present work, we model the lamellar two phase polycrys-
tal considering three different scales information of three different
scales (lamella scale, grain scale, and macroscale). Two scales
(lamella and grain scale) are combined, i.e., amplifying the lamella
scale to fit the grain scale. Three dimensional finite element
simulations of two cold drawn Cu–Ag samples of diameter
d1 ¼ 12:42 mm and d2 ¼ 6:73 mm have been modeled. Initially
both samples have a certain crystallographic texture, and the tex-
ture information of these two samples by bulk XRD measurements
has been given in the literature [14]. The article is structured as fol-
lows. In Section 2, experimental observations of both samples are
introduced. Section 3 deals with the constitutive equations of a
finite elasto-viscoplastic material model based on the isomorphy
concept of the elastic laws [7]. Section 4 focuses on the finite ele-
ment simulation of the lamellar composites by generating the
lamellar structure inside the grains. Section 5 explains the valida-
tion results in terms of stress–strain behavior and texture. Section 6
discusses the results and gives conclusions.

Notation. We use the symbolic notation given in the continuum
mechanics text book Bertram [7]. Scalars, vectors, second-order and
fourth-order tensors are denoted by a; a; A, and A, respectively.
The scalar, dyadic, and Rayleigh product are given by �; �, and �,
respectively, where a � b :¼ aibi; a� b :¼ aibjei � ej; A � C :¼
CijklAei � Aej � Aek � Ael. : denotes the double contraction between

tensors, i.e., A : B :¼ AijBij. AT ; A�1 and _A denote the transpose, the
inverse, and the material time derivative of a second-order tensor A.
The linear mapping of a second-order tensor A by a fourth-order
tensor C is written as C A½ �.
2. Experiments

2.1. Drawn samples

The two cold drawn Cu–Ag rods having diameters of 12.42 mm
(d1) and 6.73 mm (d2) are produced by die casting. Samples ðd1; d2Þ
are sectioned in both longitudinal and transverse directions. The
sectioned samples are grinded, polished, etched and examined in
a microscopy. The optical and scanning electron microscope
images of both samples are shown in Figs. 1 and 2 for sections in
both transversal and longitudinal directions. These rods have an
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Fig. 1. Microstructure of Cu–Ag drawn material d1: (A and B) grain structure and lame
direction.
average grain size of 50 lm and 40 lm, respectively. The copper
and silver phases present in the grains in sample d1 and d2 exhibit
a crystallographic texture. The crystallographic texture is mea-
sured using the bulk X ray diffraction (XRD) method. The resulting
pole figures of sample d1 and d2 in Fig. 3 (top figure), Fig. 4 (top fig-
ure) exhibit a strong texture. Besides, the ODFs of both the samples
are presented in the space of Euler angles (see Fig. 3 (bottom fig-
ure), Fig. 4 (bottom figure)). The matlab toolbox MTEX [22,3,23,4]
is used to reconstruct the orientation distribution function (ODF)
from the XRD pole figures with the crystal orientation densities
in a 3D orientation space defined by the three Euler angles /1; u
and /2. These pole figures and ODFs are approximated by the
MTEX algorithm by a set of 100 discrete orientations (see Figs. 3
and 4C and D). These 100 grain orientations should be representa-
tive enough to predict the mechanical behavior and are a good
compromise between the accuracy of the results and the computa-
tional time. The mechanical behavior and texture have been vali-
dated by the experimental data.

2.2. Macroscale compression tests

The compression tests are performed for both cylindrical sam-
ples in the two directions (longitudinal and transversal) on a uni-
versal testing machine. These tests have been performed at room
temperature for a constant strain rate of 10�4 s�1. The experimen-
tal results are reported in terms of true stress and true strain (see
Figs. 7 and 8). More details about the compression tests and micro-
structural observations are given in Dodla et al. [14].

3. Material model

An elasto-viscoplastic single crystal constitutive model is intro-
duced in the lamellar structure of the Cu and Ag phases. The model
is based on the concept of isomorphic elastic ranges [7]. The evolu-
tion of the plastic deformation is accounted for by means of a sec-
ond-order tensor, called plastic transformation P. The tensor P
relates the variables in the undistorted placement to the reference
placement. In the following equations, tilde (�) refers to all vari-
ables which are described with respect to the initially undistorted
lattice base.

3.1. Elastic law

For a prescribed deformation in terms of Green’s strain tensor
~EG, the second Piola–Kirchhoff stress tensor ~T2PK is given by an
anisotropic Hooke’s law

T2PK ¼ kpðCÞ ¼ Pk0ðPT CPÞPT ð1Þ
~T2PK ¼ ~K½~EG� ð2Þ

with

~EG ¼ 1
2
ð~C� IÞ; ~C ¼ ~FT ~F ð3Þ
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llae arrangement in transverse direction, and (C) lamellar structure in longitudinal
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Fig. 2. Microstructure of Cu–Ag drawn material d2: (A and B) grain structure and lamellae arrangement in transverse direction, and (C) lamellar structure in longitudinal
direction.

Fig. 3. Sample d1: pole figures f1 10g (top figure), (A) measured Cu phase, (B) measured Ag phase, (C) Ag phase approximated by 100 orientations, and (D) Cu phase
approximated by 100 orientations. ODF (bottom figure) sections of u2 ¼ 0� in the space of Euler angles, (A) measured Cu phase, (B) measured Ag phase, (C) Ag phase
approximated by 100 orientations, and (D) Cu phase approximated by 100 orientations.

Fig. 4. Sample d2: pole figures f220g (top figure), (A) measured Cu phase, (B) measured Ag phase, and (C) Cu phase approximated by 100 orientations and (D) Ag phase
approximated by 100 orientations. ODF (bottom figure) sections of u2 ¼ 0� in the space of Euler angles, (A) measured Cu phase, (B) measured Ag phase and (C) Cu phase
approximated by 100 orientations, and (D) Ag phase approximated by 100 orientations.
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In Eq. (1), the current elastic law kp has been represented by a con-
stant reference elastic law k0 and a plastic transformation P [7,10].
Eq. (2) is the time-independent reference elastic law. Here F is the
deformation gradient and ~F :¼ FPð Þ is the elastic part of deformation
gradient describing elastic stretch and rigid rotation. ~K denotes the
fourth-order constant stiffness tetrad for a cubic crystal. The tilde
indicates that the ~K is formulated with respect to the undistorted
placement. The stiffness tetrad K is represented by the six by six
matrices and the components refer to the normalized orthonormal
basis Ba of symmetric second-order tensors [12,9], i.e.,
Kab ¼ Ba : K Bb

� �

K ¼

K11 K12 K12 0 0 0
K11 K12 0 0 0

K11 0 0 0
2K44 0 0

sym: 2K44 0
2K44

2
666666664

3
777777775

Ba � Bb ð4Þ

B1 ¼ e1 � e1;B2 ¼ e2 � e2;B3 ¼ e3 � e3 ð5Þ

B4 ¼
ffiffiffi
2
p

2
ðe2 � e3 þ e3 � e2Þ ð6Þ

B5 ¼
ffiffiffi
2
p

2
ðe1 � e3 þ e3 � e1Þ ð7Þ

B6 ¼
ffiffiffi
2
p

2
ðe1 � e2 þ e2 � e1Þ ð8Þ

Copper and silver materials have a face centered cubic (fcc) crystal
structure. The three independent elastic constants for copper are
K11 ¼ 170 GPa, K12 ¼ 124 GPa and K44 ¼ 75 GPa, and for silver
K11 ¼ 123:99 GPa, K12 ¼ 93:67 GPa and K44 ¼ 46:12 GPa [29].

3.2. Flow rule

In general, the fcc materials exhibit crystallographic slip in
f111g h110i slip systems. These 12 slip systems are described
by the Schmid tensors ~Sa :¼ ~da � ~na, which are given by the slip
direction ~da and the slip plane normal ~naÞ. The resolved shear
stress sa in a slip system a can be calculated as

sa :¼ ~C~T2PK : Sa

An evolution of the plastic transformation P is given in terms of the
shear rate _ca and Schmid tensor ~Sa

P�1 _P ¼ �
X

a

_ca~Sa ð9Þ

The kinetics of dislocation motion have been elaborated by the rela-
tionships between the resolved shear stress and the plastic shear
rate _ca of the slip system a by using the power law [26]

_ca ¼ _c0sgnðsaÞ sa

scðcÞ

����
����

m

ð10Þ

where _c0 is a constant reference shear rate, and the exponent m
measures the strain sensitivity of the material. The initial conditions
of the evolution Eq. (9) are ~F t ¼ 0ð Þ ¼ Q t ¼ 0ð Þ 2 SOð3Þ. The orienta-
tion of the crystal is given by a proper orthogonal tensor
Q tð Þ :¼ gi tð Þ � ei. Here ei is the orthonormal base vectors of a fixed
Cartesian coordinate system and gi is an orthonormal lattice vector.
The initial resolved shear stress at time t ¼ 0 is given as sc 0ð Þ ¼ sc0 .

3.3. Hardening rule

A simple, most popular ansatz for the two types of hardening
(self, latent) is the linear hardening rule [25,7].

_sc
a ¼

X
b

hab _cb; hab ¼ qabh cð Þ
where hðcÞ ¼ dsa
c

dc and qab are the matrix components which account
for self and latent hardening of the crystal. For the fcc cubic crystal
having 12 f111g h110i slip systems, we consider qab equal to 1.0
for the coplanar slip systems and equal to 0.9 for noncoplanar sys-
tems. The evolution of the critical resolved shear stress of all slip
systems as a function of shear c is described by a Voce-type harden-
ing law [43]

sa
c cð Þ ¼ sc0 þ ðss þ h1cÞð1� expð�h0c=ssÞÞ ð11Þ

with

c ¼
Z X

a

_caj jdt ð12Þ

c is given by the sum of shear rates of all slip systems. The Voce
type hardening rule consists of four hardening parameters, namely
the initial resolved shear stress sc0 , a saturation stress ss, an initial
hardening modulus h0, and a remaining hardening modulus h1. The
material model has been implemented into the user subroutine
(UMAT) of the finite element package (ABAQUS) [1]. A Newton–
Raphson iteration has been done using a backward Euler scheme
[11].

4. Finite element modeling of the lamellar structure

4.1. Three dimensional Poisson–Voronoi tessellation

Most of the real microstructures are complex in nature. A reason-
able assumption for the topological approximation of real materials
is a three-dimensional Poisson–Voronoi tessellation. From material
science and metallurgy, the Voronoi tessellation points can be
understood as resulting from the crystal growth process in all direc-
tions [33,38]. In this work, the grain microstructure is given as Voro-
noi tessellations in three dimensions. The Voronoi points of the
grains are created by a Poisson process, so that these points are dis-
tributed uniformly (Poisson distribution). The number of grains rep-
resent the number of Voronoi points. The periodic microstructure is
generated by copying the Voronoi points in all the directions. There-
fore, a total of 27 cubes for the periodic cell in the 3D space has been
produced. A center cube in the above created Voronoi structure is
taken as the representative volume element (RVE). For each Voronoi
point g, the interface normal is generated randomly, i.e., for every
grain there is an interface normal vector n which provides the infor-
mation of the lamellar direction. Besides, the same interface normal
is generated for the incomplete grains at opposite boundaries since
the microstructure is periodic. Voronoi points are mapped to the
lamellar structure of alternating layers of Cu and Ag (see Fig. 5).
The distance vector d is calculated between the integration point
IP and the Voronoi point g. This vector d is projected on the interface
normal vector to calculate the thickness d ¼ d � n of the lamellae
(Fig. 5E). From the micrographs it is clear that the microstructure
consists of alternate layers of Cu and Ag lamella. Therefore, the
thickness d ð¼ dCu1 þ dAg1 þ dCu2 þ dAg2 ; . . .Þ value is used for the con-
struction of the lamellar structure (see Fig. 5E). The lamella thick-
ness of each phase considered in the FE simulations is simply the
volume fraction (vf) of the polycrystals, i.e., vfCu ¼ dCu ¼ 0:37 and
vfAg ¼ dAg ¼ 0:63. The crystal orientation is assigned to the lamellar
phases based on the information for a given integration point
whether it belongs to the Cu phase or the Ag phase and to which
grain. This information can be obtained from the user material sub-
routine UMAT in ABAQUS. Each lamella (Cu, Ag) inside the grain has
the same initial crystallographic orientation with respect to the
grain [14]. In the experimental investigations [14], few shear bands
or twinned regions and also few proeutectic regions are observed in
the experiments. These effects are not considered in the model. The
orientation of each lamella (Cu, Ag) varies from one grain to another
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Fig. 5. (A) Two dimensional view of Voronoi points, (B) Fixed boundary Voronoi points (black dots), (C) interface normal n for each Voronoi point, (D and E) generation of
lamellar structure Cu, Ag along the interface normal n inside the grain g.

Fig. 6. Top figure: (A) three dimensional view of periodic Voronoi microstructure, (B) Cu and Ag lamellar structure inside the grains, and (C) combination of both grain
structure and lamellar structure of Cu, Ag phases inside the RVE, Bottom figure: (A) plane view of periodic Voronoi microstructure, (B) plane view of Cu and Ag lamellar
structure inside the grains, and (C) combination of grain and lamellar structure.
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Fig. 7. Prediction and measured true stress–strain curves for the compression test of sample d1 (left figure) and sample d2 (right figure).
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Table 1
Material parameters.

Material _c0 ½s�1� m [–] sc0 ½MPa� ss ½MPa� h0 ½MPa� h1 ½MPa�

Sample: d1

Cu 0.0001 80 5.5 167.6 7964 9.2
Ag 0.0001 80 5 200.9 4501 20

Sample: d2

Cu 0.0001 80 5.5 241.4 14,000 105
Ag 0.0001 80 5 227.6 12,746 50

Fig. 9. Pole figures d1: (A and B) measured and simulated Cu phase, and (C and D)
measured and simulated Ag phase.

Fig. 10. Pole figures d2: (A and B) measured and simulated Cu phase, and (C and D)
measured and simulated Ag phase.
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depending on the initial texture of the sample ðd1; d2Þ. In general,
the Cu/Ag lamellar structure and grains are in different length scales
as shown in the real microstructures d1; d2. However, the present
model is able to represent the combined effect of lamellar structure
and grain structure. Hence the finite element simulations are able to
solve the lamellar two phase Cu–Ag polycrystals (see Fig. 6).

4.2. Finite element mesh and periodic boundary conditions

Finite element calculations have been performed by the finite
element software (ABAQUS). In the RVE simulations, a three
dimensional eight-noded linear element (C3D8) is chosen. The
Gauss points for each grain can be determined based on the mini-
mum distance between the grain and Gauss point. For the applica-
tion of the periodic boundary conditions three artificial nodes are
considered. Each artificial node has a three displacement degrees
of freedom. In total, nine additional displacement degrees of free-
dom have been assigned to the components of the average dis-
placement gradient �H. All boundary nodes (corner, surface and
edge) are formed into pairs xþ0 and x�0 , where the surface normal
vector is equilibrated on the opposite boundaries

nþ0 ¼ �n�0 : ð13Þ

For given pairs of xþ0 and x�0 with Eq. (13), the formulation of peri-
odic boundary conditions in terms of an imposed average displace-
ment gradient �H and stress T can be expressed as

uþ � u� ¼ �H xþ0 � x�0
� �

; tþ ¼ �t� ð14Þ

Here t	 are the traction vectors on the surfaces. The stress field is
equilibrated on the opposite boundaries (see also [17]). The periodic
boundary conditions are implemented into the three artificial nodes
in the RVE using the python script by the above mentioned equation
(Eq. (14)).

4.3. Homogenization of stresses

Prescribing the displacement gradient �H, the stresses have been
computed based on the assumption of equivalence of work on the
micro and mesoscale [24], the 1st Piola–Kirchhoff stresses on the
local (T1PK ) and the average (�T1PK ) stresses are related by

�T1PK ¼ 1
V

Z
V

T1PK dV ð15Þ
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Fig. 8. Measured and validated stress–strain curves for the compression test of sample ðd1) (left figure) and sample d2 (right figure).
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Fig. 11. Sample d1: ODF (A) measured Cu phase, (B) simulated Cu phase (C) measured Ag phase and (D) simulated Ag phase.
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The reference volume V in Eq. (15) is taken as the volume average of
the RVE. By homogenization over the RVE, the reaction force vectors
and displacements are extracted from three artificial nodes. Hence,
corresponding stresses and strains are calculated using the consti-
tutive model given in Section 3.
4.4. Mesh convergence

A convergence study has been carried out for both polycrystals
d1; d2. We used the h-method of convergence, i.e., the number of
elements and hence of the nodes on each side with variable size
h has been increased in order to achieve convergence. The number
of elements of each side of the RVE has been studied in steps of 16,
32, 40 and 48 elements. We concluded that a sufficient mesh size
on each side of RVE is 40 elements, which has been applied to all
the finite element simulations.
4.5. Identification of material parameters of the sample with d1 and d2

For the model used, two viscous flow parameters ð _c0;mÞ in the
viscoplastic power law (see Eq. (10)) are needed. The initial shear
rate _c0 can be selected arbitrarily, and we consider 10�4 s�1 for



Fig. 12. Sample d2: ODF (A) measured Cu phase, (B) simulated Cu phase (C) measured Ag phase and (D) simulated Ag phase.
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both the phases for the sample d1 and d2, and the strain rate sen-
sitivity parameter m ¼ 80 is taken from the literature [29]. We
used the Taylor model for the identification of the Voce hardening
parameters for the two polycrystals ðd1; d2Þ. We begin with the
Voce hardening parameters given in [8] for both the Cu and Ag
phases. The constitutive equations are similar to those given in
the material model (Section 3). The hardening parameters for both
the samples are identified by simulating a uniaxial compression
test in longitudinal direction and comparing the results with the
measured experimental data [14]. The minimization problem has
been solved using the minpack package [37], in which the Leven-
berg–Marquardt algorithm has been applied. The finite element
simulations have been carried out at room temperature for a con-
stant strain rate of 10�4 s�1 up to a compressive deformation of 4%
for the sample d1 (see Fig. 7 (left figure)) and 5% for the sample d2

(see Fig. 7 (right figure)). The numerically predicted stress–strain
data is similar to the experimental data obtained from compres-
sion experiments of both samples d1; d2. All identified hardening
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parameters and flow parameters used in the FE simulation are
listed in Table 1.
5. Validation results of samples d1 and d2 in transverse direction

5.1. Stress–strain behavior

Three dimensional finite element simulations of compression
tests have been employed to validate the defined model in trans-
verse (Z) direction for both the samples. From these tests, the true
stress–strain behavior (see Fig. 8) can be obtained, and this curve is
considered to be a validation of hardening parameters and initial
texture. The comparison of the simulated stress–strain curves with
the experimentally obtained stress–strain curves will reveal the
validity of the material model. As one can see in Fig. 8 (left),
numerical simulations are in good agreement with the experimen-
tal measurements of the drawn sample d1. However, there is a
slight deviation at strains below 3% of the drawn sample d2 as
shown in Fig. 8 (right). The deviation may be due to heterogeneity
in the microstructure. It is observed that the microstructure of
sample d2 shows a reduction in grain size from the center to the
edge of the rod, because the rod is more compressed at the outer
surface during the drawing operation. Moreover, the approxima-
tion by only 100 grains is rather small, although sufficient to cap-
ture the main features of the real texture.

5.2. Crystallographic texture

The measured and simulated textures in this article are pre-
sented in terms of (110) pole figures and /2ð¼ 0�;45�;65�Þ sec-
tions of the orientation distribution function (ODF) in the space
of Euler angles ð/1;uÞ 6 90�. The final texture of both samples
ðd1; d2Þ after compression testing is presented as the pole figures
and ODF shown in Figs. 9–12. The important observations of the
measured textures of sample d1 and d2 are as taken as follows.
(1) Both Cu and Ag phases develop the same alloy type texture.
(2) The texture components observed in the Ag and Cu phase have
a strong Brass component. In the ODF plot (see Figs. 11 and 12), the
/2 sections at 0� and 45� expose a strong Brass component. How-
ever, some weak texture components are observed in the finite ele-
ment model calculations for the /2 section at 65�. This effect is a
general characteristic for texture simulations by a small number
of grains. (3) Both phases have the same texture features with
small differences in the intensities of the texture, and are similar
to those reported previously for the Cu–24 wt%Ag rolled sheets
[13]. Besides the numerical predictions with the approximated dis-
crete 100 orientations of both the samples capture the above men-
tioned experimental observations of the crystallographic texture.
However, the texture is overpredicted in both the samples. The
reason for this is that the number of orientations is rather small
to represent the complete texture. Nevertheless, the model
describes all the important texture components of the aforemen-
tioned experimental measurements. For predicting the textures
of two polycrystals more precisely under loading, many more ori-
entations must be incorporated in the model. In that case, how-
ever, the finite element simulations would become prohibitively
expensive for the complex microstructures.
6. Summary and conclusions

In this paper, two different cold drawn textured polycrystals
ðd1; d2Þ are numerically investigated. The lamellar nature of the
Cu and Ag phases are studied at the lamella scale by performing
3D finite element simulations. Besides, simulations of the
texture evolution of two polycrystals have been validated by the
experimentally measured texture. In the finite element simulation,
the microstructure is represented as a periodic Voronoi tessella-
tion. The finite element simulation (RVE) captures the two phase
lamellar morphology inside the grains. The compression tests have
been performed in the transverse direction (Z direction) to validate
the material parameters of the aforementioned two phase lamellar
Cu–Ag polycrystals. From the numerical investigations of these
two polycrystals ðd1; d2Þ, we obtain the following conclusions.

1. The material parameters of two phase textured polycrystals
using the crystal plasticity material model have been identified
by means of macroscale compression tests (see Figs. 7 (left) and
7 (right)).

2. Using the crystal plasticity material model, the mechanical
behavior of a two phase polycrystal d1 is validated by the
macroscopic experimental results, and the numerical model
approximated by a 100 grains initial texture is well captured
(see Fig. 8 (left)). In the case of the polycrystal d2, the stress–
strain behavior shows a small deviation at strains <3% but the
simulated stress–strain curve is in good accordance with the
experimental curve at strains above 3% (see Fig. 8 (right)).
Nevertheless, the deviation is in an acceptable range.

3. The numerical simulations reproduce the experimentally
observed textures in both Cu–Ag polycrystals ðd1; d2Þ. Figs. 9–
12 reveals the simulated and measured textures for the Cu
and Ag phases of sample d1 and d2. Both phases developed
the same type of texture. The Brass type texture component is
developed in the Cu and Ag phases. The simulated textures
are overpredicted with the measured texture results, but the
important texture components (Goss, Brass, Copper and S) are
well captured.
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