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Preface 
of the 2nd edition of January 2016 
 

This is the second edition of the compendium following the first one from Oct. 2015. Apart 
from updating it and making minor corrections and improvements, three major parts have been 
added, namely 

 at the end of Chapt. 1 the balance equations and boundary conditions for the case of third-
order continua; 

 Chapt. 3 describes the general N-th order material; 

 Chapt. 5 investigates isotropic hexadics which appear in the second-order linear elasticity 
theory. 

 

   This compendium is in large parts a compilation of already published articles, which are part-
ly paraphrased, in others modified, or extended, and brought into a unified notation.  

It is the intention to present various results on gradient materials in a unified manner. It is 
meant as a working material which everybody may freely use. Whenever an improvement or a 
correction or a useful comment can be made, the compendium will be up-dated. So all users 
should make sure to always use the latest version.  

What is the difference between this compendium and an ordinary scientific book? First of all, 
this is a non-profit project, just to serve scientific progress. So everybody has free access and 
can download it at any time. By our format, we are much less restricted by the usual rules of 
publication policies. We can up-date our compendium at any time.  

The compendium is also not meant to be read like a book, linearly from page one till the last 
page. Instead, we tried to make the chapters self-contained. So it should be possible to just pick 
out one chapter, without having studied all the foregoing ones. In some cases this leads to  
repetitions and redundancy. 

All researchers in the field are invited to contribute to this compendium. For this purpose 
please contact the editor. All comments and suggestions to improve this compendiums are also 
highly welcome at the same address (albrecht.bertram@ovgu.de).  

 

   The compendium is organized as follows.  

In a first part we deal with balance laws for gradient materials. It will be demonstrated how the 
laws of motion apply to higher-order materials, and what the boundary conditions look like. 
This approach is based on the Principle of Virtual Power (PVP) as a continuous and linear  
extension of the power functional. It is compared with the procedure by CAUCHY, who started 
with forces as primitive concepts. 

After having provided the balances, one needs constitutive laws. These are considered here for 
elastic and elastoplastic materials. Since there are large differences between a (geometrically) 
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linear theory and a finite theory, we present two frameworks for constitutive modeling, which 
can be read independently, since all concepts are introduced there right from the beginning.  

In both cases, the full thermodynamic setting is exposed so that the restrictions by the dissipa-
tion inequality can be studied.  

In linear elasticity of gradient materials, new stiffness tensors appear, the interpretation of 
which still needs more investigation. For the isotropic case, we added some results on hexadics. 

Further, the concept of internal constraints is extended to include gradient effects, both in the 
mechanical and in the thermodynamical setting.  

 

Acknowledgment. The editor was supported with helpful comments from many sides, in particular by Samuel 
Forest (Paris), Rainer Glüge (Magdeburg), Jan Kalisch (Magdeburg), Arnold Krawietz (Berlin), and Christian 
Reiher (Magdeburg). This shall be gratefully acknowledged here. 
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List of Notations 
 

Sets and spaces 

R     space of real numbers 

Eucl      three-dimensional EUCLIDean space 

B    body (manifold) 

Bt , B0   Eucl   domain of the body in the current and reference placement  

Bt , B0   Eucl   surface of the body in the current and reference placement   

V  3     three-dimensional space of vectors (EUCLIDean shifters) 

V   space of all vector fields on  Bt  called virtual velocities 

Dyad   space of linear mappings from V  3  to V  3 (2nd-order tensors or dyadics) 

Inv   set of invertible dyadics (general linear group) 

Orth   set of orthogonal dyadics (general orthogonal group) 

Psym   set of symmetric and positive-definite dyadics 

Sym   space of symmetric dyadics 

Skw   space of antisymmetric or skew dyadics  

Unim   set of 2nd-order tensors with determinant  1 (general unimodular group) 

Triad   space of all triadics with right subsymmetry 

LinComb    = Dyad   Triad 

Conf      = Psym  Triad  

InvComb   =  Inv  Triad  

UnimComb   = Unim  Triad  

 

A superimposed  +  at a dyadic set such as  Inv+  means: with positive determinant.  

R +  denotes the positive reals. 

 
Variables and Fields 

a  V  3     acceleration 

b  V  3   spec. body force 
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bgen   V  3   spec. generalized body force 

B = F  FT   Psym   left CAUCHY-GREEN tensor  

c =  e  R  specific heat 

C = FT  F   Psym   right CAUCHY-GREEN tensor 

C    linear elasticity operator  

dm    mass element 

dA , dA0   surface element in the current and reference placement 

dV , dV0   volume element in the current and reference placement 

dO  V  3   angular momentum with respect to the point  O 

D  Sym   rate of stretching tensor 

E   Sym    linear strain tensor  

EG = ½ (C – I)  Sym  GREEN´s strain tensor  

f  V  3   force 

F  Inv+  deformation gradient  

g , g0  V  3   spatial and material temperature gradient 

G  = F ○ J –1 H   Triad spatial hyperstress triadic 

H  =  F –1 ○ J G   Triad material hyperstress triadic 

I  Psym  second-order identity 

K  R   kinetic energy 

K=F –1 Grad F  Triad configuration tensor (triadic) 

L  Dyad  velocity gradient 

mO  V  3   torque with respect to  O 

M  = grad E    Triad 

p  V  3   linear momentum 

q , q0  V  3   heat flux in the current placement and in the reference placement 

Q   R   heat supply 

n  V  3   outer surface normal  

R = –  Ee
 e  Sym  2nd-order stress-temperature tensor   

R = –  Me
 e  Triad   3rd-order stress-temperature tensor    
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S = F –1  J T  Sym  PIOLA-KIRCHHOFF stress tensor 

t    R   time 

t  V  3   traction  

T   Sym   CAUCHY´s stress tensor 

 i
T     i th hyperstress tensor 

 i
U   : =  grad i u  i th displacement gradient 

u  V  3   displacement  

v  V  3   velocity 

w  R   elastic energy 

W  Skw   spin tensor 

x , x0  V  3   position vector in current and reference placement 

Z    hardening variables 

 

Greek letters 

x  f    partial derivative of a function  f  with respect to some variable  x 

    virtual 

      LAPLACE operator 

  R   internal energy 

  V  3   motion 

    yield criterion 

 , 0    current and reference placement   

  R   plastic parameter 

  R   specific entropy 

Πe , πe   R   external power (global and specific) 

Πi , πi  R   internal or stress power (global and specific) 

 , 0  R   density in current and reference placement  

=  –    R  free HELMHOLTZ energy 

  V  3   angular momentum 

 , 0  R   temperature, reference temperature 
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Symbols 

 ,0    nabla in  current and reference placement  

    tensor product 

    RAYLEIGH product 

○    pull-back or push-forward operation 

< , >    inner product of hyper-vectors in Chapt. 3. 
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Introduction 
 

   Classical mechanics are based on EULER´s equations of motion, i.e., the balance of linear 
momentum and of angular momentum. These equations combine kinematical quantities like 
momenta with dynamic quantities like forces and torques. While the kinematical quantities are 
directly measurable within geometry and chronometry, the dynamic ones do not have this  
property. Forces are not visible, audible, tangible, etc., or how LAGRANGE (1788, p.1)  
expressed it: 

On entend, en général, par force ou puissance la cause, quelle qu´elle soit, qui 
imprime ou tend à imprimer du mouvement au corps auquel on la suppose appliquée, 

and very similar also LAPLACE (1799, p. 4)  

La nature de cette modification singulière, en vertu de laquelle un corps est transporté 
d'un lieu dans un autre, est et sera toujours inconnue; on l´a désignée sous le nom de 
force; on ne peut déterminer que ses effets et les loix de son action.  

This is surely the reason why it took so long in the history of mechanics to develop the  
concepts of forces (STEVIN 1586), gravitation (HOOKE and NEWTON et al. around 1680), 
distributed forces (EULER et al. 18th century), and stresses (CAUCHY 1823).  

In principle, a precise introduction of the dynamic quantities is rather controversial. Is  
NEWTON´s law the definition of force as mass times acceleration? Then this law would be a 
triviality, which can neither be verified nor falsified. Or do we understand forces as primitive 
concepts, which would also make them "untouchable"?  

For EULER and CAUCHY and many others it was natural to distribute forces into the catego-
ries of contact forces and of volumetric forces. After additional assumptions, CAUCHY could 
then introduce the stress tensor to determine the traction vector on the surface of the body.  

The overwhelming  success of this approach has at least two reasons. Firstly, it was the most 
simple approach to take contact actions on the surface into account. And secondly, by his stress 
concept already a great majority of effects can be described reasonably well.  

However, there are certain effects in mechanics which cannot be described by a CAUCHY  
continuum. Whenever size effects appear, a theory which allows for internal length scales is 
needed. From the beginning of the 20th century, a variety of non-classical theories has been 
suggested to overcome the shortcomings of the CAUCHY continuum. The COSSERATs added 
1909 micro-rotations and micro-torques to the continuum concepts and thus created the polar 
media. This was later broadened to not only introduce micro-rotations, but also micro-
deformations, leading to micromorphic theories (ERINGEN 1999).  

Another approach is that of considering higher gradients of the displacements. This line was 
initiated by KORTEWEG (1901) for fluids and by TOUPIN (1962), GREEN/ RIVLIN (1964a 
and b), and MINDLIN (1965) within elasticity, and later induced also for plasticity. The  
appealing feature of these theories is that no new kinematical concepts like COSSERATs´  
micro spins had to be invented, since only the higher derivatives of the classical displacements 
are considered.  
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In the present work we will exclusively deal with this latter class of theories. We will see how 
the CAUCHY continuum is imbedded in gradient theories as one particular step in an infinite 
cascade of higher-order theories. The higher this order is, the more effects can we describe, at 
the cost of an enormous growth of variables and equations. It seems that nature does not tell us 
how far we have to go, but leaves us to choose a theory of some particular order which allows 
us to model the effects of our concern, and avoiding to complicate the theory where it is not 
necessary.  
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Tensor Notations 
 

In general, 
k
T denotes a tensor of k-th-order. As exceptions, we denote vectors (first-order  

tensors) eventually by bold small letters like a , b , c , second-order tensors or dyadics by bold 
capital letters like  A , B , C , and third-order tensors or triadics like  A , B , C.  

For every contraction between tensors we put one dot. More exactly, the P-fold contraction of 
a K-fold tensor product  v1  ...  vK  with an M-fold tensor product  x1  ...  xM  for   
K  P   M  is the (K+M–2P)-fold tensor product 

(v1  ...  vK) ... (x1  ...  xM)   

(0.1)  =  v1  ...  vK–P  xP+1  ...  xM (vK–P+1  x1) (vK–P+2  x2) ... (vK  xP) . 

wherein " ... " stands for  P  contraction dots. For better visuability, we will eventually arrange 
these contraction dots in groups with idential meaning. These notions can be immediately and 
uniquely extended from tensor products to higher-order tensors.  

The invariants of a dyadic  T  are denoted by  IT = tr T , IIT , and  IIIT  = det T . 

For a dyadic  T , the symmetric part is  sym(T) , the skew part is  skw(T) , and the axial vector 
of the skew part of  T  is noted as  axi(T) . The latter is defined by its action on an arbitrary 
vector  v  according to 

(0.2)   skw(T)  v  =  axi(T)  v . 

While a second-order tensor  T  has a unique transpose  TT, a third-order tensor or triadic has 
more than one. We will mainly need the right sub-transpose  At  which gives for the compo-
nents with respect to an orthonormal vector basis  (At)ijk = Aikj . If a triadic is symmetric with 
respect to this particular transposition, we call it right subsymmetric. The left subsymmetry 
is then Aijk = Ajik . The dimension of the space of all tridadics is 33 = 27. If one of the sub-
symmetries is assumed it is only 18.  

For two triadics we obtain then 

(0.3)   At B  =  A B t. 

Very helpful for higher-order tensors is the RAYLEIGH product. It maps all basis vectors of a 

tensor simultaneously without changing its components. To be more precise, let  
k
C   be a  

tensor of kth-order (k  1)  and  T  a dyadic. Then the RAYLEIGH product between them is 
defined as  

(0.4)     T  
k
C  =  T  (C ik ... l ri 

  rk 
  ...  rl)   

   : =  C ik ... l (T  ri) 
  (T  rk) 

  ...  (T  rl) . 

Of course, the result does not depend on the choice of the basis. If  T  is proper orthogonal, 

then the product is a rotation of  
k
C .  

For  k   1  the RAYLEIGH product coincides with a linear mapping 
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(0.5)   T  c  =  T  c , 

and for  k   2  we obtain 

(0.6)   T  C  =  T  C  TT. 

The RAYLEIGH product is associative in the left factor 

(0.7)    S  (T 
k
C )  =  (S  T) 

k
C  

and distributive in the right one. In fact, if  
k
C   and  

n
D  are tensors of arbitrary order, then we 

have 

(0.8)    T  (
k
C   

n
D )  =  (T  

k
C )  (T  

n
D ) 

for all dyadics  T . This does not hold, if we would replace the tensor product by an arbitrary 
contraction, unless  T  is orthogonal. 

In this product, the second-order identity tensor also gives the identity mapping  

(0.9)    I  
k
C   = 

k
C .  

The inversion for an invertible dyadic  T  is done by 

(0.10)    T  (T –1 
k
C )  =  

k
C  =   T –1  (T 

k
C ) . 

The RAYLEIGH product commutes with the contraction with the inverse in the following 
sense 

(0.11)    T –1  (T 
k
C )  =  T  (T –1 

k
C ) . 

For two second-order tensors  A  (invertible) and  B  and a higher-order tensor  
k
C   we obtain 

the rule 

(0.12)    B  A–1  (A 
k
C )  =  A  (A–1  B 

k
C ) . 

For the k-fold scalar product of two arbitrary kth-order tensors we get 

(0.13)    (T 
k
C ) 

k
D   =  

k
C  (TT 

k
D ) . 

The  RAYLEIGH product acts on a simple triadic like 

(0.14)    T  (a  b  c)  =  (T  a)  (T  b)  (T  c)   

   =  (T  a)  (T  b)  c  TT   

   =  T  (a  c  b  TT ) t  TT 

and analogously on a triadic  A 

(0.15)     T  A  =  T  (At  TT ) t  TT.  



Compendium on Gradient Materials  2016                                                               14 
 

 

   Besides the RAYLEIGH product, we will need another product between an invertible dyadic  
T  and a triadic  A  denoted by 

(0.16)    T ○ A  : =  ijk T –T  ei)  T  ej)  T  ek)

   =T –T  [At  TT ] t  TT 

with (0.15)  =  T  (T –1  T –T  A)   

with (0.12)  =  T –T  T –1  (T  A) . 

The following rules hold for this product. 

(0.17)    (T ○ A) B  =  A (TT ○ B)  

for all dyadics  T  and all triadics  A  and  B . The second-order identity tensor also gives the 
identity mapping  

(0.18)    I ○ A  =  A     

and the inversion is done by 

(0.19)    T ○ (T –1 ○ A)  =  A . 

Furthermore, the product is associative 

(0.20)    S ○ (T ○ A)  =  (S  T) ○ A  

for all dyadics  S  and  T  and triadics  A .   

For the case of  T  being orthogonal, this transformation coincides with the RAYLEIGH  
product. 

   We denote an arbitrary basis by  {ri}  and its dual by  {ri} . In particular, such bases occur as 
the natural bases induced by a coordinate system  { i}  and then written as  {ri}  and  {r

i} . 
An orthonormal vector basis is written as  {ei}

 . 
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Kinematics 
 

We denote by 

Eucl     the three-dimensional EUCLIDean space 

V  3     the three-dimensional vector space of EUCLIDean shifters 

B    the body (manifold) 

B0   Eucl    the domain of the body in the reference placement with surface  B0 

Bt   Eucl    the domain of the body in the current placement with surface  Bt 

 

   A placement of the body  B  at a time  t  is an embedding (bijective) 

   (  , t) : B    Bt   Eucl . 

While the time  t  runs through a finite time interval  I  : = [0 , te] , the parameterized sequence 
of placements defines a motion of the body.  

It is rather customary (although not necessary) to introduce a (time- and observer-independent) 
reference placement 

(0.21)   0 : B    B0  Eucl   

which is also assumed to be bijective. The composition of its inverse with a motion 

(0.22)   ( , t)  : =  (0
–1() , t) : B0    Bt   Eucl 

is the EUCLIDean description of a motion of the body, being for all times  t  a bijection  
between the regions  B0  and  Bt  of the EUCLIDean space. Practically, one would describe 
this function either by coordinates or by position vectors. The latter leads to a mapping 

(0.23)    : V  3   I    V  3    

or 

(0.24)   x  =  (x0 , t)  

with the position vector of a material point  x0  in the reference placement and  x  in the current 
placement.  

The volume and surface elements in the current placement are  dV  and  dA , and in the  
reference placement  dV0  and  dA0 , respectively. The mass element is  dm  for which a  
distinction of the two placements is not necessary because of mass conservation. The mass  
densities in the two placements are denoted by  and 0 , respectively. The nabla operator in 
the reference placement is denoted as  0 , and simply    in the current placement. If we  
consider tensor fields of any order, we have at least three choices of representations.  

1.) We can introduce the field as a mapping from the body manifold 
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(0.25)   I  :   B      Lin   

where  Lin  stands for the particular tensor space. This can be done by convected coordinates 
and is called intrinsic description.  

2.) We can introduce the field as a mapping from the region  B0  Eucl  which the body  
occupies in the reference placement 

(0.26)   L  :   B0      Lin  . 

This can be done by material coordinates and is called material or LAGRANGEan  
description. 

3.) We can introduce the field as a mapping from the region  Bt  which the body occupies in 
the reference placement 

(0.27)   E  :   Bt      Lin  . 

This can be done by spatial coordinates and is called spatial or EULERean description. 

By the motion (0.21) - (0.22) we are able to uniquely transform any of these descriptions into 
any other. 

When using gradients or differentials of such fields, we have to take care of these different 
choices. So grad, div and curl are related to the gradient, divergence, and curl operation  
respectively in the current placement, while Grad, Div, and Curl are related to the same  
operations in the reference placement. 

The (material) gradient of the motion (0.24) with respect to the first argument is the  
deformation gradient 

(0.28)   F(x0 , t)  =  Grad (x0 , t)  Inv+.  

The transformations of the nablas in the reference and the current placement is after the chain 
rule 

(0.29)   0  =   F   =  F T    and   =  0 F –1  =  F –T 0 .  

The linear strain tensor is  

(0.30)   E  : =  ½ (F + FT – 2 I)   Sym . 

The velocity field is the first partial time derivative   

(0.31)   v(x0 , t)  =  (x0 , t)
  

and the acceleration field the second time derivative 

(0.32)   a(x0 , t)  =  (x0 , t)
  

of the motion (0.24). The (spatial) velocity gradient is 

(0.33)   L  =  grad v  =  grad    Dyad 

which can be decomposed into its symmetric part  D  and its skew part  W  as 

(0.34)   L  =  D + W .  

The time derivative of the deformation gradient is related to the velocity gradient by 
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(0.35)   L  =  F   F –1. 

The right CAUCHY-GREEN tensor is defined as 

(0.36)   C  : =  FT  F    Psym    

and the left CAUCHY-GREEN tensor  

(0.37)   B  : =  F  FT    Psym    

and GREEN´s strain tensor  

(0.38)   EG  : =  ½ (C – I)   Sym  

such that 

(0.39)   EG=  ½ C=  FT  D   Sym . 
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1.  Balance Laws 
 

The prominent fundamental aim of mechanics is to decide whether a given motion of a body is 
(dynamically) admissible or not. Such a decision is based on certain axioms, which can later be 
reformulated by equivalent statements. For the selection of such axioms, different choices exist. 
The classical way to do this is based on what we call today EULER's equations of motion. 

It is the intention of this chapter to introduce a series of (equivalent) sets of balance equations 
or equivalent formulations, which altogether assure the dynamic admissibility of a motion. 
Constitutive equations are beyond the scope of this chapter.  

 

 

1.1  Method of EULER and CAUCHY 
 
In the following we repeat the essentials of the procedure used by EULER (for fluids) and by 
CAUCHY (1823, 1828) (for the so-called CAUCHY continuum). It is based on a series of  
axioms or assumptions, which we will number as A1, A2 etc.   

(A1) The starting point is the Principle of Cuts after which we can cut every body out of the 
universe, and substitute the mechanical influence of the outer world by (solely) applying forces 
or enforced displacements.  

(A2) Such forces induce torques in the usual way, which are linked to a turning point. If we 
change this turning point, we have to add moments after VARIGNON´s principle.  

(A3) In continuum mechanics, such forces are understood as resulting from distributed forces 
acting either on the interior of the body as body forces like, e.g., gravity, or on the surface as 
contact forces such as the air pressure. Line or point forces have not been included by 
CAUCHY. 

(A4) Both types of forces are understood as continuously distributed, so that force densities 
exist. The density of the body force per unit mass is the specific body force field  b , that of the 
contact force is the traction field  t , so that the resulting force acting on the body can be  
determined by 

(1.1)   f  =  

t


B

b dm +

t

B

t dA 

and the resulting torque  

(1.2)   mO   =  

t


B

xO  b dm  +

t

B

xO  t dA 
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with  xO  being the position vector with respect to some turning point  O  in space. While the 
specific body force  b  is assumed to be given by a gravitational law or the like, the surface 
tractions are induced by dynamic (or NEUMANN) boundary conditions, or as reactions to 
DIRICHLET boundary conditions.   

Further, it is assumed that two balance laws hold, which we call EULER´s laws of motion, 
namely 

 (A5) the balance of linear momentum   

(1.3)   p  =  f  

with the linear momentum   

(1.4)   p  : = 

t


B

v dm   

 (A6) and the balance of angular momentum  

 

(1.5)   dO
  =  mO      

with the angular momentum   

(1.6)   dO  = 

t


B

xO  v dm   

with respect to some fixed point  O . 

The two balance laws can be brought into the form using (1.1) and (1.2) 

(1.7)    

t


B

a dm  =  

t


B

b dm +

t

B

t dA   

(1.8)   

t


B

xO  a dm    =    

t


B

xO  b dm  +

t

B

xO  t dA . 

The (dynamical) admissibility of a motion of a body is then understood as the validity of these 
two laws. 

Axiom 1.1 (EULER´s laws of motion) 
A motion of a body is admissible if and only if the balance of linear momentum (1.7) and the 
balance of angular momentum (1.8) hold during the motion. 

We will need one further assumption which seems to be rather natural, but is by no means  
trivial. 

Axiom 1.2 (Compatibility Assumption) 
Let    be an admissible motion of a body  B0 , and  B1  B0  a subbody of  B0 . Then the 
restriction of    to  B1  is an admissible motion of  B1 .  



Compendium on Gradient Materials  2016                                                               20 
 

 

As a consequence, the inverse statement is then also true. 

Let    be a motion of a body  B0 , and  B1  B0  a subbody of B0 . If the restriction of    to  
B1  is not an admissible motion of B1 , then    cannot be admissible for  B0 . 

The next step of CAUCHY (1823, 1828) for the introduction of stresses is the famous tetrahe-
dron argument, which can be found in every book on continuum mechanics. It uses the balance 
of linear momentum (1.7) and continuity under some limit processes and the fundamental  
assumption (A7) that the tractions depend on the particular surface for different cuts only 
through their orientations. Then CAUCHY could demonstrate that the traction vector  t  is a 
linear function of the normal  n  to the tangent plane in that particular point (Theorem of 
CAUCHY), which gives rise to the introduction of CAUCHY´s stress tensor  T , thus  

(1.9)   t(x , t , n)  =  T(x , t)  n(x , t) . 

By this equation, the tractions on a surface point are related to the stress tensor. In the case of 
dynamic or NEUMANN boundary conditions, the tractions are prescribed on the boundary 

(1.10)   tpres(x , t)  =  T(x , t)  n . 

If we determine by (1.9) the resulting contact force, we can apply the divergence theorem to 
transform the surface integral into a volume integral 

(1.11)   

t

B

t dA  =  

t

B

T  n dA  = 

t


B

div T dV. 

Inserting this into the balance of linear momentum (1.7) gives 

(1.12)    

t


B

div T dV  + 

t


B

b dm  = 

t


B

a dm . 

and into the balance of angular momentum (1.8) 

(1.13)    

t


B

(xO  div T dV  + 2 axi T) dV  + 

t


B

xO  b dm   = 

t


B

xO  a dm  

being valid for the body if the motion is admissible. Here we used the integral transformation 

 

t

B

 xO  T  n dA  =  

t


B

(xO  T)  dV  =  

t


B

[xO  (T ) + 2 axi T] dV. 

After the above Compatibility Axiom 1.2, the same motion shall also be admissible for each 
subbody. This would be fulfilled if we take the restrictions of the fields  T  and  b  to the  
subbody (for  a  it follows already from the definition (0.31)). So in what follows we will au-
tomatically use these restrictions without further mentioning.   

Then for smooth arguments we obtain the local balance of linear momentum or 1st law of 
CAUCHY (1823) 

(1.14)   div T +  b  =   a .     
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By use of the two (sic!) equations of motion, one can show the symmetry of the stress tensor, 
sometimes labeled BOLTZMANN´s axiom or 2nd law of CAUCHY  

(1.15)   T  =  TT.  

So we can state the following 

Theorem 1.1 (CAUCHY´s laws) 
A motion of a body is admissible if and only if CAUCHY´s laws (1.14) and (1.15) hold every-
where in the body during the motion. 

   Later in the history of mechanics, the assumption A1 has been extended by also introducing 
distributed torques which do not result from forces (polar media). In such a case, the stress  
tensor is not symmetric and the balance of angular momentum takes the form of a typical  
balance equation. Such media are called constrained COSSERAT media or KOITER (1964) 
media. If one, moreover, considers rotations as additional kinematical degrees of freedom other 
than  curl v , one obtains a COSSERAT (1909) medium. In what follows, however, we will  
restrict our concern to non-polar media. 

   Let  K  be an integer, the value of which will be specified later. We will call any K-times  
differentiable vector field (test function) on the body in the current placement  Bt  a virtual 
velocity field. All such fields form the space of virtual velocities denoted by V . It always 
contains the current (real) velocity field  v  as a distinguished member. It also contains the set 
of constant vector fields, which can be identified with the three-dimensional vector space of the 
EUCLIDean shifters  V  3  in a natural way. 

In analogy to the velocity field, we will use the following notations for the virtual fields: 

L : =  grad v  

(1.16)    W : =  ½ (grad v  grad T v)  =  skw L 

D : =  ½ (grad v + grad T v)  =  sym L 

  : =  axi(W) =  axi(L) .  

If we multiply (1.14) by an arbitrary virtual velocity field  v V 

   div T  v +  (b – a)  v  =  0  

and add (or subtract) the term 

   T  W  =  2 axi T    

then the result is obviously zero if (1.14) and (1.15) hold. We now integrate over the volume 
and obtain the following version of the PVP. 

Theorem 1.2 (volumetric form of the principle of virtual power) 
A motion of a body is admissible if and only if  

(1.17)   

t


B

[div T  v +  (b – a)  v + T  W] dV =  0 

holds during the motion for arbitrary fields  v V . 
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Proof. We choose for the virtual velocity field an arbitrary constant field  v0 V  , so that the 
gradient of it is zero everywhere. Then the above equations gives 

(1.18)   {

t


B

[div(T) +  (b – a)] dV }  v0  =  0 

and by the arbitrariness of  v0 

(1.19)    

t


B

[div(T) +  (b – a)] dV  =  o . 

This must hold also for every subbody after the Compatibility Axiom 1.2, so that the integrand 
must be zero everywhere in the volume, which gives (1.14). 

As a second choice for  v V  we choose a rotational field    x V  with an arbitrary 
constant vector    and the position vector  x  with respect to some arbitrary point of  
reference. Then the skew tensor field  W  is arbitrary but constant 

(1.20)  

t


B

T  W dV =  0  =

t


B

2 axi T   dV    with    : =  axi(W) . 

By a similar reasoning as before we can conclude that the integrand must be zero for any skew 
W  so that the stress tensor must be symmetric everywhere in the body, which gives (1.15). So 
we have that CAUCHY´s laws hold everywhere in the body. On the other hand, the validity of 
these laws gives immediately the equation in the theorem, q.e.d.  

   We apply the divergence theorem and the product rule to the equation (1.17) from the above 
theorem 

   0  = 

t


B

[div T  v +  (b – a)  v + T  W] dV   

    =

t


B

[div T  v +  (b – a)  v + T  L  T  D] dV   

(1.21)   =  

t


B

[ (b – a)  v  T  D] dV  + 

t

B

t  v dA  

since the divergence theorem applies as 

(1.22)   

t


B

T  grad v dV  =  

t

B

(T  n)  v dA 
t


B

 div T  v dm . 

This gives the  
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Theorem 1.3 (global PVP) 
A motion of a body is admissible if and only if  

(1.23)   

t


B

b  v dm  + 

t

B

t  v dA  = 

t


B

a  v dm + 

t


B

T  D dV   

holds during the motion for all virtual velocity fields  v V . 

If we insert in (1.23) the (real) velocity field  v  for  v , then we obtain the mechanical work 
balance, which is only a necessary condition for the motion to be admissible.  

Theorem 1.4 (global work balance)   
For every admissible motion of a body, the work balance  

(1.24)    Πe  =  Πi + K                 

holds during the motion with the power of the forces 

(1.25)   Πe : = 

t


B

b  v dm  + 

t

B

t  v  dA , 

the stress power 

(1.26)   Πi  : =  

t


B

T  D dV   

and the kinetic energy 

(1.27)   K  : =  ½

t


B

v  v dm . 
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Changes of Observers 
 

Since all of our variables, both kinematical and dynamic ones, depend on observers, we have to 
consider changes of observers. Such changes contain a temporal and a spatial transformation. 
The temporal transformation is just a time shift of the reference point of time. Since we mainly 
deal here with differences of time, this transformation does not matter and will not be further 
mentioned.  

The spatial transformation induced by a change of observer, however, does matter. It is given 
by the EUCLIDean transformation which transforms the position vector  x(P , t)  of a particle 
or a material point  P  at a time  t  for one observer into that of some other observer indicated 
by an upper asterisk, (not to be confused with the RAYLEIGH product (0.4)) 

(1.28)   x*(P, t)  =  Q(t)  x(P , t) + c(t) 

by a time-dependent vector  c(t)  V 3 and a time-dependent proper orthogonal tensor  Q(t) 
Orth +, both of which are determined solely by the two observers, but are independent of the 
motion.  

Sometimes the question is raised wether  Q(t) could also be improper, i.e., with negative  
determinant. In this case, the EUCLIDean transformation would also change the orientation. 
Since the orientation of the EUCLIDean space is not an intrinsic property but rather a con-
vention or a definition, there would be no loss of generality if all observers would agree to one 
orientation, so that  Q(t)  was proper orthogonal. This will be further on assumed.  

The EUCLIDean transformation forms a group under composition, and determines the  
transformations of all kinematical variables as group actions.  

If we transform fields, we have to take into account that the dependence on the locus expressed 
by  x0  in the LAGRANGEan representation is invariant under observer changes, while the  
position vector  x  in the EULERean description has to be transformed according to (1.28). 
When we will further on compare field variables in the EULERean description, it is without 
further mentioning understood that such a transformation of the spatial variables for the  
different observer is made. 

We will call a tensorial variable  T  of any order objective if it transforms like 

(1.29)   T*  =  Q  T   

and invariant if 

(1.30)   T*  =  T .  

For scalars (as zeroth-order tensors) both definitions coincide. 

Nabla transforms after the chain rule as 

(1.31)    =  *  Q   * =    QT 

and the gradient of some field as 

(1.32)   grad ()  =  grad *()  Q  grad *() =  grad ()  QT.  
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The action of the EUCLIDean transformation on the motion    of the body during a closed 
time interval is 

(1.33)   *( x0
 , t)  =  Q(t)  ( x0

 , t) + c(t) . 

The transformation of the velocity field results as  

(1.34)   v*
  =  Q  ( x0

 , t) + Q  ( x0
 , t) + c  

   =  Q  v + Q  QT  (x* c) + c  

   =  Q  v +   (x* c) + c  

where the angular velocity    is the axial vector of the skew tensor  Q  QT  

(1.35)     : =  axi(Q  QT) ,  

both of which depend on the time, but not on the locus. The terms    (x* c) + c  are some-
times called distributors. They also result in an identical form for the velocity field of a rigid 
body motion. 

The acceleration transforms as 

(1.36)   a*  =  Q  a + c +    (x* – c) +   (x* – c)    + 2   (v* – c)  

as a sum of the relative acceleration, the translational acceleration, the angular acceleration, the 
centripetal acceleration, and the CORIOLIS acceleration, respectively. 

We also find that neither  L  nor  W  are objective 

(1.37)   L* =  Q  L + Q  QT    

(1.38)   W* =  Q  W + Q  QT 

because of the additional skew parts  Q  QT , while the symmetric part  D  is objective 

(1.39)   D* =  Q  D ,  

and so are all higher velocity gradients from the second one onwards. 

The question arises about the transformations of the dynamic quantities. Usually, one assumes 
(A8) objectivity of not only the resulting force but also for each part of it:  

   f *  =  Q  f  

(1.40)    b*  =  Q  b   

   t*  =  Q  t . 

Then we can show that the power of the forces is objective (and invariant)  Πe
*  =  Πe  as well 

as the stress power  Πi
*  =  Πi  , and so is the stress tensor as already denoted in (1.29). 

EULER´s laws of motion have a kinematical side and a dynamic side. The dynamic side is  
objective after A8, while the kinematical side is not objective due to the transformations of the 
acceleration (1.36). Consequently, these fundamental equations do not hold for all observers, 
but only for those (inertial observers) for which the acceleration transforms like an objective 
vector (  o  and  c  o). Such changes of observers are called GALILEIan transformations.  
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This situation is, of course, not satisfying. One can remove this shortcoming by relaxing A8 by 
assuming that the generalized body forces  bgen  : =  b  a  are objective (A8'), which contain 
the specific body force and the inertial force1. This would mean that the fields  t  and   T  and  
bgen  are objective, but not  b . If we do this, both sides of EULER´s equations are objective, and 
they hold for every observer. So by sacrificing the objectivity of forces and torques in our  
concept, we gain the freedom of choice of the observer, since we are no longer restricted to 
inertial observers. Hence, all the following statements hold for arbitrary observers, whether 
inertial or not2.  

Under this assumption A8' we can prove the following  

Theorem 1.5 (principle of invariance of the power) 
A motion of a body is admissible if and only if  

(1.41)   

t


B

bgen  v dm  + 

t

B

t  v dA   

t


B

T  D dV 

is invariant under all changes of observer during the motion. 

Proof. We first show that the invariance of (1.41) leads to the balance of linear momentum 
(1.7) and of angular momentum (1.8). For that purpose, we determine (1.41) for some other 
observer using A8' and the transformation of the velocities (1.34) 

   

t


B

 (Q  bgen)  [Q  v +   (x* c) + c] dm   

(1.42)   + 

t

B

(Q  t)  [Q  v +   (x* c) + c] dA   

    

t


B

 (Q  T  QT)  sym grad * [Q  v +   (x* c) + c] dV .  

The difference with (1.41) with respect to the other observer is 

(1.43)  

t


B

(Q  bgen)  [  (x* c) + c] dm  + 

t

B

(Q  t)  [  (x* c) + c] dA  

   

t


B

 (Q  T  QT)  sym grad * [  (x* c) + c] dV . 

                                                 
1 CAUCHY (1823) calls it force accélératrice. 
2 Of course, this is not the only way to proceed. One could also introduce the concept of an 
intertial observer, and would then obtain the objectivity of forces only with respect to 
GALIILEIan transformations. 
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This must be zero, if (1.41) is invariant for arbitrary observers and, hence, arbitrary vectors   , 
c , and  c . For   o  and  Q  I  and a constant (in space) arbitrary vector  c  we obtain  
necessarily  

(1.44)   

t


B

bgen dm  + 

t

B

t  dA  =  o   

i.e., the balance of linear momentum (1.7). For  c  o , c  o  and  Q  I , the rest is  

(1.45) 0  = 

t


B

bgen    x*  dm  + 

t

B

t    x* dA   

t


B

 (T   sym grad *(  x*) dV  

  =    [
t


B

x*  bgen dm  + 

t

B

x*  t dA]  

since 

   grad *(  x*)  =    x*  * =    I 

which is skew. (1.54) holds for arbitrary    if and only if the balance of angular momentum 
(1.8) is fulfilled. The other direction of the proof is straight forward; q.e.d. 

By the same rationale, we can reformulate the volumetric form of the principle of virtual  
power.   

Theorem 1.6 (principle of invariance of global power) 
A motion of a body is admissible if and only if  

(1.46)    

t


B

[(div T +  bgen)  v + T  W] dV 

is invariant for the body and all its subbodies under all changes of observer during the motion. 

Instead of using the skew part of the velocity gradient  W  in the last term, we can also use the 
complete gradient  L  since both transform in the same way after (1.38).  

Note that the integral (1.46) in the previous theorem is not necessarily zero, but only under  
rigid body motions, i.e., under distributors. 

The same principle holds also for the local form of the power. 

Theorem 1.7 (principle of invariance of local power) 
A motion of a body is admissible if and only if the power  

(1.47)    (div T +  bgen)  v + T  W 

is everywhere invariant under all changes of observer during the motion. 

We also see that both principles can be extended to the virtual power by the declaration that the 
virtual velocities transform like velocities (1.34) under change of observer  

(1.48)   v*  =  Q  v + Q  QT  (x* c) + c 
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   =  Q  v +   (x* c) + c 

or inversely 

v =  QT  [v*  Q  QT  (x* c)  c]  

=  QT  [v*    (x* c)  c] 

with    being the axial vector of the skew tensor  Q  QT .  

This transformation obviously forms a bijection between the spaces  V  and  V * of the virtual 
velocities for different observers. If  v*  is K-times differentiable, then so is  v*, and vice  
versa. 

We can then extend the Principle of Invariance of the Power to all virtual velocity fields. 

Theorem 1.8 (global form of the principle of invariance of the virtual power)   
A motion of a body is admissible if and only if  

(1.49)   

t


B

bgen  v dm  + 

t

B

t  v dA   

t


B

T  D dV 

is invariant under changes of observer during the motion for all  v V . 

The same extension applies to the principle of invariance of the global power (1.46). 

Theorem 1.9 (volumetric form of the principle of invariance of the virtual power) 
A motion of a body is admissible if and only if the integral 

(1.50)   

t


B

[(div T +  bgen)  v + T  W] dV 

is invariant under changes of observer for the body during the motion for all  v V . 

For the last term  T  W  in the forgoing Theorem one could also use  T  L  since only the 
skew part of the deformation gradient can be freely varied by observer changes after (1.38).  
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1.2  Mechanics based on the Principle of Virtual Power 
 

   This chapter is partly identical with  

Bertram, A.; Forest, S.: Mechanics based on an objective power functional. Techn. 
Mechanik 27,1, 1-17 (2007) 

 

   In the previous chapter we have seen that CAUCHY´s method is based on a series of  
assumptions and leads to a rather specific theory. In contrast, we will show in this chapter that a 
procedure based on an invariance requirement of the power functional is more elegant and 
leads to a broader theory which might also include higher gradients.  

The principle of virtual power (PVP) has gained much popularity because of its versatility to 
the inclusion of non-classical effects. Already the COSSERATs used it as the starting point for 
their inclusion of additional rotations.  

In the sequel, this challenging task will be solved by a method suggested and used by  
TRUESDELL/ TOUPIN (1960), GERMAIN (1972, 1973a, 1973b), MAUGIN (1980),  
BERTRAM (1983, 1989), TROSTEL (1993), BERTRAM/ FOREST (2007), DELL´ISOLA/ 
SEPPECHER (2011), LIDSTRÖM (2012), DEL PIERO (2009, 2014), and many others.  

In GREEN/ RIVLIN (1964a) the equations of motion for a classical continuum have been  
derived by a similar invariance requirement, however, not of the virtual power, but rather of the 
thermodynamical energy balance (first law of thermodynamics). 

PODIO-GUIDUGLI (2009) enlarged the principle of virtual power to include the thermody-
namical fields and, thus, producing the entropy balance.  

Our approach here has been widely inspired by the seminal papers of GERMAIN (1972, 1973a 
and b), who based different non-classical continuum  theories on the principle of virtual power. 
However, certain differences between his and the present approach should be mentioned. 

(i) GERMAIN´s starting point is the principle of virtual power (PVP), while that of the present 
theory is the power itself. As the attribute virtual already indicates, is the PVP in a certain sense 
unreal, while the power balance applies only to real processes. It is the aim of the present  
theory to reflect this fact and to show what the real kernel of the PVP essentially is. 

(ii) GERMAIN distinguishes from the outset between internal and external contributions to the 
power. This distinction is not made at this stage in the present text, since the forms of both 
types of contributions are identical.  

(iii) GERMAIN introduces from the outset volumetric and surface parts of the (virtual) power, 
while we start exclusively with volumetric parts, which can be later transformed into those  
acting on the surface of the body. 

   In contrast to the preceding chapter, we do not take here forces as primitive concepts and the 
assumptions A1 - A8 of the method used by EULER and CAUCHY. Instead we start with the 
(total) power of a body as a primitive concept. All kinematical concepts remain the same as 
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before, but all dynamic concepts will be introduced completely anew. The Compatibility Axiom 
1.2 is also assumed further on. In addition, we will postulate two more axioms. 

Axiom 1.3 (principle of determinism) 
For each body there exists a power functional  Π  with respect to some observer  that assigns to 
any motion of the body the (total) power  Π()  that the body currently (i.e., at the end of this 
motion) produces.  
It is zero, whenever the current velocity field is zero for all points of the body.  

In modern continuum mechanics it is usually assumed that variables like the stresses depend on 
the motion of the body in the past until the presence. Such dependencies on processes are 
called (process) functionals. In the older literature3 often (semi-infinite) histories are  
considered, which led however to some conceptual problems4.  

In mathematics, a functional is in most cases understood as a mapping from (infinite dimen-
sional) function spaces into finite dimensional spaces. For the stress power the label functional 
is substantiated in two ways. Firstly, since it is an integral over fields defined on the body or its 
surface, as we will see in the sequel. And secondly, since it contains variables like the stresses 
which can be determined by a process functional.  

The integral (1.46) from Theorem 1.6 would be one candidate for such a power with all  
dynamic variables being functionals of the motion. But there are other candidates as we will see 
later.  

Note that both the motion and the power functional will in general depend on the observer. For 
the motion this dependence is specified by the EUCLIDean transformation (1.33). For the  
power it will be done by the following Objectivity Axiom. 

Axiom 1.4 (principle of objectivity of the power)  
A motion of the body is admissible if and only if the power is objective under all changes of 
observer 

(1.51)    Π *(*)  =  Π()  

at all times during the motion. 

Such an axiom has been used by NOLL (1959, 1963) to derive the balance of linear and angu-
lar momentum. However, NOLL´s starting point is different from ours. He starts with an  
objective force as a primitive concept and defines the power, while we do it here vice versa. 

We are not assuming that the power functional  Π()  for a given body was unique. But we do 
assume that every choice of it gives us the same answer to the question whether some motion is 
admissible or not after Axiom 1.4.   

One is tempted to state that the power is linear in the current velocity field (i.e., at the end of 
the motion), and often reads such a statement. However, because of regularity, the velocity 
field at the end of some motion is determined by the motion. So we cannot vary the velocity 
field without varying the motion, and such a statement makes no sense. 

                                                 
3 see, e.g., TRUESDELL/ NOLL (1965) 
4 see BERTRAM (2014) on different approaches to material theory 
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The remedy to overcome this problem is to introduce a virtual power functional as a continuous 
and linear extension of the power functional.  

To make this more precise, we first have to endow the space of virtual velocities  V  with a 
linear and a topological structure, in order to give properties of functions like linearity and  
continuity a meaning.  

The linear operations of such fields are introduced point-wise, as usual.  

The topological structure, however, is non-trivial, since we work in function spaces (with  
infinite dimension). We will assume further on that all virtual velocity fields are K-times 
piecewise differentiable in space for some  K  0 , which shall be specified later. A topological 
structure on V  is introduced by the SOBOLEV (2,K)-norm  

(1.52)    |v| K  : =  
t


B

[|v(x)|2 + |grad v(x)|2 + ... + |grad K v(x)|2] dV  

for all v V . Here  grad K  means the K-fold EULERean gradient of the field  v 

(1.53)   grad K v  : =  v   K  =  v    ...    (K-times). 

Note that the norm on the left-hand side of (1.52) is a norm on a vector field, i.e., in a  
functional space, while the norms on the right-hand side are the usual FROBENIUS norms of 
finite dimensional vector and tensor spaces evaluated point-wise.  

This norm makes a topological vector space out of V , which is contained in the SOBOLEV 
space  W  2,K.  

One might argue that the terms in the above norm have all different dimensions. This can be 
cured by using appropriate factors for every term. However, such factors do not alter the  
induced topology and are, hence, omitted.  

The current velocity field shall always be contained in  V . This assumption restricts the  
regularity of the velocity fields in a way that is not appropriate for certain purposes. Shock 
waves, shear bands, and other localizations will require weaker regularities in order to also  
allow for non-smooth fields with singularities. For the present context, however, we will not 
include such behavior for the sake of simplicity and clearness. 

The action of the group of EUCLIDean transformations on the space of virtual velocities (1.48) 
preserves the topology of the spaces V , i.e., if some  v  is continuous, then its image under 
(1.48)   v*  is also continuous, and the same holds for the differentiability.   

   We are now able to introduce the virtual power as a continuous extension of the power being 
linear in the virtual velocities. 

Definition 1.1 (virtual power) 
For a given motion    of a body with respect to some observer, the virtual power functional 
is a functional   Π( , v)  of the motion and of the virtual velocity field such that for each  
motion  

    Π( ,  ) :  V    R 

(P1) is continuous and linear 
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(P2) and extends the power functional  Π , i.e., 

(1.54)    Π( , v) = Π()  

for the current velocity field  v  

(P3) it transforms like the power functional, i.e., for all observers we have 

(1.55)    Π *(*, v*)   Π (, v)  =  Π *(*)  Π ()   

if    is admissible and transformed after (1.33) and  v  are transformed like  v  after (1.48).       

   Such an extension is by no means unique. This non-uniqueness will influence all the derived 
concepts like forces, stresses, etc., but will have no influence on the distinction between  
admissible and non-admissible motions, as we will see later. 

Using (1.48) we can bring (1.55) into the form 

(1.56)             Π *(*, v*) =  Π( , QT  v*) + Π *(*)   Π()   Π( , QT  [  (x* c)  c])  

or inversely  

(1.57)    Π *(*
 , Q  v + Q  QT  (x*  c) + c)   Π( , v)  =  Π *(*)  Π()  

and by the linearity of the virtual power functional (P1) 

(1.58)    Π *(*
 , Q  v)   Π( , v)   

  =  Π *(*)  Π() –  Π *(*
 , Q

  QT  (x*  c))   Π *(*
 , c

)  for all v V . 

Regarding the dependencies upon  v , the right-hand side of this equation is constant. The only 
linear function that equals a constant, is the zero function. Thus, 

(1.59)     Π *(*
 , Q  v)  =   Π( , v)       for all v V .  

The remaining parts of equation (1.58) give 

(1.60)    Π *(*)  Π()  =   Π *(*
 , Q

  QT  (x*  c)) +  Π *( , c
) . 

 

Forces and Torques 
 

   By the linearity of the virtual power, there exist after the RIESZ representation theorem (here 
applied to a finite-dimensional vector space with inner product5) two motion- and time-
dependent vectors (not vector fields)  f V  3  and  mO V  3  for every observer which give the 
virtual power for an arbitrary spatially constant translational field  v  vo V  (here  

identified with  V  3  ) 

(1.61)    Π( , vo)  =  f  vo    

and for an arbitrary rotational field  v  Q  QT  x =    x V 

                                                 
5 We identify the set of all constant fields on the body with the three-dimensional EUCLIDean 
vector space  V  3. 
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(1.62)     Π( ,   x)  =  mO    

such that the virtual power for a virtual velocity field resulting from a rigid body motion is 

(1.63)     Π( ,   (x  c)) +  Π( , c
)  =  f  vo + mO    

with the relative virtual velocity of the reference point  O  (which need not be a material point) 

(1.64)     vo  =  c    c  =  c  Q  QT  c . 

We will call the vector  f  the (resultant) generalized6 force  and the vector  mO  the (resultant) 
generalized torque of the body induced by the virtual power functional  Π . These generalized 
forces and torques also contain inertial forces. If we subtract the inertial forces, i.e., negative 
momenta rates, we obtain the (resultant) force   

(1.65)    f  : =  f + p  V  3 

and analogously the (resultant) torque with respect to  O   

(1.66)    mO  : =  mO + dO
  V  3  

with the linear momentum (1.4) and the angular of momentum (1.6) as before.  

   As we introduced the forces and moments by definitions and not as primitive concepts, we 
can derive their properties without need of further assumptions7. 

   The generalized forces and moments are observer-dependent functionals of the motion, like 
the power itself. The observer-dependence of the generalized forces and torques will be  
clarified by the next theorem. 

Theorem 1.10 (objectivity of forces and torques) 
The generalized force and the generalized moment are objective vectors 

(1.67)    f *  =  Q  f and mO
*  =  Q  mO  .  

Proof. We evaluate (1.56) for the field  v  a  x + b  with two arbitrary vectors  a  and  b  

(1.68)   Π *(*)  Π()     

   =   Π *(*, v*)   Π( , v)   

with (1.34)  =   Π *(*, Q  (a  x + b) +   (x*  c) + c)   Π( , a  x + b)   

   =  f *  (Q  b) + mO
*

  (Q  a) + f *  c + mO
*

     f   b  mO  a 

   =  (QT  f * f)  b + (QT  mO
* mO)  a + f *  c + mO

*
     

since   

   Q  (a  x)  =  (Q  a)  (Q  x)  =  (Q  a)  x*   

                                                 
6 some authors call the apparent forces, while HAMEL prefers the name verlorene Kräfte (lost 
forces) 
7 For the introduction of forces and stresses see also SEGEV (1986) and SEGEV/ DE  
BOTTON (1991) 
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with (1.28) after an appropriate choice of the point of reference for the second observer (with c 

 o). By the arbitrariness of  a  and  b  we conclude the objectivity of the two vectors; q.e.d.  

  After the above definition (1.65), the forces do not depend on a point of reference, while the 
moments do so (through the position vector). This dependence is specified by the following 
theorem originally due to VARIGNON. 

Theorem 1.11 (VARIGNON´s principle) 
The generalized torque depends on the point of reference after 

(1.69)    mO'   =  mO + '   O O


 f  

with '   O O


being the position vector of the second point of reference with respect to the first.  

Proof. We use the equation of the position vectors  xO = xO' + '   OO


, so that  

(1.70)   a  xO  =  a  xO' + a  '   OO


  

holds for arbitrary vectors  a , and 

    Π( , a  xO)  =  mO  a 

(1.71)   =  Π( , a  xO' + a  '   OO


)  =  f  a  '   OO


+ m O'   a  

   =  '   OO


 f  a + m O'   a  =  ( '   OO


 f + m O' )  a 

which leads with  '   OO


=  '   O O


to VARIGNON´s formula; q.e.d. 

    By the definition of the torques (1.66), VARIGNON´s principle holds analogously for the 
torques 

(1.72)    mO'   =  mO + '   O O


 f . 

The next results are direct consequences of Axiom 1.4 and equations (1.60) and (1.63), with 
which we see that the difference of the power for the two observers vanishes if and only if   
f = o  and  mO = o .  

Theorem 1.12 (EULER´s laws of motion) 
A motion of the body is admissible if and only if the laws of motion  

(1.73)    f  =  p    

(1.74)    mO  =  dO
  

hold for the body for one observer (and hence for all) with respect to one point of reference  O  
(and hence for all) during the motion.  

The following statement is a direct consequence of the foregoing theorem. 
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Theorem 1.13 (global version of PVP) 
A motion of the body is dynamically admissible if and only if the balance of virtual power 

(1.75)    f  vo + mO    =  0 

holds for the body for all vectors  vo  and   V   for one observer (and hence for all) during 
the motion. 

   (1.75) is not identical with the virtual power functional   Π , but only contains its essential 
parts for the distinction between admissible and non-admissible processes in the sense of  
Axiom 1.4.  

   With these laws we are already able to completely describe the dynamics of rigid bodies for 
assigned forces and moments. For deformable bodies, however, a field formulation of these 
concepts is needed, which will be given in the next section. 
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Field Equations 
 
   In order to obtain a field formulation of the power functional, we make use of the RIESZ  
representation theorem of linear continuous functionals on topological vector spaces8.  

Theorem 1.14 (field formulation of the virtual power)  

For each observer there exist  K+1  time-dependent tensor fields  
i
T   of order i = 1, ... , K+1 

such that 

(1.76)         Π( , v)  = 

t


B

(
1
T  v + 

2
T  grad v + ... + 

K 1
T ... grad K v) dV   v V .  

Again, the integral (1.50) written as 

   

t


B

[(div 
2
T +  bgen)  v + 

2
T  grad v] dV 

would be one candidate for such a representation of the virtual power.  

   The dynamic variables  

1
T  , 

2
T , ... , 

K 1
T are in each material point still functionals of the 

motion   , but do not depend on the virtual velocity. These functionals must be further  
specified by material laws. This task is, however, beyond the scope of the present chapter.  

   By (1.54) we obtain the same representation for the power  

(1.77)    Π()  = 

t


B

(
1
T  v + 

2
T  grad v + ... + 

K 1
T ... grad K v) dV.  

The question arises whether the fields of the dynamic variables can be restricted to subbodies 
or not. This question is addressed in the following theorem.  

Theorem 1.15 (localization of the power)  
Let the power functional be given in the form (1.77) 

(1.77)   Π()  = 

0


B

(
1
T  v + 

2
T  grad v + ... + 

K 1
T ... grad K v) dV  

 for a body  B0 , and let  B1  B0  be a subbody of  B0 .  Then the integral   

(1.78)    Π()  = 

1


B

(
1
T  v + 

2
T  grad v + ... + 

K 1
T ... grad K v) dV  

                                                 
8 see, e.g., ADAMS (1975) p. 48 
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with the same dynamic fields  

1
T  , 

2
T , ... , 

K 1
T restricted to the domain of the subbody is a 

power functional for B1 . 

Proof. We compose the body by a set of subbodies in the following way. Let  N   be an index 
set and  { Bi , i  N }  a collection of subbodies which cover  B0 , i.e., 

  
N

 Bi  =  B0  and  
N

 Bi  =  null set. 

Let  Πi ()  be the (local) power functional of some  Bi , which has a representation as an  
integral (1.77). Then we can construct a (global) power functional  Π0()  for  B0  by com-

posing the local power functionals  Πi ()  by simply taking the dynamic fields 
1
T  , 

2
T , ... , 

K 1
T at some point from the particular local power functional  Πi()  in this region.  

In fact, after the Compatibility Assumption 1.2 we know that Π0()  is objective if and only if 
all  Πi ()  are objective. Therefore, a motion    for  B0  is admissible if and only if its re-
strictions to all subbodies is also admissible.  

Since we do not demand uniqueness of the power functional, this  Π0()  would always be a 
choice for a power functional that gives us a correct answer to the question whether some  
motion is admissible or not. 

This construction of  Π0()  works for every collection of subbodies. So for every subbody  B1  
one can find such a collection that contains B1 ; q.e.d.  

This means that whenever two bodies share a common part, then in this part the integrands of 
the power-functionals can be taken as identical. This is typical property of densities, and the 
integrand of (1.76) is in fact the virtual power density.   

The same holds if we replace the power by the virtual power and the velocity by the virtual 
velocity in the above theorem.  

Theorem 1.16 (localization of the virtual power)  
Let the virtual power functional be given in the form (1.76) 

(1.76)    Π( , v)  = 

0


B

(
1
T  v + 

2
T  grad v + ... + 

K 1
T ... grad K v) dV  

 for a body  B0 , and let  B1  B0  be a subbody of  B0 .  Then the integral   

(1.79)     Π( , v)  = 

1


B

(
1
T  v + 

2
T  grad v + ... + 

K 1
T ... grad K v) dV  

with the same dynamic fields  

1
T  , 

2
T , ... , 

K 1
T restricted to the domain of the subbody is a 

virtual power functional for B1 . 

We will next consider the transformation behavior of the dynamic fields under change of  
observer. 
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Theorem 1.17 (transformations of dynamic fields) 

The fields of the dynamic variables  
i
T , i = 1, ... , K+1, are objective under change of observer  

(1.80)    
i
T *  =  Q  

i
T .  

Proof. With (1.31) we get  

(1.81)   grad 
*(Q  v)  =  Q  grad * v  =  Q  (grad v)  QT  =  Q  grad v 

 v V  , and more generally for higher gradients, by the use of the RAYLEIGH product    
(0.4) (which shall not be confused with the upper asterisk indicating the change of observer)  

(1.82)   grad * K (Q  v)  =  Q  grad K v      v V . 

By (1.59) we have for all motions 

(1.83)   Π*(* , Q  v)    

         =

t


B

[
1
T *  (Q  v) + 

2
T *  (Q  grad v) + ... + 

K 1
T * ... (Q  grad K v)] dV 

by (0.13)    =

t


B

[(QT 
1
T *)  v + (QT 

2
T *)  grad v + ... + (QT 

K 1
T *) ... grad K v] dV  

   =   Π( , v)  

         =

t


B

[
1
T  v + 

2
T  grad v + ... + 

K 1
T ... grad K v] dV          v V . 

A comparison in the arbitrary fields  v V   leads to the desired result; q.e.d. 

   By the definition of the generalized force (1.61), we have for any observer 

(1.84)     Π( , vo)  =  f  vo  =

t


B

1
T (x)  vo dV  =

t


B

1
T (x) dV  vo 

and obtain the representation 

(1.85)    f  =

t


B

1
T (x) dV. 

Analogously, the definition of the generalized torque (1.62) 

(1.86)     Π( ,   x) =  mO     

   = 

t


B

[
1
T    x + 

2
T  grad (  x)] dV  
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   = 

t


B

(x 
1
T + 2 axi 

2
T ) dV    

with  axi 
2
T  being the axial vector of   

2
T  leads to the representation 

(1.87)    mO  = 

t


B

(x 
1
T + 2 axi 

2
T ) dV. 

Here we used the following rules. For the position vector  x  and any constant vector   , one 
finds  

(1.88)   grad (  x)  =  (  x)    =    (x  )  =    I 

which is antisymmetric. Thus 

   axi grad (  x)  =  axi (  I)  =     

and, consequently,  

(1.89)    
2
T  grad(  x)  =  skw

2
T  grad(  x)   

   =  2 axi
2
T  axi grad (  x)  =  2 axi(

2
T )   . 

The force is then after (1.65) 

(1.90)    f  = 

t


B

(
1
T +  x) dV 

and the torque after (1.66) 

(1.91)    mO  =

t


B

[x  (
1
T +  x) + 2 axi 

2
T ] dV . 

By Theorem 1.17 we know that  
1
T  and  axi

2
T  are objective vector fields, but not  f  and  mO . 

   If we substitute these representations into the EULER´s laws of motion (1.73) and (1.74), we 
obtain their local forms.  

Theorem 1.18 (local form of the laws of motion) 
A motion of the body is dynamically admissible if and only if the local form of the laws of  
motion hold 

(1.92)    
1
T   =  o   

(1.93)    axi 
2
T   =  o      

almost everywhere in the body during the motion. 
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   The other higher-order stress tensors  sym(
2
T ) , 

3
T , ... , 

K 1
T do not directly enter the laws of 

motion. This, however, does not mean that such quantities cannot play a useful role in  
mechanical theories, as we will see in what follows.  

   The next theorem is a stronger version of the PVP of the last section. 

Theorem 1.19 (integral version of PVP) 
A motion of the body is dynamically admissible if and only if the balance of virtual power holds 
in the form  

(1.94)    

t


B

(
1
T  v + axi 

2
T  curl v) dV  =  0 

for all virtual velocity fields  v V   for one observer (and hence for all) during the motion. 

Proof. We multiply the local laws of motion (1.92) and (1.93) by arbitrary vectors  v  and   
2 . Then 

(1.95)    
1
T  v + axi 

2
T  2   =  0 

if and only if (1.92) and (1.93) hold, i.e., if the motion is admissible. If we interpret  v  as the 
local value of some virtual velocity field  v V , and  2   as the local value of its curl, then 
we obtain the above form of the balance of virtual power as a necessary condition for a motion 
to be dynamically admissible. 

On the other hand, if (1.94) holds for the body, then after Theorem 1.16 it would also hold for 
all subbodies. So the integrand must vanish everywhere in  Bt  if it is continuous, which gives 
(1.92) and (1.93). By Theorem 1.18 the motion must then be admissible; q.e.d.  

   In what follows we will derive a number of alternative forms of the forces and torques, which 
are altogether equivalent to those of (1.90) and (1.91). The divergence theorem gives  

(1.96)    

t


B

K 1
T ... grad K v dV  

    = 

t

B

(
K 1
T  n) ... grad K1 v dA   

t


B

div
K 1
T ... grad K1 v dV   

for any  K  1. In particular we achieve for 

K  1:  

(1.97)  

t


B

2
T  grad  v dV  = 

t

B

(
2
T  n)  v dA   

t


B

div
2
T  v dV   

K  2:  
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(1.98)  

t


B

3
T  grad 2 v dV  = 

t

B

(
3
T  n)  grad  v dA   

t


B

div
3
T  grad  v dV   

  = 

t

B

[(
3
T  n)  grad  v   ( div

3
T  n)  v] dA + 

t


B

div2
3
T  v dV 

K  3: 

(1.99) 

t


B

4
T  grad 3 v dV  = 

t

B

(
4
T  n)  grad 2 v dA   

t


B

div 
4
T  grad 2 v dV   

 = 

t

B

[ (
4
T  n)  grad 2 v dA   (div 

4
T  n)  grad  v  + ( div2 

4
T  n)  v] dA   

  

t


B

div3
4
T  v dV  

We substitute this into (1.76). For an arbitrary  K  it gives 

   Π( , v)  = 

t


B

k 1

j 1




 [(1) j1 div j1 

j
T ]  v dV  

(1.100)    +

t

B

k 1

j 2




 [(1) j div 

j2 
j

T )  n)]  v dA 

    ... 

    +

t

B

(1) K+1 (
K 1
T  n) ... grad K1 v dA .  

For a constant  vo V  this gives the force in the form 

(1.101)  f  =

t


B

[ x  + 
1
T  div

2
T + div2

3
T  ... + (1) K div K 

K 1
T ] dV  

     +

t

B

 [
2
T  div 

3
T +  ... – (1) K div K1 

K 1
T ]  n dA 

and for  v    x V  this gives the torque 

(1.102)  mO  =

t


B

x  [ x  + 
1
T  div

2
T + div 2

3
T  ... + (1) K div K

K 1
T ] dV 
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   +

t

B

(x  [
2
T  div

3
T  + ... – (1) K div K1 

K 1
T ]  n   

   2 axi {[
3
T  div 

4
T + ...  (1) K–1 div K2 

K 1
T ]  n) dA . 

 

   So by incrementing  K , we can produce a catalogue of infinitely many theories, which are 
altogether equivalent with respect to the question of whether a motion is dynamically  
admissible or not. They are, however, not equivalent in their possibilities of the material  
modeling.  

In what follows, we will specify these findings for the cases  K  0 , 1 , and 2 . In each case we 
obtain a theory that gives reasonable results for a certain class of problems. 

Historically, the case  K  0  dates back to the Principia of NEWTON (1687), the case K  1 to 
CAUCHY (1823), and the case  K  2 to the pioneers of gradient theories like TOUPIN (1962) 
and MINDLIN (1965), including time laps of approximately one and a half century.  
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Example: NEWTON continuum (K  0) 

The most simple, but by no means trivial case is that of  K  0 . This gives for the virtual power 
(1.76) the only remainder 

(1.103)    Π( , v)  = 

t


B

1
T  v dV       

and for the total power 

(1.104)   Π()  = 

t


B

1
T  v dV .  

The force remains in the form of (1.90) 

(1.105)   f  =

t


B

(
1
T +  x) dV  

while the torque becomes after (1.91)  

(1.106)   mO  = 

t


B

x  (
1
T +  x) dV.   

The equations of motion are in this case 

(1.107)   
1
T  =  o   

(1.108)   x  
1
T   =  o . 

Here, the balance of linear momentum obviously includes the balance of angular momentum.  

  Such a situation is known for so-called mass points, i.e., bodies that are (i) not in direct  
contact, and (ii) only interact by central (body) forces.  The latter can be probably assumed if 
the diameter of the bodies is small compared to the distances between the bodies, as we have it 
if we consider the motion of the planets around the central star under mutual gravitation. To 
obtain KEPLER´s elliptic orbits it is sufficient to solve the linear momentum balance named 
NEWTON´s law for the usual gravitational law. The balance of angular momentum becomes 
trivial, since no torque acts with respect to the centers of mass of the mass points, so that  
conservation of angular momentum holds.   

   We see that even this extreme case  K  0  gives a reasonable theory that applies well under 
certain circumstances. 
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Example: CAUCHY continuum (K  1) (simple materials) 

In order to show the relation to the classical theory, we take  K  1. Then (1.76) reduces to 

(1.109)    Π( , v)  = 

t


B

(
1
T  v + 

2
T  grad v) dV.  

By applying the divergence theorem (1.97), we obtain alternatively 

(1.110)    Π( , v)  =  

t


B

(
1
T  div 

2
T )  v dV  +

t

B

(
2
T  n)  v dA . 

For a constant field  vo  this gives the force after (1.65) in two versions 

(1.111)   f  =

t


B

(
1
T +  x) dV  = 

t


B

(
1
T  div 

2
T  +  x) dV +

t

B

2
T  n dA 

and for  v    x  the torque after (1.66) also in two versions 

(1.112)   mO  = 

t


B

[x  (
2
T +  x) + 2 axi 

2
T ] dV   

   =

t


B

[x  (
1
T  div 

2
T +  x) dV  +

t

B

x  
2
T  n dA . 

Usually the force acting in the interior of the body is named specific body force 

(1.113)   b  : =  (
1
T  div 

2
T ) / + x 

and that acting on its surface is the traction field 

(1.114)   t  = 
2
T  n  

so that the forces and torques are 

(1.115)   f  =

t


B

b dm +

t

B

2
T  n dA 

(1.116)   mO   =

t


B

 x  b dm  +

t

B

x  
2
T  n dA    

which are the forms known from the CAUCHY continuum (1.7) and (1.8). The equations of 
motion are the classical CAUCHY laws (1.14) and (1.15) 

(1.117)   div 
2
T  + b   =  x   
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(1.118)   axi 
2
T  =  o  

2
T  = 

2
T T 

so that  
2
T  can be identified with CAUCHY´s stress tensor. 
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Example9: Second gradient continuum (K  2)  

In this case the virtual power can be brought into one of the following alternative forms 

  Π( , v)  = 

t


B

(
1
T  v + 

2
T  grad v + 

3
T  grad grad  v) dV     

   =  

t


B

[(
1
T  div 

2
T )  v   div

3
T  grad v] dV 

(1.119)   +

t

B

[(
2
T  n)  v + (

3
T  n)  grad v] dA 

  =  

t


B

(
1
T  div 

2
T + div div 

3
T )  v dV 

   +

t

B

{[(
2
T  div 

3
T )  n]  v + (

3
T  n)  grad v} dA    

  =  

t


B

(
1
T  div 

2
T + div div 

3
T )  v dV 

   +

t

B

{[(
2
T  div 

3
T )  n]  v – div (

3
T  n)  v} dA   

  =  

t


B

(
1
T  div 

2
T + div div 

3
T )  v dV 

   +

t

B

{[(
2
T  2 div 

3
T )  n]  v – (

3
T  grad n)  v} dA . 

These forms can be further reformulated by applying the divergence theorem on the surface 
terms. Herein we follow the lines of TOUPIN (1962) and MINDLIN (1965)10. First we decom-
pose the gradient at surface points into its normal and its tangential part 

(1.120)   grad  =  gradn + gradt 

                                                 
9 This part has been coauthored by CHRISTIAN REIHER. 
10 see also BLEUSTEIN (1967), DILLON/ KRATOCHVIL (1970), TROSTEL (1985), PO-
DIO-GUIDUGLI/ VIANELLO (2013), POLIZZOTTO (2013), JAVILI/ DELL’ISOLA/ 
STEINMANN (2013) 
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which corresponds to the natural split of the spatial nabla operator 

     =  n + t 

with  n : =  n  n   = 
nx




 n  with the outer normal  n  to the surface and the normal  

coordinate  xn . The trace of these gradients is the divergence 

(1.121)   div  =  divn + divt . 

If we decompose the gradient within the following expression with a vector field  v  and a  

second-order tensor field  
2
T  and use the chain rule, we obtain 

(1.122)   
2
T  grad v  =  

2
T  gradn v + 

2
T  gradt v  

   =  
2
T  gradn v + divt (v 

2
T ) – (divt 

2
T )  v .  

Then the surface divergence theorem holds in the form11 

(1.123)   

t

B

divt u dA  = 

t

B

(divt n) (u  n) dA 

for any smooth vector-field  u  and a smooth surface without edges or corners12. The term  

(divt n)  stands for twice the mean curvature of the surface. By taking  u  v 
2
T  (1.123) gives 

(1.124)   

t

B

divt (
2
T  v) dA  = 

t

B

 (divt n) (
2
T  n)  v dA . 

We apply these identities to the following term from the power functional (1.119.3) 

   

t

B

(
3
T  n)  grad v dA   

(1.125)   =  

t

B

{(
3
T  n)  gradn v + divt (v  

3
T  n) – [divt (

3
T  n)]  v} dA   

   =  

t

B

{(
3
T  n)  gradn v  

    + [(divt n)
3
T  n  n – 

3
T  gradt n  (divt

3
T )  n]  v} dA . 

We substitute this into the above expression for the virtual power (1.119.3)      

                                                 
11 see BRAND (1947) p. 222 
12 In DELL´ISOLA/ SEPPECHER (1997) also these line integrals on edges and vertices have 
been considered. 
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   Π( , v)  =  

t


B

(
1
T  div 

2
T + div div

3
T )  v dV 

(1.126)  +

t

B

{[(
2
T  divn

3
T  2 divt

3
T )  n + (divt n)

3
T  n  n – 

3
T  gradt n]  v 

   + (
3
T  n)  gradn v} dA .  

For a constant  v  this gives the generalized force in the form 

(1.127)   f   =

t


B

 (b2  x) dV  +

t

B

t2 dA 

with the specific body force   

(1.128)   b2 : =  (
1
T  div 

2
T + div div 

3
T ) / + x 

and the surface tractions 

(1.129)   t2  : = (
2
T  divn

3
T  2 divt

3
T )  n + (divt n)

3
T  n  n – 

3
T  gradt n  

such that the forces are 

   f  = 

t


B

b2 dm +

t

B

t2 dA . 

For  v    x  we obtain for the torque from (1.126) using (1.89)  

(1.130)   mO  =

t


B

x  b2 dV  +

t

B

{x  t2 + 2 axi(
3
T  n)} dA .  

The next theorem is an alternative form of EULER´s laws of motion (1.73), (1.74) using 
(1.127) and (1.130). 

Theorem 1.20 (generalized EULER´s laws of motion) 
A motion of the body is dynamically admissible if and only if the laws of motion  

(1.131)     

t


B

b2 dm  +

t

B

t2 dA  = 

t


B

x 
 dm     

(1.132)   

t


B

x  b2 dm   +

t

B

{x  t2 + 2 axi(
3
T  n)} dA  = 

t


B

x  x 
 dm  

hold for the body for one observer (and hence for all).  

By use of (1.92), (1.93), and (1.128) we obtain the field formulations. 
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Theorem 1.21 (extended CAUCHY´s laws) 
A motion of the body is dynamically admissible if and only if 

(1.133)   div 
2
T   div div

3
T +  b2  =   x 

(1.134)   
2
T   =  

2
T T 

hold everywhere in the body. 

We are now able to reformulate the principle of virtual power extending Theorem 1.19 by 
(1.126). 

Theorem 1.22 (integral version of PVP) 
A motion of the body is dynamically admissible if and only if the balance of virtual power holds 
in the form  

(1.135)   

t


B

(b2  x)  v dm  +

t

B

[t2  v  + (
3
T  n)  gradn v] dA   

   =  

t


B

(
2
T  sym grad v + 

3
T  grad grad v) dV  

for all vector fields  v  V   for one observer (and hence for all). 

Proof. Let us assume that a motion of the body is dynamically admissible so that (1.133) and 
(1.134) hold. Then  

(1.136)   div 
2
T    div div 

3
T +  (b2  x)  =  o 

holds in almost every point, and also 

(1.137)   {div 
2
T   div div 

3
T +  (b2  x)}  v = 0 

for any field  v  V . The integral over the body also vanishes  

(1.138)   

t


B

{div 
2
T  div div 

3
T +  (b2  x)}  v dm  = 0 

so that we get with (1.119) and (1.125)  

(1.139)   

t


B

 (b2  x)  v dV  +

t

B

[t2  v  + (
3
T  n)  gradn v} dA  

 =

t


B

(
2
T  grad v + 

3
T  grad grad v) dV .   

Its difference with (1.135) is 
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(1.140)   

t


B

2
T  skw grad v dV 

using the decomposition   

(1.141)   grad v  =  sym grad v + skw grad v .  

The integrand is zero in almost all points for any field  v  V  if and only if  
2
T  is symmetric 

(1.134). The reverse direction of the proof is now easy. If (1.135) holds for any field  v  V , 
then for an arbitrary but constant field we obtain (1.132), which completes our proof; q.e.d. 

From the above theorem we also see the dynamic or NEUMANN boundary conditions for the 
surface tractions which can be prescribed, namely the vector field of the tractions 

(1.142)    t2 presc  =  t2  

and the tensor field of the double tractions in normal direction in the following form 

(1.143)   s2 presc  n  =  
3
T  n  

since  gradn v  has only a normal component in its second entry. So two vector fields  t2 presc  
and  s2 presc  are needed on the surface of the body. 

   The DIRICHLET boundary conditions are then the description of  the displacement field  
u and its normal gradient  gradn u  on the surface of the body or parts of it. 

By identifying  v  with the current velocity field  v  V , we obtain the balance of power.   

Theorem 1.23 (global work balance) 
If a motion of the body is dynamically admissible then the balance of power states that the 
power of the external loads equals the change of the kinetic energy plus the stress power  

(1.144)  

t


B

b2  v dm   +

t

B

[t2  v  + (
3
T  n)  gradn v]dA  

  =  (

t


B

½ v  v dm)  + 

t


B

(
2
T  sym grad v + 

3
T  grad grad v) dV  

for the body. 

This balance gives only a necessary, but not a sufficient condition for the admissibility of a 
motion. 
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Example13: Third gradient continuum (K  3)  

In this case the virtual power can be brought with (1.100) into the form 

     Π( , v)  = 

t


B

(
1
T  v + 

2
T  grad v + 

4
T  grad 2 v) dV  

(1.145)   =  

t


B

(
1
T  div 

2
T + div2 

3
T  div3

4
T )  v dV 

   +

t

B

{[(
2
T  div 

3
T  + div 2 

4
T )  n]  v  

   + [(
3
T  div 

4
T )  n]  grad v  

   + (
4
T  n)  grad 2 v} dA .    

This form can be further reformulated by applying the divergence theorem on the surface 
terms. Herein we follow the lines of MINDLIN (1965)14. We again split the gradient and the 
divergence operations in normal and tangential parts after (1.120) and (1.121). 

In particular we have the term 

(1.146)    

t

B

[(
3
T  div 

4
T )  n]  grad v dA 

by (1.125)  = 

t

B

{[(
3
T  div 

4
T )  n]  gradn v  

   + [(divt n) (
3
T  div 

4
T )  n  n – divt {(

3
T  div 

4
T )  n}]  v} dA   

   = 

t

B

{[(
3
T  div 

4
T )  n]  gradn v  

   + [(divt n) (
3
T  div 

4
T )  n  n 

   – (
3
T  div 

4
T )  gradt n  {divt (

3
T  div 

4
T )}  n]  v} dA .     

By using (1.123) and (1.125) we reformulate the term 

                                                 
13 This part has been coauthored by CHRISTIAN REIHER. 
14 see also JAVILI/ DELL'ISOLA/ STEINMANN (2013) and CORDERO/ FOREST/ BUSSO. 
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(1.147)   

t

B

(
4
T  n)  gradt grad v dA 

   =  

t

B

{(divt n) [grad  v  (
4
T  n)]  n   divt (

4
T  n)  grad  v} dA 

   =  

t

B

[(divt n) 
4
T  n  n  divt (

4
T  n)]  grad  v dA . 

We can use the product rule in the form 

(1.148)   divt (
4
T  n)  = 

4
T  gradt n + (divt

4
T )  n 

to continue the previous equation with (1.120) 

   

t

B

(
4
T  n)  gradt grad v dA 

(1.149)   =  

t

B

[(divt n) 
4
T  n  n  

4
T  gradt n  (divt

4
T )  n] 

     (gradn 
 v + gradt 

 v) dA . 

The last integrand is with (1.122) and (1.123) 

  

t

B

[(divt n) 
4
T  n  n  

4
T  gradt n  (divt

4
T )  n]  gradt 

 v dA 

(1.150)  = 

t

B

{divt {[(divt n) 
4
T  n  n  

4
T  gradt n  (divt

4
T )  n]T  v}  

  – {divt [(divt n) 
4
T  n  n  

4
T  gradt n  (divt

4
T )  n]}  v} dA 

 = 

t

B

{(divt n) [(divt n) 
4
T  n  n  n  

4
T  n  gradt n  (divt

4
T )  n  n]  v  

  – {divt [(divt n) 
4
T  n  n  

4
T  gradt n  (divt

4
T )  n]}  v} dA 

 = 

t

B

{(divt n)2 
4
T  n  n  n  (divt n)

4
T  n  gradt n  (divt n) (divt

4
T )  n  n   

  –
4
T  n  n  gradt divt n – (divt n) (divt 

4
T )  n  n  – 2 (divt n) 

4
T  n  gradt n 
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 + 
4
T  gradt

2 n + 2 (divt

4
T )  gradt n + (divt

2
4
T )  n}  v dA . 

This gives analogously for the first part of (1.149) 

(1.151)  

t

B

(
4
T  n)  gradt gradn v dA  

  =  

t

B

[(divt n) 
4
T  n  n  

4
T  gradt n  (divt

4
T )  n]  gradn 

 v dA . 

Because of the subsymmetries of 
4
T  n leading to the rule 

(1.152)  

t

B

(
4
T  n)  gradn gradt v dA  =

t

B

(
4
T  n)  gradt gradn v dA   

we obtain 

  

t

B

(
4
T  n)  grad grad v  dA 

(1.153)  = 

t

B

{(
4
T  n)  gradn gradn v + 2 (

4
T  n)  gradt gradn v   

  + (
4
T  n)  gradt gradt v} dA 

  = 

t

B

{(
4
T  n)  gradn gradn v  

  + 2 [(divt n) 
4
T  n  n  

4
T  gradt n  (divt

4
T )  n]  gradn 

 v 

  + [(divt n)2 
4
T  n  n  n  (divt n)

4
T  n  gradt n  

   (divt n) (divt

4
T )  n  n  – 

4
T  n  n  gradt divt n  

  – (divt n) (divt 
4
T )  n  n – 2 (divt n) n  gradt n 

4
T   

   + 
4
T  gradt

2 n + 2 (divt

4
T )  gradt n + (divt

2
4
T )  n]  v} dA . 

We now substitute this into the above expression for the virtual power (1.145)    

   Π( , v)  =  

t


B

(
1
T  div 

2
T + div2 

3
T  div3

4
T )  v dV 
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  +

t

B

([(
2
T  div 

3
T  + div 2 

4
T )  n]  v  

  + [(
3
T  div 

4
T )  n]  gradn v  

  + [(divt n) (
3
T  div 

4
T )  n  n 

  – (
3
T  div 

4
T )  gradt n  {divt (

3
T  div 

4
T )}  n]  v   

  + (
4
T  n)  gradn gradn v  

(1.154)  + 2 [(divt n) 
4
T  n  n  

4
T  gradt n  (divt

4
T )  n]  gradn 

 v 

  + [(divt n)2 
4
T  n  n  n  (divt n)

4
T  n  gradt n  

   (divt n) (divt

4
T )  n  n  – 

4
T  n  n  gradt divt n  

  – (divt n) (divt 
4
T )  n  n – 2 (divt n) 

4
T  n  gradt n 

   + 
4
T  gradt

2 n + 2 (divt

4
T )  gradt n + (divt

2
4
T )  n]  v) dA . 

Because of the subsymmetries of 
4
T we have  divt

 divn 
4
T = divn

 divt 
4
T . The surface terms  

of the virtual power linear in  v  are then 

(1.155)  t3  : =  {(
2
T  div 

3
T  + div 2 

4
T )  n 

  + (divt n) (
3
T  div 

4
T )  n  n 

  – (
3
T  div 

4
T )  gradt n  {divt (

3
T  divt 

4
T  divn 

4
T )}  n 

  + (divt n)2 
4
T  n  n  n  (divt n)

4
T  n  gradt n  

   (divt n) (divt

4
T )  n  n  – 

4
T  n  n  gradt divt n  

  – (divt n) (divt 
4
T )  n  n  – 2 (divt n) 

4
T  n  gradt n 

   + 
4
T  gradt

2 n + 2 (divt

4
T )  gradt n + (divt

2
4
T )  n}  v  

  =  {(
2
T  divn 

3
T  2 divt 

3
T  + 3 divt

2 
4
T + 3 divt

 divn 
4
T + 2 divn

2 
4
T )  n 

  + (divt n) (
3
T  divn 

4
T  3 divt 

4
T )  n  n + (divt n)2 

4
T  n  n  n 
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  + (–
3
T + divn 

4
T + 3 divt 

4
T )  gradt n  3 (divt n)

4
T  n  gradt n   

  – 
4
T  n  n  gradt divt n  + 

4
T  gradt

2 n}  v 

 so that we finally obtain for the virtual power 

(1.156)   Π( , v)  =  

t


B

b3 gen   v dm 

   +

t

B

[t3  v + S3  gradn v + (
4
T  n)  gradn

2 v] dA 

with the generalized body force 

(1.157)  b3 gen  : = (
1
T  div 

2
T + div2 

3
T  div3

4
T ) /  

and the surface tractions 

(1.158)  t3  : =  (
2
T  divn 

3
T  2 divt 

3
T  + 3 divt

2 
4
T + 3 divt

 divn 
4
T + 2 divn

2 
4
T )  n 

  + (divt n) (
3
T  divn 

4
T  3 divt 

4
T )  n  n + (divt n)2 

4
T  n  n  n 

  + (–
3
T + divn 

4
T + 3 divt 

4
T )  gradt n  3 (divt n)

4
T  n  gradt n   

  – 
4
T  n  n  gradt divt n  + 

4
T  gradt

2 n 
and the surface couple tractions 

(1.159)  S3  : =  (
3
T  3 divt 

4
T  divn 

4
T )  n + 2 (divt n) 

4
T  n  n  2

4
T  gradt n . 

   For a constant  v  this gives the force in the form 

(1.160)   f   =

t


B

(b3 gen  x) dm +

t

B

t3 dA . 

For  v    x  we obtain the torque from (1.156) using (1.89)  

(1.161)   mO  =

t


B

x  (b3 gen  x) dm  +

t

B

(x  t3 + 2 axi S) dA .  

The next theorem is an alternative form of EULER´s laws of motion (1.73), (1.74) using the 
above equations. 
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Theorem 1.24 (generalized EULER´s laws of motion) 
A motion of the body is dynamically admissible if and only if the laws of motion  

(1.162)     

t


B

b3 dm  +

t

B

t3 dA  = 

t


B

x 
 dm     

(1.163)   

t


B

x  b3 dm   +

t

B

(x  t3 + 2 axi S3) dA  = 

t


B

x  x 
 dm  

hold for the body for one observer (and hence for all).  

   By use of (1.92), (1.93), and (1.157) we obtain the field formulations. 

Theorem 1.25 (extended CAUCHY´s laws) 
A motion of the body is dynamically admissible if and only if 

(1.164)   
1
T  div 

2
T + div2 

3
T  div3

4
T  +  b3  =   x 

(1.165)   
2
T   =  

2
T T 

hold everywhere in the body. 

   We are now able to reformulate the principle of virtual power extending Theorem 1.19 by 
(1.156) using (1.145). 

Theorem 1.26 (integral version of PVP) 
A motion of the body is dynamically admissible if and only if the balance of virtual power holds 
in the form  

(1.166)  

t


B

(b3  x)  v dm  +

t

B

[t3  v + S3  gradn v + (
4
T  n)  gradn

2 v] dA   

  =  

t


B

(
2
T  sym grad v + 

3
T  grad 2 v + 

4
T  grad 3 v) dV  

for all vector fields  v  V   for one observer (and hence for all). 

Proof. The form (1.166) comes from (1.145). It is obvious that (1.166) gives for a constant 
field for  v  the balance of linear momentum (1.162) and for a rotational field the balance of 
angular momentum (1.163), since the right-hand side of the equation is zero in both cases;  
q. e. d.   

   By identifying  v  with the current velocity field  v  V , we obtain the balance of power.   

Theorem 1.27 (global work balance) 
If a motion of the body is dynamically admissible then the balance of power states that the 
power of the external loads equals the change of the kinetic energy plus the stress power  

(1.167)  

t


B

b3  v dm   +

t

B

[t3  v + S3  gradn v + (
4
T  n)  gradn

2 v] dA  
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  =  (

t


B

½ v  v dm)  + 

t


B

(
2
T  sym grad v + 

3
T  grad 2 v +

4
T  grad 3 v) dV  

for the body. 

This balance gives only a necessary, but not a sufficient condition for the admissibility of a 
motion.  

  From Theorem 1.26 we also see the dynamic or NEUMANN boundary conditions for the 
surface tractions that can be prescribed, namely the vector field of the tractions 

(1.168)    t3 presc  =  t3 ,  

the dyadic tensor field of the double tractions in normal direction in the following form 

(1.169)   s3 presc  n  =  S3 

since  gradn v  has only a normal component in its second entry, and the triadic field 

(1.170)   r3 presc  n  n  =  
4
T  n 

since  gradn
2 v  has only normal components in its second and third entry, so that the three 

vector fields  t3 presc , s3 presc , and  r3 presc  are needed on the surface. 

   The DIRICHLET boundary conditions are then the description of  the displacement field  
u , its first normal gradient  gradn u , and the second one  gradn

2 u  on the surface of the body 
or parts of it.  

Of course, one can also apply mixed boundary conditions of the two types.  
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2.  Material Theory of Second Gradient Materials 
 

This chapter is mainly based on 

Bertram, A.: Finite gradient elasticity and plasticity: a constitutive mechanical frame-
work. Continuum Mech. Thermodyn., 27,6, 1039-1058 (2015)15 

 

   In the preceding chapter we described gradient materials and, in particular, second gradient 
materials (K  2). In what follows, we will consider the material theory for this class of  
materials, and particularize it for elasticity and plasticity.  

While there is already a high number of contributions to gradient elasticity and plasticity within 
the linear format, publications on the same class of materials for large deformations are still 
limited, and among the few one will mainly find particular cases rather than a general theory. 

Examples are TOUPIN (1964), GREEN/ RIVLIN (1964b), TRIANTAFYLLIDIS/ AIFANTIS 
(1986), AIFANTIS (1987), LEROY/ MOLINARI (1993), HWANG et al. (2002), GURTIN/ 
ANAND (2005), GURTIN (2010), NEFF (2008), NEFF/ CHELMINSKI/ ALBER (2009), 
EKH/ GRYMER/ RUNESSON/ SVEDBERG (2007), POLIZZOTTO (2009), SIEVERT 
(2011), SVENDSEN/ NEFF/ MENZEL (2009), BAMMANN (2001), LUSCHER/ 
MCDOWELL/ BRONKHORST (2010), CLEJA-TIGOIU (2002, 2010, 2012), ANAND/ 
ASLAN/ CHESTER (2012), MIEHE (2014), to mention just a few.  

   The starting point for introduction of the stresses here is the internal stress power. Once  
having defined appropriate material stress and strain variables, we consider gradient elasticity. 
After working out the effect of a change of the reference placement, the concept of elastic  
isomorphy allows us to define elastic symmetry transformations. With these concepts we are 
able to distinguish isotropic and anisotropic elasticity.  As an example we give a linear form of 
the gradient elasticity. 

These are the variables (fields) that are needed for such a theory: 

 the specific body force  b  after (1.128) 

 the second-order stresses 
2
T  

 the third-order hyperstresses  
3
T  

and in the case of kinematical or DIRICHLET boundary conditions 

 the displacements on the boundary  u 

 and the normal gradient of the displacements  gradn u  

or in the case of dynamic or NEUMANN boundary conditions 

 the tractions prescribed on the boundary after (1.142)  t  
presc   

                                                 
15 see also BERTRAM (2013) 
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 the tensor field of the double tractions in normal direction after (1.143)  s 
presc  n  

or an appropriate mixture of the two types. 

For the specific body force we expect a gravitational or a magnetic law. For the two stress  

tensors 
2
T and  

3
T  material laws are needed. We will further on write  T : =

2
T  for the 

CAUCHY stresses and   G : = 
3
T  for the hyperstresses to facilitate the notations. 

To find appropriate forms of such material laws is the subject of material theory within conti-
nuum mechanics. They are subject of certain axioms called principles of material theory such 
as the 

 Principle of Determinism 

 Principle of Local Action 

 Principle of EUCLIDean Invariance (or Objectivity) 

 Principle of Invariance under Rigid Body Modifications 

 Principle of Thermodynamical Consistency 

and the like16. These principles can be straightforward extended from simple materials to  
gradient materials, as we will show later. 

The Principle of EUCLIDean Invariance is already fulfilled by the statement of Theorem 1.17 
that the higher-order stress tensors are objective. The other principles, however, lead to some 
concretization of the constitutive format.  

                                                 
16 see TRUESDELL/NOLL (1965), BERTRAM (2005), and many other books. 
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Second-Order Kinematics 
 

   A non-trivial problem in finite deformation theory is the choice of appropriate and practical 
third-order variables. In contrast to POLIZZOTTO (2009), CIARLETTA/ MAUGIN (2011), 
and many others, we use material variables and reduced forms. This saves us from introducing 
objective time derivatives for the stresses and strains.  

Some authors like TOUPIN (1962), SVENDSEN/ NEFF/ MENZEL (2009), and HWANG et 
al. (2002) use the gradient of GREEN´s strain tensor (0.38) as a higher-order material variable. 
Although principally equivalent to our procedure, it turns out that this choice leads to rather 
complicated expressions in elasto-plasticity even if applied only for the isotropic case.  

In WANG (1973), TESTA/ VIANELLO (2005), and PODIO-GUIDUGLI/ VIANELLO (2013) 
the symmetry properties of gradient materials are also investigated (in the context of elastic 
fluids). These authors, however, apply them to variables which are neither spatial nor material 
and, thus, inappropriate for material modeling of solids.  

 

   We will next provide the necessary kinematical variables for a second gradient theory. 

With respect to the natural bases of a spatial coordinate system  { i}  and a material one {  i}  
the deformation gradient can be calculated as  

(2.1)   F  =  
i

k





  r k  r 

i.   

With the transformation of the nablas are after (0.29) we get for the gradient of any tensor field  
  the transformations 

(2.2)      Grad    =  (grad  ) F and  grad    =  (Grad  ) F –1    

where it is understood that    is in the LAGRANGEan description if  Grad  is applied, and in 
the EULERean one if  grad  is. 

In particular, we have the identities 

(2.3)    grad x  =  x     =  I         grad grad x  =  0 

(2.4)    Grad x0  =  x0   0  =  I      Grad Grad x0  =  0 

with  x  being the position vector in the current placement and  x0  in the reference placement. 

The second gradient of the motions is the gradient of the deformation gradient  

(2.5)    Grad Grad   =  Grad F  =    0  0   

which is a triadic (field) with the right subsymmetry by definition.  

We will later-on need the differential of the inverse of the deformation gradient. First we note 
that the product rule gives 

    d(F –1F)  =  0  =  dF –1F + F –1dF    
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so that 

(2.6)    dF –1 =   F –1dF  F –1. 

With this representation we obtain 

    d(F –1)  =  Grad F –1 dx0    

   =   F –1 dF F –1   

   =   F –1  (Grad F dx0) F –1   

   =   F –1  [(Grad F) t F –1] t dx0 

   =   F –1  [(Grad F) F –1] t dx0 . 

Thus 

(2.7)     Grad F –1  =   F –1 [(Grad F)  F –1] t. 

Later, we will use the following expression for the gradient of the product of two second-order 
tensor fields  T  and  S  

(2.8)   Grad (S T)  =  S Grad T + [(Grad S) t T] t. 

This can be verified by the following calculation 

    Grad (S T)  =  (S T)  L  =  S Grad T + 

S T  L  

where the arrows indicate the term to which nabla has to be applied. The last term is with  
respect to an orthonormal basis 

   

S T  L  =  Sij ,k Tjm ei  em  ek 

while 

   [(Grad S) t T] t  = [(Sij ,k ei  ej  ek)
 t T] t  =  [Sij ,k ei  ek  ej T] t  

   =  [Sij ,k Tjm ei  ek  em] t  =  Sij ,k Tjm ei  em  ek 

gives the same. An analogous result holds also for the gradient in the EULERean description. 

The second velocity gradient can be related to the material time derivative of  a material defor-
mation tensor 

(2.9)    grad grad v  =  grad L   

with (0.35)  =  grad (F  F –1) 

with (2.2)  =  Grad (F  F –1) F –1   

with (2.8)  =  F  (Grad F –1) F –1 + [(Grad F ) t F –1] t F –1    

with (2.7)  =   F  F –1  [(Grad F) F –1] t F –1 + [(Grad F ) F –1] t F –1    

with (0.15)  =  F –T  [ F T F  F –1 Grad F + F T Grad F ]     

   =  F –T  [ FT F F –1 F  F –1 Grad F + F T F F –1 Grad F ] 

with (0.16)  =  F –T ○ [ F –1 F  F –1 Grad F + F –1 Grad F ] 
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with (2.7)  =  F –T ○ [F –1 Grad F + F –1 Grad F ] 

   =  F –T ○ K 

with   

(2.10)    KF –1 Grad F  

which has the right subsymmetry by definition.  

This triadic has been used by CHAMBON/ CAILLERIE/ TAMAGNINI (2001), FOREST/ 
SIEVERT (2003), CLEJA-TIGOIU (2013), STEINMANN (2015), and other authors17. It is 
sometimes called the connection or curvature, although this might lead to confusion with nabla 
or the well-known RIEMANNean curvature tensor. Therefore, we prefer to call  K  configura-
tion tensor.  

The product  ○  in (2.9) can be interpreted as the push-forward from the reference placement to 
the current placement taking into account the different transformation behavior of tangent and 
cotangent vectors.  

   It can be shown18 that the configuration tensor  K  can be determined by the right CAUCHY-
GREEN tensor  C  and its gradient according to   

(2.11)    K  =  C –1 Sym Grad C 

with the following symmetrization of a triadic 

(2.12)    Sym T ijk : = ½ (T ijk + T ikj  T kji) . 

 

 These fields can be calculated with respect to the natural bases of the coordinate systems  { i}  
in the current placement and  { i}  in the reference placement 

(2.13)   F  =  
i

k





  r k  r

i    

(2.14)  F –1  =  
l

k







 rl  r

k 

(2.15)    Grad F  =  (
i

k





  r k  r

i)  
j




r 

j  

   =  
2 k

i j


 


 
 r k  r

i  r
j + 

i

k





  (

j



r k)  r

i  r
j  

   +
i

k





  r k  (

j



r

i)  r 
j 

   =  
2 k

i j


 


 
 r k  r

i  r 
j + 

i

k





  ( k

m








r m
j








)  r

i  r 
j  

                                                 
17 see also NOLL (1967) 
18 KRAWIETZ (1993), see also HWANG et al. (2002) 
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   +
i

k





  r k  

i

j








r   r 
j
 
  

   =  
2 k

i j


 


 
 r k  r

i  r 
j + 

l

i




m

j






 ( l

m








r
rk) r k  r

i  r 
j 

    +
k

l




 (
l

j








r r i) r k   r
i  r 

j 

   =  [
2 k

i j


 


 
+

l

i







m

j






 ( l

m








r
rk) +

k

l






(

l

j








r r i)] r k   r
i  r 

j 

and 

(2.16)    K  =  
p

q







 r p  r

q [
2 k

i j


 


 
+ 

l

i




m

j






 ( l

m








r
rk)  

   +
k

l




 (
l

j








r r i)] r k   r
i  r 

j  

   =   
p

k







 [

2 k

i j


 


 
+ 

l

i







m

j






 ( l

m








r
rk)   

   + 
k

l






(

l

j








r r i)]  r p   r
i  r 

j. 

 

Example  We consider the bending and tension of a ring segment. The motion is given by the 
coordinate transformation 

  r  =   1(R ,  , Z )  =  a R   

(2.17)     =   2(R ,  , Z )  =  b   

  z  =   3(R ,  , Z )  =  Z 

with respect to a cylindrical COOS  {R ,  , Z}  for the initial or reference placement, and  
another cylindrical COOS  {r ,  , z}  for the current placement. 

  

  a = 1, b = 1.7 

 

 

 

 

 

 

  a < 1, b = 1 
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 The tangent bases to these coordinates are 

 r1  =  er ( )   r2 =  r e ( )   r3  =  ez 

 r1  =  er ( )   r2  =  R e ( )   r3  =  ez 

and the gradient bases 

 r
1  =  er

 ( )   r
2  =  1

r
 e

 ( )  r
3  =  ez  

 r
1  =  eR

 ( )   r
2  =  1

R
 e

 ( )   r
3  =  ez . 

The deformation gradient with respect to the natural bases of these coordinates and the normed 
ones is 

(2.18)  F =  
i

k





  rk  r

i  =  

a 0 0

0 b 0

0 0 1

 
 
 
  

rk  r
i  =  

a 0 0

br
0 0

R
0 0 1

 
 
 
 
  

ek  ei   

  =  

a 0 0

0 ab 0

0 0 1

 
 
 
  

ek  ei  

so that 

  F –1  =   

1

1

a 0 0

0 ab 0

0 0 1





 
 
 
 
 
 

 ei   ek 

which describes a state of plane strain. The right CAUCHY-GREEN tensor is  

  C  =  FT F   

 = (a r
1  r1 + b r

2  r2 + r
3  r3)  (a r1  r

1 + b r2  r
2 + r3  r

3) 

  = 

2

2 2

a 0 0

0 b r 0

0 0 1

 
 
 
 
  

 r
i  r

j   =  

2

2 2

2

a 0 0

b r
0 0

R
0 0 1

 
 
 
 
 
 
  

 ei
  ej
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(2.19)  =  

2

2 2

a 0 0

0 a b 0

0 0 1

 
 
 
 
  

 ei
  ej . 

The determinant of  F  is  J = a2 b. Incompressibility would be characterized by  a2 = 1/b . In 
this case we would obtain 

(2.20)   Finc  =  

a 0 0

1
0 0

a
0 0 1

 
 
 
 
  

ek  ei . 

The LAGRANGEan and the EULERean nabla operators are 

  0  : =  i


 r 
i        : =   i


 r

i. 

Further 

(2.21)   Grad F  =  

a 0 0

0 ab 0

0 0 1

 
 
 
  

ek  ej  i


 r 
i   

  =  

a 0 0

0 ab 0

0 0 1

 
 
 
  

ek  ej  



 r
2 

  =  

a 0 0

0 ab 0

0 0 1

 
 
 
  

 ( 

 ek 




  ej + ek  


 ej) 

1

R
 e2 

  =  (a 

 e1 b  e1 + ab 


 e2 b  e2 + a e1  


 e1  

  + ab e2  

 e2) 

1

R
 e2 

  =  1

R
 (ab e2  e1  ab2 e1  e2 + a e1  e2  ab e2  e1)  e2 

  =  R a (1  b2) r1  r
2  r

2
   =  1

R
 (a  ab2) e1  e2  e2 

and 
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(2.22)    K=   

1

1

a 0 0

0 ab 0

0 0 1





 
 
 
 
 
 

 ei   ek 
1

R
 (a  ab2) e1  e2  e2 

    =  R (1  b2) r1  r
2  r

2
   =  

21 b

R

  e1  e2  e2 

which is independent of  a , and for  b  1  it vanishes completely. 
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Stress Power 
 

   As a starting point for our gradient theory we have chosen the stress power after (1.144)   

(2.23)    Πi  : = 

t


B

1/ (T  grad v + G  grad grad v) dm .  

T  is symmetric because of the balance of angular momentum (1.134) , and the first term can be 
substituted by  T  D .  

grad grad v  has the right subsymmetry by definition. So the same symmetry can be imposed 
on  G  without loss of generality within the present format. The balance of angular momentum 
does not impose any restriction on  G  . 

Since  D  and  grad grad v  are objective fields after (1.39), we can again see that the stress 
power is objective if  T  and  G  are objective.  

For material modeling, however, it is more practical to use invariant variables instead of  
objective ones. Therefore we will next bring the stress power into a material form which is  
invariant under EUCLIDean transformations.  For this purpose we use (0.13), (0.17), (0.38), 
(2.9)  

    Πi  = 

0


B

i dm 

with the specific stress power 

   i    : =  1/0 J [T  (F –T  ½ C) + G  (F –T ○ K )] 

(2.24)   =  1/0 [½ J (F –1  T)  C +  (F –1 ○ J G) K ]  

   =  1/0 [½ S  C + H  K] 

with the two material stress tensors, namely the second PIOLA-KIRCHHOFF tensor 

(2.25)    S  : =  F –1  J T   

and the third-order material hyperstress tensor defined as  

(2.26)    H  : =  F –1 ○ J G .  

The product ○ in (2.26) is the pull-back of  G  from the current placement to the reference 
placement, the same as the RAYLEIGH product in (2.25). 

The following tensors are invariant: C , K  and their duals  S  H , which makes them good  
candidates for material modeling.  
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2.1  Finite Gradient Elasticity 
 

We will now extend the definition of a simple elastic material to a second-order one by  
enlarging the set of independent variables by the second deformation gradient. 

Definition 2.1. We call a material second-order elastic if the stress tensors are functions of the 
motion, the deformation gradient, and the gradient of the deformation gradient 

(2.27)    T  f ( , Grad  , Grad Grad )  f ( , F, Grad F) 

(2.28)    G  F ( , Grad  , Grad Grad )  F ( , F, Grad F) 

where all variables are taken at the same material point at the same instant of time.  

We already know that both stress tensors  T and  G  behave like objective tensors under 
EUCLIDean transformations (Theorem 1.17).  

These constitutive equations can be further reduced by means of the EUCLIDean invariance 
principle19, which we assume in the following form. 

Axiom 2.1 Principle of Invariance under Rigid Body Modifications  

The stress power at the end of a motion  (x0 , ) t
0  in some time interval  [0,t]  equals the 

stress power after superimposing a rigid body motion upon the original motion 

(2.29)    {Q() (x0 , ) + c() t
0 } 

with arbitrary differentiable time functions  Q()  Orth   and  c()  V  3 . 

The transformation (2.29) has nothing to do with changes of observers (1.33).  The invariance 
under observer changes does not lead to reduced forms (see BERTRAM/ SVENDSEN 2001), 
in contrast to the Principle of Invariance under Rigid Body Modifications above, as we will 
next show. 

We will further on denote the binary set of elements like {T, G}  consisting of all dyadics  T  
and triadics  G  with right subsymmetry by  LinComb . This space has the dimension 9 + 18 = 
27. A subset of this space is formed by all positive-definite and symmetric second-order tensors  
C  and all triadics with right subsymmetry  K , which we call the space of configurations   
Conf . This set is imbedded in a space with dimension 6 + 18 = 24. Another subset of  LinComb  
is formed by all invertible dyadics and all triadics with right subsymmetry, which we denote by  
InvComb . We can further restrict this subset to those dyadics which are unimodular (deter-
minant equal  1) denoted by  UnimComb . 

Reduced forms of the elastic laws (2.27) and (2.28) are then 

(2.30)    S  =  k(C, K)  

(2.31)    H  =  K(C, K)  

by two elastic laws which are defined on the space of configurations 

                                                 
19 see BERTRAM (2005), therein called PISM 
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   k :  Conf    Sym  

   K :  Conf    Triad  

since all involved variables are material and thus invariant under both changes of observers and 
superimposed rigid body motions. The proof of this statement is a straightforward extension of 
the rationale given in, e.g., TRUESDE/ NOLL (1965). This means that the elastic laws (2.27) 
and (2.28) of every second-order elastic material law that obeys the Principle of Invariance 
under Rigid Body Modifications can be brought into these forms.  

   There are strong physical arguments that all elastic materials should also be hyperelastic.  

Definition 2.2. We will call a material a second-order hyperelastic material if there exists a 
specific elastic energy   

   w :  Conf     R   

such that the specific stress power after (2.24) equals 

(2.32)    i  =  w(C, K)  

Note that the elastic energy defined on the configurations is already in a reduced form. By the 
chain rule and (2.24), this gives 

(2.33)   1/0 (½ S  C  + H  K )  =  C w(C, K) CK w(C, K) K 

and by comparison we obtain the potential relations for (2.30) and (2.31) 

(2.34)    k(C, K)  =  20 C w(C, K)   

(2.35)    K(C, K)  =  0 K w(C, K) . 

So there is a clear mathematical distinction between elastic and the hyperelastic materials, and 
the latter form a proper subset of the first. However, elastic materials that are not hyperelastic, 
have hardly any physical relevance. In what follows, we will only consider elastic materials 
that are also hyperelastic, so that both terms are used in a synonymous sense.   
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Change of Reference Placement 
 

   The reduced forms (2.30) and (2.31) and the hyperelastic energy depend on the choice of the 
reference placement  0 . If we want to indicate this dependence, we will write for example  
k(0 , )  and  K(0 , )  for the elastic laws. Their transformation behavior under change of the 
reference placement plays an important role for isomorphisms and symmetry transformations, 
as we will show later.  

While the spatial quantities  grad v, grad grad v , T  G  do not depend on the reference place-
ment, the material ones like C , K , S , H  do so. We will next investigate their transformation 
behavior under change of the reference placement. We will therefore consider a second  
reference placement  0  indicated by underlining, like all variables with respect to  0 .  

For an arbitrary differentiable field    given in the LAGRANGEan representation with respect 
to both reference placements, we obtain by the chain rule 

(2.36)    Grad    =  (Grad )  A    

where  A : = Grad (0 0
1)  Inv+  is the gradient of the change of reference placement. It is 

understood that the field    is defined as a field on the corresponding reference placements, 
which has identical values for identical material points.  

In particular, we find  

(2.37)    F  =  Grad   =  F A    

so that 

  J  =  / 0 =  J det(A) =  / 0  JA  or     0 / 0 =  JA  with  JA  : = det(A) 

and 

   C =  AT C A  =  AT  C . 

For the second gradient the transformation is 

(2.38)   Grad  F  =  Grad (F A)  

with (2.8)  =  F  Grad A  +  [(Grad  F) t A] t 

with (2.36)  =  F  Grad A  +  [{(Grad  F)  A}t A] t 

with (0.15)  =  F  Grad A  + AT  (AT Grad  F) .   

Thus 

(2.39)    K =F –1 Grad  F   

   A–1 F –1  {F Grad A + AT  (AT Grad  F)} 

   =A–1 Grad A  +  A–1 F –1  [AT  (AT Grad  F)] 

with (0.11)  =A–1 Grad A  +  A–1 F –1  [AT  (AT Grad  F)] 

with (0.12)  =A–1 Grad A  + AT  (AT A–1 F –1 Grad  F) 
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with (0.16)  =KA + AT ○ K 

with the configuration of  0  with respect to  0 

(2.40)    KA  =A–1 Grad A . 

For the material stresses we obtain 

(2.41)    S  =  J F –1 T F –T  

with (2.37)  =  (det A) J A–1 F –1 T F –T A–T  

   =  (det A) A–1 S A–T 

   =  A–1  JA S   

and with (2.26) for the hyperstresses  

(2.42)    H  =  F –1 ○ J G  

with (2.37)  =  (A–1 F –1) ○ (det(A) J G) 

with (0.20)  =  A–1 ○ [ F –1 ○ (JA J G)] 

with (2.26)  =  A–1 ○ JA H 

or inversely 

(2.43)    H  =  A ○ JA
–1 H . 

The above formulae hold for arbitrary changes of reference placements. If we particularize  
these results to rigid rotations of the reference placements  A  Orth + we have 

(2.44)    JA = 1   Grad A    0 

   K AT  K   H  =  AT  H  

Coming back to the general case, the elastic laws (2.30) and (2.31) with respect to two different 
reference placements are transformed as 

(2.45)    k(0 , C, K)  =  A  [JA
–1 k(0 , A

T  C, KA + AT ○ K)] 

(2.46)   K(0 , C, K)  =  A ○ [JA
–1 K(0 , A

T  C, KA + AT ○ K)]   

for all  (C, K)  Conf   using (2.37), (2.40), (2.41), and (2.43). 

For the hyperelastic energy introduced in (2.32) we obtain for the change of the reference 
placement 

(2.47) w(0 , C, K)  =  w(0 , C, K)  =  w(0 , A
T  C, KA + AT ○ K)  (C, K)  Conf 

which is in accordance with (2.34), (2.35), (2.37), (2.39) and would again give (2.45) and 
(2.46).  

The change of the reference placement enters into these transformations only through the  
couple  (A, KA)  InvComb . Vice versa, for any such couple one can surely find a correspon-
ding reference placement obeying (2.37) and (2.39). In fact, there are always infinitely many 
reference placements that do so. 
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Elastic Isomorphy 
 

   This concept plays an important role for the formulation of elasticity and elastoplasticity20. It 
is used to precisely define the notion that two elastic points show the same elastic behavior.  

   We have already seen that our elastic laws depend on the choice of the reference placement. 
If we want to compare two different elastic points, we have to take these dependencies of the 
respective elastic laws into account. 

Definition 2.3. Two elastic material points  X  and  Y  are called elastically isomorphic if we 
can find reference placements  X  for  X  and  Y  for  Y  such that the following two conditions 
hold. 

 In  X  and  Y  the mass densities are equal  

(2.48)    0X  =  0Y . 

 With respect to  X  and  Y  the elastic laws are identical  

(2.49)    kX (X , )   =   kY (Y , ) 

(2.50)    KX (X , )   =   KY (Y , )      

In the hyperelastic case one can equivalently demand that the energy functions coincide 

(2.51)   wY (Y , )  =  wX (X , ) + wc   

up to some constant  wc  R   instead of (2.49) and (2.50). 

TESTA/ VIANELLO (2005) demand in addition to (2.48) that also the gradient of the density 
is equal in the two points, an assumption which makes sense in the context of elastic gradient 
fluids. In the present context, however, we do not see any reason for such a restriction.  

If two isomorphic elastic laws are given with respect to arbitrary reference placements  X  and  
Y , then we must probably first transform them to appropriate  X  and  Y  using (2.45) and 
(2.46) 

(2.52)   kX (X , C X , K X)  =  AX
  [ JX

–1 kX (X , AX
T  CX , KAX + AX

T ○ K X)]  

(2.53)   KX (X , C X , K X)  =  AX
 ○ [JX

–1 KX (X , AX
T  CX , KAX + AX

T ○ K X)]  

and 

(2.54)   kY (Y , C Y , K Y)  =  AY
  [JY

–1kY (Y , AY
T  CY , KAY + AY

T ○ K Y)]    

(2.55)   KY (Y , C Y , K Y)  =  AY
 ○ [JY

–1 KY (Y , AY
T  CY , KAY + AY

T ○ K Y)]  

with  AX,Y : = Grad(X,Y  X,Y
 –1) ,  JX,Y  : = det(AX,Y) , and  KAX,Y  =AX,Y

–1 Grad AX,Y 

as well as the mass densities in these reference placements 

                                                 
20 see BERTRAM (1998), (2005) 
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(2.56)   0X  / 0X   =  JX     and   0Y  / 0Y   =  JY . 

So the above isomorphy conditions hold if and only if 

    0X  JX
 –1   =  0Y  JY

 –1 

(2.57)   kX (X , C, K )  =  kY (Y , C, K )   

   KX (X , C, K )  =  KY (Y , C, K )   (C, K)  Conf .  

Then they certainly also hold for the inverse transformation   

(2.58)   (AX
T  C,  AX

T ○ KAX + AX
T ○ K)  Conf    

so that 

 (2.59)   kX (X , AX
T  C,  AX

T ○ KAX + AX
T ○ K)   

   =  kY (Y , AX
T  C,  AX

T ○ KAX + AX
T ○ K)   

 (2.60)   KX (X , AX
T  C,  AX

T ○ KAX + AX
T ○ K )   

   =  KY (Y , AX
T  C,  AX

T ○ KAX + AX
T ○ K)  (C, K)  Conf .  

If we multiply the first equation by  AX
–1  JX  and the second one by  AX

–1 ○ JX , then we see 
that the left-hand sides give the elastic laws in the reference placement  X , so that we achieve 

(2.61)   kX (X , C, K)  =  AX
–1  [JX kY (Y , AX

T  C,  AX
T ○ KAX + AX

T ○ K)]   

(2.62)   KX (X , C, K ) = AX
–1 ○ [JX KY (Y , AX

T  C, AX
T ○ KAX + AX

T ○ K)] . 

By interpreting the right-hand side as a change of the reference placement for  Y , we see that 
the isomorphy conditions hold for this choice of reference placements as well.  By the notations  
AX  = : P  and  KA = : P , the following equivalent, but simpler isomorphy conditions result.21  

The dyadic  P  can be interpreted as the gradient of the change of the reference placement and 
the triadic  P  as its second gradient. However, in a local theory, these two tensors can be  
considered as being independent of each other. 

Theorem 2.1. Two elastic material points  X  and  Y  with elastic laws  kX , KX  and  kY , KY  
with respect to arbitrary reference placements are elastically isomorphic if and only if there 
exist two tensors  (P, P)   InvComb  such that 

(2.63)   0X  =  0Y  det (P)   

(2.64)    kY (C, K)  =  det –1(P) [P  kX (P
T  C, PT ○ K + P )]  

(2.65)   KY (C, K)  =  det –1(P) [P ○ KX (P
T  C, PT ○ K + P )]    

hold for all (C, K)  Conf  with  0X  and  0Y   being the mass densities in the reference  
placements of  X  and  Y , respectively. 

 This gives for the elastic energy in the case of isomorphy 

                                                 
21 This theorem has been used for simple elastic materials in (BERTRAM 2005). In a more 
general format is has been shown already in BERTRAM (1982, page 111) and BERTRAM 
(1989, page 206). 
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(2.66)   wY (C, K)  =  wX (P
T  C, PT ○ K + P ) + wc        (C, K)  Conf 

equivalent to (2.64) and (2.65) with some constant  wc  R . 
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Material Symmetry 
 

   If we particularize the concept of isomorphy to identical points  X  Y , it defines automorphy 
or symmetry. In this case we consider only one point so that we can drop the point index, and 
denote the automorphism by  (A, A)  InvComb  to distinguish from the isomorphisms of the 
previous section. Because of the first isomorphy condition, any automorphism must be proper 
unimodular in its first entry:  (A, A)  UnimComb .  This leads us to the following definition 
using (2.66). 

Definition 2.4. For a gradient hyperelastic material with elastic energy  w  a symmetry  
transformation is a pair  (A, A)  UnimComb  such that 

(2.67)  w (C, K)  =  w (A
T  C, AT ○ K + A)       (C, K)  Conf . 

This gives with (2.34) and (2.35) the transformations for the elastic laws 

(2.68)   k (C, K )  =  A  k (A
T  C, AT ○ K + A)  

(2.69)    K (C, K )  =  A ○ K (A
T  C, AT ○ K + A) . 

The set of all such symmetry transformations represented by such a couple  (A, A)  UnimComb  
forms the symmetry group of the material. In fact, the transformation is a group under compo-
sition in the algebraic sense. Its identity is  (I, 0)  UnimComb . The composition of two  
elements (A, A) and (B, B)  UnimComb  is   

   (A, A) (B, B) : = (A  B, BT ○ A + B)  UnimComb   

which does not commute. The inverse of some  (A, A)  UnimComb  is   

   (A–1, A–T ○ A)  UnimComb . 

   This group is used to define isotropy or anisotropy. If the symmetry group is a subgroup of  
Orth +  in the first entry and the zero in the second, (Q, O), these transformations can be inter-
preted as rigid rotations, and we call the respective reference placement an undistorted state. 
If a material allows for such undistorted states, it is a solid. If it contains all orthogonal dyadics 
in the first entry, then the material is called isotropic. These definitions apply not only to  
gradient elasticity and hyperelasticity, but also to any inelastic gradient material in an  
analogous way.   

Here one could also allow for improper symmetry transformations like  (Q, O)  with Q  Orth 
+ . Since we are dealing with even and odd-order tensors, this minus sign does not cancel out in 
(2.67) - (2.69). Thus, for gradient materials improper symmetry transformations do play a non-
trivial role, in contrast to simple materials. 

If a material contains with all proper symmetry transformations also the corresponding  
improper ones, it is called centro-symmetric. For isotropic materials this centro-symmetry is 
often tacitely included. 

In all of these cases, we obtain after (2.44) with respect to undistorted states 
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(2.70)   A  k (C, K )  =  k (A  C, A  K)  

(2.71)   A  K (C, K )  =  K (A  C, A  K) 

(2.72)   w (C, K)  =  w (A  C, A  K)       

 (C, K)  Conf . Thus, for an isotropic material the elastic laws are isotropic tensor functions. 

In MURDOCH (1979)22 one finds interesting considerations about the symmetry of second 
gradient materials. MURDOCH uses other configuration variables than we do, namely  F  and  
FT Grad F , the latter being a material quantity, in contrast to the first one.  

                                                 
22 see also CROSS (1973), ELZANOWSKI/ EPSTEIN (1992) and LEON/ EPSTEIN (1996) for 
such considerations related to the symmetry group.  
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Finite Linear Elasticity 
 

   For many applications the elastic deformations are rather small which justifies the  
linearization of the hyperelastic laws. In-order to avoid the introduction of new notations like a 
generalized VOIGT notation, we use a tensor notation.  

   In the physically linear elasticity theory, the elastic energy is assumed to be a (symmetric) 
square form of the configuration (C, K). Such a form on  Conf   would have  242 /2 + 24/2 = 300  
parameters. In tensor notations it can be represented by 

(2.73)   w (C, K)  =  
0

1

2
 C  

4

E  C + 
0

1


 C  

5

E  K  + 
0

1

2
 K 

6

E  K  

with the abbreviations   

  C  : =  ½(C – Cu)   and   K  : = K – Ku   

with respect to some unloaded configuration  (Cu , Ku)  Conf   and higher-order elasticity  

tensors  
4

E , 
5

E , 
6

E .  

These elasticities can be submitted to the following symmetry conditions: 
4

E :  

 left subsymmetry {ijkl} = {jikl}  

 right subsymmetry {ijkl} = {ijlk}  

 and  the major symmetry {ijkl} = {lkji} 

with 21 independent constants as customary from classical elasticity 
5

E :  

 left subsymmetry {ijklm} = {jiklm}  

 right subsymmetry {ijklm} = {ijkml}  

with 18 x 6 = 108 independent parameters 
6

E :  

 subsymmetry in the 2nd and 3rd indices {ijklmn} = {ikjlmn} 

 right subsymmetry {ijklmn} = {ijklnm} 

 and major symmetry {ijklmn} = {lmnijk} 

with 182 /2 + 18/2 = 171 independent parameters 

This gives in total again 300 constants, which can eventually be reduced by the exploitation of 
symmetry properties.  
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   The isotropic versions of the elastic energy can already be found in MINDLIN/ ESHEL 
(1968) with only 7 independent parameters including the two LAMÉ constants from classical 
elasticity23. Here we obtain for the elastic energy  

(2.74)   w  =  a1 (C  I)2 + a2 C  C + a3 I  K  C  I + a4 (K  I)  (C  I)  

+ a5 (I  K)  (I  K) + a6 K  K + a7 K  K T 

where the following particular transposition for a third-order tensor  [K T]ijk : =  [K] kji  is 
used.  ai  are the seven scalar material constants. 

This gives the following stresses after (2.34) and (2.35) 

(2.75)   S  = 2a1 (C  I) I  + 2a2 C  

(2.76)   H  =  2a3 I  K  I + 2a4 (K  I)  I + 2a5 I  I  K + 2a6 K + 2a7 K T. 

 

   In the general (anisotropic) case, the elastic energy (2.73) acts as a potential for the stresses 
with (2.34) and (2.35) 

(2.77)    k (C, K)  =  
4

E  C +
5

E  K     

(2.78)   K (C, K)  =  C 
5

E  + 
6

E  K    (C, K)  Conf .  

These laws are straightforward extensions of the ST.-VENANT-KIRCHHOFF law to gradient 
elasticity. They are physically linear, but geometrically nonlinear, and they fulfill the 
EUCLIDean invariance requirement. Note that the linear theory depends on the choice of the 
stress and configuration variables, in contrast to the preceding non-linear theory. However, for 
small deformations, the differences remain negligible. 

In the linear case the isomorphy conditions (2.49) and (2.50) become with  (P, P)  Inv   

(2.79)    
4

E Y  ½(C – CuY) + 
5

E Y  (K – K uY)   

   =  P  det –1(P) {
4

E X   ½(PT  C – CuX)  + 
5

E X   (PT ○ K + P – KuX)}    

 and 

(2.80)    ½(C – CuY) 
5

E Y +  
6

E Y   (K – K uY) 

   =  P ○ (det –1 P) {½(PT  C – CuX) 
5

E X + 
6

E X  (PT ○ K + P – KuX)}) .     

By a comparison in the independent variables  (C, K)  Conf   one can determine the transfor-
mations of the elasticities and the unloaded configuration like 

(2.81)    
4

E Y   =  P  (det –1 P) 
4

E X and CuY  =  P –T  CuX . 

For the other elastic tensors such relations can also be obtained but become more complicated. 

                                                 
23 see SUIKER/ CHANG (2000), DELL´ISOLA/ SCIARRA/ VIDOLI (2009), AUFFRAY/ LE 
QUANG/ HE (2013), and BERTRAM/ FOREST (2014) 
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 The linearity of the elastic laws will not be assumed in what follows, in order to preserve full 
generality. 
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2.2  Finite Gradient Elastoplasticity 
 
There are not many papers in the literature dealing with finite plastic deformations of gradient 
materials. In most of them, the internal length scale enters through the gradient of some internal 
variable, like hardening variables or the plastic deformation. Examples for such approaches are 
given by GURTIN/ ANAND (2005), GURTIN/ FRIED/ ANAND (2009), GURTIN (2010), 
LUSCHER et al. (2010), and CLEJA-ŤIGOIU (2013).  

Our intention here, however, is to not limit the theory to such special cases, but instead to allow 
for a second and a third-order plastic variable as being substantially independent of each other 
(unconstrained gradient plasticity). This is the more general case, and there is no rationale 
known which would exclude this choice. Particular cases, in which this independence is not 
given, should be nevertheless contained in this general setting.    

   By elastoplasticity we understand rate-independent materials with elastic ranges. For a  
gradient theory of elastoplasticity, we consider materials for which both the elastic and the 
plastic behavior are assumed to be of gradient type.  

One assumes that after some deformation process the material is within some elastic range for 
which elastic laws for the stresses exist. Thus, the stresses can be determined by these current 
elastic laws. And this holds also for any continuation of the deformation process as long as it 
does not leave the current elastic range. If this happens, the material continuously passes 
through different elastic ranges, a process which characterizes yielding.  

We want to make these concepts more precise.    

Definition 2.5. A (hyper)elastic range is a pair  {Ep , wp}  consisting of 

1.)  a path-connected submanifold with boundary  Ep   Conf    

2.)  and the elastic energy  

(2.82)   wp(C, K)   

such that after any continuation process  {C(), K()}
0

t
t , which remains entirely in  Ep   

   {C(), K()}  Ep      [t0 , t] 

the stresses are determined after (2.34) and (2.35) by the final values of the process by 

(2.83)   S(t)  =   20 C wp(C, K)  : =   kp(C, K)   

(2.84)   H(t)  =  0 K wp(C, K)  : =  Kp(C, K). 

The elastic laws are physically determined only for configurations within the specific elastic 
range  Ep .  However, in what follows we will extend them to the entire space  Conf   for  
simplicity.  

In contrast to many other authors, we introduce the elastic ranges in the configuration space. By 
the elastic laws (2.83) and (2.84), one can easily transform them into the space of stresses and 
hyperstresses if this is preferred.   
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Assumption 2.1. At each instant the elastoplastic material point is associated with an elastic 
range so that the stresses are given by (2.83) and (2.84) . 
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Isomorphy of the Elastic Ranges 
 

   During yielding two effects have to be considered. Firstly, the elastic range  Ep  as a subset of  
Conf   evolves reflecting the hardening or softening behavior of the material. And secondly, the 
elastic energy function associated with these elastic ranges can also evolve. We will first  
address this second effect. 

   For many materials it is a microphysically and experimentally well-substantiated fact that 
during yielding the elastic behavior hardly alters even under very large deformations. This  
substantiates the assumption, that the elastic behavior remains identical. Such an assumption 
reduces the effort for the identification tremendously, since otherwise one would have to  
identify the elastic constants at each step of the deformation anew24.  

We now give this assumption a precise form.  

Assumption 2.2. The elastic laws of all elastic ranges are isomorphic. 

Note that in Assumption 2.2 nothing is said about the form or size of  the elastic ranges  Ep  in 
the configuration space. So the hardening behavior is not at all addressed by it. 

As a consequence, if  {E1 , w1}  and  {E2 , w2}  are two elastic ranges, then according Theorem 
2.1 there exist two tensors (P12 , P12)  InvComb  and a scalar  wc  such that   

 for the mass densities in the reference placements  01   and  02  holds 

(2.85)   01  =  02 det P12 

 and for the elastic energies we have the equality after (2.66) 

(2.86)   w2(C, K)  =  w1(P
T  C, PT ○ K + P ) + wc     

such that the elastic stress laws are after (2.34) and (2.35)  

(2.87)  k2(C, K)  =  (det –1 P12) [P12  k1(P12
T  C, P12

T ○ K + P12)]  

(2.88)   K2(C, K)  =  (det –1 P12) [P12 ○ K1(P12
T  C, P12

T  ○ K + P12)]  

 (C, K)  Conf . As we have chosen a joint reference placement for all elastic laws of one  
particular material point (this is, however, not compulsory), we already have  01  02 , and 
therefore  P12  must be proper unimodular, so that the first isomorphy condition (2.85) is always 
fulfilled. 

If all elastic energies belonging to different elastic ranges are mutually isomorphic, then  
because of the group property of isomorphy transformations, they all are isomorphic to some 
freely chosen elastic reference energy  w0 . While the current elastic energy function  wp   
varies with time during yielding, the reference energy function can always be chosen as  
constant in time. We thus have the isomorphy condition in the following form. 

                                                 
24 One of the few examples where this assumption has not been made is BÖHLKE/ BERTRAM 
(2001). 
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Theorem 2.2. Let  w0  be the elastic reference energy for an elasto-plastic material. Then for 
each elastic range  {Ep , wp}  there are two tensors  (P, P) UnimComb  and a scalar  wc0  such 
that 

(2.89)   wp(C, K)  =  w0 (P
T  C, PT ○ K + P ) + wc0       (C, K)  Conf . 

The elastic laws are then given by 

(2.90)   S  =  kp (C, K)  =  20 C wp (C, K)   

  =  20 C w0 (P
T  C, PT ○ K + P) 

   =  P  k0 (P
T  C, PT ○ K + P) 

and 

(2.91)   H  =  Kp(C, K)  =  0 K wp (C, K)   

   =  0 K w0 (P
T  C, PT ○ K + P) 

   =  P ○ K0 (P
T  C, PT ○ K + P)  (C, K)  Conf . 

In the present theory, the two variables  (P, P) UnimComb  are chosen as the plastic internal 
variables. One might be tempted to interpret the argument of (2.90) and (2.91) as both an  
additive and a multiplicative decomposition of the kinematical variables25. They are, however, 
not introduced as deformations but rather as a transformation of the current elastic energy (not 
of a placement) to a time-independent reference energy function, which results in a natural way 
from the isomorphy condition. We avoid the introduction of an intermediate configuration or a 
split of some deformation into elastic and plastic parts since it is misleading in a finite defor-
mation theory26. 

 

   If one linearizes these elastic laws, then we obtain after (2.79) and (2.80) 

(2.92)   
4

E p  ½(C – Cup) + 
5

E p  (K – K up)   

   =  P  {
4

E 0 ½(PT  C – Cu0)  + 
5

E 0  (PT ○ K + P – Ku0)}    

(2.93)   ½(C – Cup) 
5

E p +  
6

E p  (K – K up) 

   =  P ○ {½(PT  C – Cu0) 
5

E 0 + 
6

E 0  (PT ○ K + P – Ku0)})     

where the suffix  p  indicates the (time-dependent) quantities related to the linear forms of  kp  
and  Kp

 , and the suffix  0  to the (time-independent) ones of the linear forms of the elastic  
reference laws  k0  and  K0 . Again one can determine the transformations of the elasticities and 
the unloaded configuration as in (2.81) 

(2.94)   
4

E p   =  P  
4

E 0 and Cup  =  P –T  Cu0  

etc.
                                                 
25 In CHAMBON/ CAILLERIE/ TAMAGNINI (2001) such an interpretation is given. 
26 see the comments in BERTRAM (2005) on p. 291. 
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Yield Criteria 
 

   Let us first consider one particular elastic range  {Ep , wp} . We decompose the set  Ep   
topologically into its interior  Ep

o  and its boundary  Ep . The latter is called yield surface (in 
the configuration space). In order to describe it more easily, we introduce a real-valued tensor-
function in the configuration space 

   p  :  Conf    R    (C , K)    p(C , K)   

the kernel of which coincides with the yield limit 

(2.95)   p(C , K)  =  0      (C , K)  Ep . 

For distinguishing points in the interior and in the exterior of the elastic ranges, we postulate 

(2.96)   p(C , K)  <  0        (C , K)  Ep
 o  

and, consequently, 

(2.97)   p(C , K)  >  0          (C , K)  Conf   \ Ep . 

We call such an indicator function or level set function a yield criterion, and assume further on 
for simplicity that  p  is differentiable, although there are also suggestions with corners and 
edges. One can always transform the yield criterion from the configuration space into the stress 
space by using the elastic laws using (2.90) and (2.91).  

Instants of yielding are characterized by two facts. 

 The configuration is currently on the yield limit and, thus, fulfils its yield condition 

(2.98)   p(C , K)  =  0 .  

 It is about to leave the current elastic range. This is expressed by the loading condition 

(2.99)   p
  =  Cp  C   + K p  K   >  0 .  

   Such a yield criterion is associated with some particular elastic range. In order to obtain a 
general yield criterion that holds for all elastic ranges in the same form, we introduce additional 
internal variables  Zp  (here denoted as a dyadic) called hardening variables (although they 
could also describe softening). These can be tensors of arbitrary order or even a vector of such 
tensors and, thus, form elements of some finite dimensional linear space, the specification of 
which depends on the particular hardening model.  

The general form of the yield criterion is assumed to be like 

(2.101)    (P, P, C, K , Zp) 

such that 

(2.102)   p(C)  =   (P, P, C, K , Zp)
  

holds for each particular elastic range. 

With this extension we obtain for the yield condition (2.98) 
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(2.103)    (P, P, C, K , Zp)  =  0   

and for the loading condition (2.99) 

(2.104)   C   C + K   K   >  0 

where the plastic variables are kept constant. 
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Decomposition of the Stress Power 
 

We will next consider the stress power again and specify it for our elastoplastic material. The 
specific stress power (2.24) is using (0.13) and (0.17)  

(2.105)   i  =  1/0 (½ S  C  + H K )  

with (2.90), (2.91) =  1/0 (½ kp(C, K)  C + Kp(C, K) K
) 

      =  1/0 [½ P  k0(P
T  C, PT ○ K + P)  C  

    + P ○ K0 (P
T  C, PT ○ K + P) K

] 

   =  1/0 [½ k0(Ce , Ke)  (PT  C) + K0 (Ce , Ke)  (PT ○ K
)] 

with the abbreviations  

(2.106)   Ce  : =  PT C P  =  PT  C   

(2.107)   Ke
  : =  PT ○ K + P.

This gives for the rates 

(2.108)   Ce
=  (PT C P)   =  PT C P + 2 sym(P T C P)   

   =  PT  C + 2 sym(Ce P –1 P) 

where  sym  stands for the symmetric part, and  

(2.109)  Ke
  = {PT ○ K + P}=  PT ○ K

 + P 

   + ijk P –1 ei)  PT ej)  PT ek)

   P –1 ei)  PT  ej)  PT ek)P –1 ei)  PT ej)  PT  ek)}


  =  PT ○ K 
 + P 

   + ijk  P –1 P  P –1 ei)  PT ej)  PT ek)

    2 subsym[P –1 ei)  PT ej)   PT  ek) P
 –1 P ]} 

  =  PT ○ K 
 + P  P –1 P   (Ke  P) 2 subsym [(Ke  P) P –1 P]

the term with  subsym  being the symmetric part with respect to the right subsymmetry. We 
substitute this into (2.105) to obtain 

  i  =  1/0 {½ k0(Ce , Ke)  [Ce
  2 sym(Ce P –1 P )]  

  + K0 (Ce , Ke)  [Ke
   P + P –1 P  (Ke  P) 2 subsym [(Ke  P) P –1 P]} 

and because of the symmetries of the stress tensors 

  =  1/0 {½ k0(Ce , Ke)  [Ce
  2 sym(Ce P –1 P)] 

   + K0 (Ce , Ke)  [Ke
   P + P –1 P  (Ke  P) 2 (Ke  P) P –1 P} 

  =  1/0 {½ k0(Ce , Ke)  Ce
 + K0 (Ce , Ke)  Ke

 
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    ½ k0(Ce , Ke)  (2 Ce P –1 P )  

(2.110)    K0 (Ce , Ke)  [P  P –1 P   (Ke  P) 2 (Ke  P) P –1 P ]} 

  =  C w0 (Ce , Ke)  Ce
 + K w0 (Ce , Ke)  Ke

 

    ½ k0(Ce , Ke)  (2 Ce P –1 P )  

    K0 (Ce , Ke)  [P  P –1 P   (Ke  P) 2 (Ke  P) P –1 P ] 

  = w0 (Ce , Ke)
  + Sp P 

 + Hp  [P  P –1 P   (Ke  P) 2 (Ke  P) P –1 P ] 

with the plastic stress tensor  

(2.111)  Sp  : =  – P –T Ce k0(Ce , Ke)  =  – P –T PT C P P –1 S P –T =  – C S P –T 

and plastic hyperstress tensor defined as  

(2.112)  Hp  : =  – K0 (Ce , Ke)  =  – P –1○ H . 

According to (2.110) the stress power goes into a change of the elastic reference energy and a 
dissipative part that is only active during yielding, and works on the rates  P and  P .  
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Flow and Hardening Rules 
 

For  the evolution of the internal plastic variables  P, P, Zp  evolution equations are needed, 
namely two flow rules 

(2.113)   P =  f (P, P, C, K, Zp , C
, K 

) 

(2.114)   P =  F (P, P, C, K, Zp , C
, K 

) 

and a hardening rule 

(2.115)   Zp
=  h (P, P, C, K, Zp , C

, K 
) 

all assumed to be in the form of rate-independent ODEs as customary in plasticity. This can be 
assured in the usual way by the introduction of a plastic consistency parameter    0 

(2.116)   P =   f (P, P, C, K , Zp , C, K) 

(2.117)   P =   F (P, P, C, K , Zp , C, K) 

(2.118)   Zp
=   h(P, P, C, K , Zp , C, K) 

where we normed the increments of the kinematical variables 

(2.119)   C : = C/   and   K  : = K / 

by a factor 

(2.120)     : =  (C2 + L2 K 2) 

which is (only) positive during yielding. The positive constant  L  with the dimension of a 
length is necessary for dimensional reasons and controls the ratio of yielding due to  C  and   
K .  

We introduced three functions  f , F , h, which give the directions of the flow and hardening, 
while the amount is finally determined by the consistency parameter. The consistency  
parameter is zero during elastic processes. During yielding it can be calculated by the yield 
condition (2.103) 

  0  =   (P, P, C, K , Zp)
  

  =  P    PP    P C    CK    K
Zp   Zp

 

by (2.116) - (2.118)  

(2.121)  =  P     f (P, P, C, K , Zp , C, K)P     F (P, P, C, K , Zp , C, K)

  C    CK   K
Zp     h(P, P, C, K , Zp , C, K)  

which gives the quotient 

(2.122)    =   [C    CK    K
] / 

  [P    f (P, P, C, K , Zp , C, K )P    F (P, P, C, Kp , Z , C, K )
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  Zp    h(P, P, C, K , Zp , C, K )] . 

Both, numerator and denominator of this ratio are always negative during yielding as a  
consequence of the loading condition (2.104), and, thus,    is positive in this case.  

If we substitute this value of    into (2.116) - (2.118), we obtain the consistent flow and  
hardening rules. In all cases (elastic and plastic), the KUHN-TUCKER condition   

(2.123)      =  0  with     0 and          0  

holds since at any time one of the two factors is zero. 

 

Example. von MISES plasticity extended 

As an example we use a generalization of the anisotropic v. MISES yield criterion27 in the 
stress space28 

(2.124)     (S, H)   =  ½ (S – SB) 
4

G (S – SB) + ½ (H – HB) 
6

G  (H – HB)  

+ (S – SB) 
5

G  (H – HB) – Y
 (Zp)

2 

with three material tensors 
4

G , 
5

G , and 
6

G  reflecting the symmetry of the material, two back 
stresses  SB  and  HB , and a scalar yield stress  Y , which may depend on a hardening variable 
controlling isotropic hardening. This yield criterion lives in the stress space. However, by the 
elastic laws (2.90) and (2.91) it can be transformed into the strain space. 

The associated flow rules are 

(2.125)   P  =   S   =   {
4

G  [S – SB] + 
5

G  [H – HB]} 

(2.126)   P   =   H   =   {
6

G  [H – HB] + [S – SB]
5

G }.  

 

                                                 
27 v. MISES (1928) 
28 see BERTRAM/ FOREST (2014) 
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2.3  Finite Gradient Thermoelasticity 
 

   This chapter is mainly based on 

Bertram, A.: Finite gradient elasticity and plasticity: a constitutive thermodynamical 
framework. Continuum Mech. Thermodyn., DOI 10.1007/s00161-015-0417-6  
(in press)29 

 

   GURTIN (1965) has once shown that non-local elastic materials (other than simple elastic 
materials) cannot exist because of a violation of the CLAUSIUS-DUHEM inequality.  
However, this surprising conclusion is due to an inadequate format, in which higher-order 
stress tensors are not taken into account.  

In the present work, we will show that for a more general format such materials can exist in a 
thermodynamical consistent form, and the second law gives the thermoelastic potentials and 
reasonable restrictions upon the yield and hardening rules in the case of plasticity.  

There are not many papers yet concerning the thermodynamics of gradient elasticity and  
plasticity like, e.g., POLIZZOTTO/ BORINO (1998), POLIZZOTTO (2003), (2011), 
HIRSCHBERGER/ STEINMANN (2009), GURTIN/ ANAND (2010), IEŞAN/ 
QUINTANILLA (2013) . In VÁN/ BEREZOVSKI/ PAPENFUSS (2013) a thermodynamic 
theory of weakly non-local continua is presented. It is specified for linear viscoelasticity and 
elasticity, an approach, however, that is rather different in assumptions and methodology from 
the present one.30 CLAYTON/ MCDOWELL/ BAMMANN (2006) suggest a thermodynamic 
theory for gradient and polar plasticity that works on different scales, which is, however,  
beyond the scope of the present paper.  

With respect to the mechanical properties we tried to find a format that is as wide as possible to 
cover essentially all kinds of gradient elasticity and unconstrained plasticity, isotropic or aniso-
tropic. With respect to the thermodynamics, however, we follow the traditional lines of  
FOURIER and CLAUSIUS and DUHEM without introducing any non-classical concepts like, 
e.g., CARDONA/ FOREST/ SIEVERT (1999) or FOREST/ AIFANTIS (2010) did.  

The step from a purely mechanical theory in the preceding chapter to thermodynamics follows 
the lines of BERTRAM/ KRAWIETZ (2012) for classical thermoplasticity, and BERTRAM/ 
FOREST (2014) for the geometrically linear gradient plasticity (see next chapter).  

This thermomechanical part of a gradient theory is organized as follows. After introducing the 
complete set of thermodynamical variables, we are able to define a general thermoelastic  
material of gradient type. This can be brought into a reduced form, thus allowing for the  
Principle of Invariance under Rigid Body Modifications. The CLAUSIUS-DUHEM inequality 
renders the potential relations for the stresses and the hyperstresses. After working out the 

                                                 
29 see also BERTRAM (2013) 
30 see also PAPENFUSS/ FOREST (2006) 
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transformations of the constitutive equations under a change of the reference placement, we are 
able to define the symmetry transformations for such material models.  

 

For a thermodynamical theory we introduce the following fields:  

   the specific internal energy  

Q  the heat supply per unit mass and time by irradiation and conduction 

q  the spatial heat flux per unit area in the current placement and unit time  

   forming one part of  Q 

 the absolute temperature  

g0 : =  Grad   the material temperature gradient   

 the specific entropy     

The material heat flux per unit time and per unit area in the reference placement is then 

(2.127)  q0  =  J F –1  qE . 

A change of the reference placement will yield due to (2.36) 

(2.128)   g0  =  AT  g0  =  AT  g0 

(2.129)   q0  =  JA A–1  q0  =  A–1  JA q0  

while the values of the scalar variables   ,  Q ,  ,   remain unaltered.  

As usual we can substitute the internal energy by the HELMHOLTZ free energy  

(2.130)  : =   –   .  

The first law of thermodynamics (energy balance) in the local form is assumed as 

(2.131)     Q + i  =  .  

The second law of thermodynamics is assumed in the form of the CLAUSIUS-DUHEM  
inequality 

(2.132)   i  –  –    – 
0

1

 
 q0  g0    0 .   

The last term in the inequality is the thermal dissipation, while the other three terms stand for 
the mechanical dissipation. 

The independent material variables of this theory are given by the thermo-kinematical  
processes which we denote as 

   {( ) , F( ), Grad F( ),  ( ) , grad  ( ) t
0 }  

where the time-variable    runs over a finite closed time-interval  [0 , t] . In the general case of 
inelastic gradient materials it is assumed that such a process out of a particular initial state  
determines (by means of a process functional) the caloro-dynamic state at its end consisting of 
the stresses, the heat flux, the internal energy, and the entropy  
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   {T(t), G(t), q(t),  (t),  (t)} . 

   Elasticity means that the current thermo-kinematical state already determines the current  
caloro-dynamic state, without any memory of the past process.  

Definition 2.6. A thermoelastic gradient material is given by thermoelastic laws 

   T  =  TE
 ( , F, Grad F,  , grad  )   

   G  =  GE ( , F, Grad F,  , grad  )   

(2.133)   q  =  qE( , F, Grad F,  , grad  )   

     =  E ( , F, Grad F,  , grad  )   

     =  E
 ( , F, Grad F,  , grad  )  

where all variables are taken at the same material point at the same instant of time. The suffix  
E  stands for elastic. 

This format fulfils the Principle of Equipresence as it is usually claimed for. 

   These constitutive equations can be further reduced by means of the Principle of Invariance 
under Rigid Body Modifications 31. As one can easily show, a reduced form for this set of  
constitutive equations is 

   S  =  k (C, K,  , g0)   

   H  =  K(C, K,  , g0)   

(2.134)   q0  =  q(C, K,  , g0)   

      =   (C, K,  , g0)   

     =   (C, K,  , g0) 

with  (C, K,  , g0)  Conf    R +  V 3, where exclusively material (or LAGRANGEan)  
variables have been used, which remain invariant under changes of observer and rigid body 
modifications.  

The HELMHOLTZ free energy is after (2.130) also a function of the reduced thermo-
kinematical state 

(2.135)   (C, K,  , g0)
=   (C, K,  , g0) –   (C, K,  , g0)

. 

We will next investigate the consequences of the second law of thermodynamics in the form of 
the CLAUSIUS-DUHEM inequality (2.132) for this class of elastic materials 

(2.136)  0    – 
0

1


 (½ S  C + H  K) + C 

  C  + K 
  K

 +     + g0 
   g0

   

   +    + 
0

1

 
q0  g0 

                                                 
31 see BERTRAM/ SVENDSEN (2001), and BERTRAM (2005), therein called PISM 
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  =  (C 
  – 

0

1

2
 S)  C + (K 

  – 
0

1


H)  K

 + (   + )   + g0 
   g0

   

  + 
0

1

 
 q0  g0 . 

This leads by standard arguments to the thermoelastic relations  

(2.137)   g0 
  =  o (independence of the free energy of the temperature gradient) 

(2.138)   k (C, K,  )  =  20 C 
    (potential for the stresses) 

(2.139)   K (C, K,  )  = 0 K 
    (potential for the hyperstresses)   

(2.140)     =  –     (potential for the elastic part of the entropy)   

(2.141)   0    q0  g0     (heat conduction inequality). 

Theorem 2.3. The CLAUSIUS-DUHEM inequality (2.132) is fulfilled for a thermoelastic  
gradient material during every thermo-kinematical process if and only if the following  
conditions hold. 

 The free energy does not depend on the temperature gradient. 

 The free energy is a potential for the stresses and the entropy after (2.138) - (2.140). 

 The heat conduction inequality (2.141) holds at every instant. 

Thus in elasticity, the complete material model is determined if we only know the two func-
tions  (C, K,  )  and  q(C, K,  , g0) . The mechanical dissipation is here zero, while the 
thermal dissipation alone must be non-negative.  
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Material Isomorphy and Symmetry 
 

We will next establish criteria to express the notion that two thermoelastic points consist of the 
same material. This is already the case if all the constitutive equations of the two points  
coincide. However, such a definition would be too restrictive, since we know that our variables 
depend on the choice of the reference placement. So we first have to admit an appropriate 
change of the reference placements, before we compare the constitutive equations. And since 
the mass density always influences the constitutive equations, we claim that the density in such 
reference placements must also be identical.  

This leads to the concept of material isomorphisms. The basic idea behind this concept is the 
following32. We consider two thermoelastic points as isomorphic if their thermoelastic behavior 
shows no measurable difference during arbitrary processes. As measurable quantities we  
consider the stresses (as a result of balance of moments), the heat flux, and the rate of the  
internal energy (as a result of the energy balance), while the entropy or the free energy are  
certainly not measurable.  

For thermoelastic materials the mechanical dissipation is zero 

(2.142)   0  =   πi –  –      =  πi –  +    =  – Q +    

using (2.130) - (2.131). If the heat supply  Q  and the temperature    are measurable quantities, 
then so is the rate of the entropy for thermoelastic materials. So the entropy of two isomorphic 
thermoelastic materials named  X  and  Y  can differ only by a constant, which can not be  
determined by any measurement, in principle, 

(2.143)   Y (CY , KY ,  )  =  X (CX , KX ,  ) + c .  

By integrating this with respect to the temperature, we obtain for the free energy after (2.140) 

(2.144)   Y (CY , KY ,  )  =  X (CX , KX ,  )  c  + c  

with another constant  c  . The internal energy is then by (2.130) 

(2.145)  Y (CY , KY ,  )  =  Y (CY , KY ,  ) +  Y (CX , KX ,  )   

  = X (CX , KX ,  ) +  X (CX , KX ,  )  + c    

  = X (CX , KX ,  ) + c . 

In the context of plasticity we will see that these constants play a rather important role.  

This leads to the following definition.  

Definition 2.7. Two thermoelastic points  X  and  Y  are called elastically isomorphic if we can 
find reference placements  X  for  X  and  Y  for  Y  such that the following two conditions 
hold. 

 In  X  and  Y  the mass densities are equal  

                                                 
32 see BERTRAM/ KRAWIETZ (2012) 
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(2.146)   0Y  =  0X . 

 With respect to  X  and  Y  the thermoelastic laws are related by  

(2.147)   Y (C, K,  )  =  X (C, K,  )  c  + c   (C, K,  )  Conf    R +    

(2.148)   qY (C, K,  , g0)   =   qX (C, K,  , g0)     (C, K,  , g0)  Conf    R +  V  3    

with two real constants  c  and  c .  

As a consequence of (2.138) - (2.140) this leads also to identities of the other constitutive  
equations 

(2.149)   kY (C, K,  )   =   kX (C, K,  ) 

(2.150)   KY (C, K,  )   =   KX (C, K,  )  

(2.151)   Y (C, K,  )   =   X (C, K,  )  + c  

(2.152)   Y (C, K,  )   =   X (C, K,  )  + c    (C, K,  )  Conf    R +. 

If two points are isomorphic in the above sense, one would consider them as consisting of the 
same material. In fact, the isomorphy condition induces an equivalence relation on all  
thermoelastic gradient materials, the fibers of which constitute the different materials. 

By arguments that have already been given for Theorem 2.1 in the mechanical case, one can 
then show that these conditions are equivalent to the following statement, which is much easier 
to handle than the one of the above definition.  

Theorem 2.4. Two thermoelastic points  X  and  Y  with thermoelastic laws  X , qX  and  Y , 
qY  with respect to arbitrary reference placements are elastically isomorphic if and only if there 
exist two tensors (P, P )  InvComb  and two real constants  c  and  c   such that 

  0X  =  0Y  det P   

(2.153)  Y (C, K,  )  =  X (P
T  C, PT ○ K + P,  )  c  + c 

  (det P) qY (C, K,  , g0)  =  P  qX (P
T  C, PT ○ K + P,  , PT  g0) 

hold for all  (C, K,  , g0)  Conf    R +  V  3  with  0X  and  0Y   being the mass densities in 
the reference placements of  X  and  Y , respectively. 

Thus,  the couple (P, P )  InvComb  together with the reals  c  and  c   determine the iso-
morphy transformation. If (2.153) hold, then we have also 

  det (P) kY (C, K,  )  =  P  kX (P
T  C, PT ○ K + P,  ) 

  det (P) KY (C, K,  )  =  P ○ KX (P
T  C, PT ○ K + P,  ) 

(2.154)  Y (C, K,  )  =  X (P
T  C, PT ○ K + P,  ) + c  

  Y (C, K,  )  =  X (P
T  C, PT ○ K + P,  ) + c  

for all (C, K,  )  Conf    R +. 
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If we particularize the concept of isomorphy to identical points  X  Y , it defines automorphy 
or symmetry. In this case, we use only one reference placement. Therefore, the isomorphism  
P  must be unimodular, and the two constants in the free energy and the entropy can be omitted.  

Definition 2.8. For a thermoelastic gradient material with material laws    and  q , a sym-
metry transformation is a pair  (A, A)  UnimComb  such that 

(2.155)    (C, K,  )  =   (A
T  C, AT ○ K + A,  )  

  q (C, K,  , g0)  =  A  q (A
T  C, AT ○ K + A,  , AT  g0) 

for all  (C, K,  , g0)  Conf    R +  V  3 . 

As a consequence of (2.154) this leads to the symmetry transformations of the other  
constitutive equations 

  k (C, K,  )  =  A  k (A
T  C, AT ○ K + A,  )  

(2.156)  K (C, K,  )  =  A ○ K (A
T  C, AT ○ K + A,  )   

   (C, K,  )  =    (A
T  C, AT ○ K + A,  ) 

   (C, K,  )  =    (A
T  C, AT ○ K + A,  )  (C, K,  )  Conf    R +. 

The set of all such symmetry transformations  (A, A)  UnimComb  represents the symmetry 
group of the material.  

   This group is used to define isotropy or anisotropy. If the symmetry group is a subgroup of  
OrthComb  in the first entry and zero in the second, (Q, O), these transformations can be  
interpreted as rigid rotations, and we call the respective reference placement an undistorted 
state. If a material allows for such undistorted states, it is a solid. If it contains all orthogonal 
dyadics in the first entry, then the material is called isotropic. These definitions apply not only 
to gradient thermoelasticity, but also to any inelastic gradient material in an analogous way.   

   In all of these cases of orthogonal symmetry transformations, we obtain with respect to un-
distorted states using (2.44) 

  A  k (C, K,  )  =  k (A  C, A  K , A   )  

  A  K (C, K,  )  =  K(A  C, A  K , A   )   

(2.157)  A  q (C, K,  , g0)  =  q (A  C, A  K , A   , A  g0) 

  A   (C, K,  )  =    (A  C, A  K , A   ) 

  A   (C, K,  )  =   (A  C, A  K , A   ) 

  A   (C, K,  )  =   (A  C, A  K , A   )  

for all  (C, K,  , g0)  Conf    R +  V  3 . Thus, for an isotropic material in an undistorted state, 
the elastic laws are isotropic tensor functions. 
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2.4  Finite Gradient Thermoplasticity 
 

   After having provided the thermoelastic theory, we are able to consider plasticity, starting 
with the concept of thermoelastic ranges. After the assumption that the (measurable) thermo-
elastic behavior is not altered by plastic yielding, we can introduce plastic variables in a natural 
way. It turns out that both a multiplicative and an additive split of the strain variables is  
obtained. The exploitation of the CLAUSIUS-DUHEM inequality leads to necessary and  
sufficient conditions for thermodynamical consistency. A residual dissipation inequality  
restricts the flow and hardening rules in connection with the yield condition. Finally, we can 
derive a rate-equation for the temperature evolution due to elastic and plastic deformations.  
The entire section is restricted to rate-independent behavior.  And it is a second-order theory; 
higher-order gradients are not included. 

   For this class of materials, the concept of elastic ranges plays a fundamental role.  

Definition 2.9. A (thermo)elastic range is a triple  {Ep , p , qp}  consisting of 

1) a non-empty and path-connected submanifold with boundary  

   Ep     Conf      R +  V  3    

of the space of the thermo-kinematical variables,  

2) and thermoelastic laws  p , qp   that give for all thermo-kinematical processes out of some 
initial state 

  {C( ), K( ),  ( ), g0( )
0

t
t } ,  

which remain at all times in  Ep , the caloro-dynamic state by thermoelastic laws 

   (t) =p(C(t), K(t),  (t)) 

(2.158)   q0(t)  =  qp(C(t), K(t),  (t), g0(t))   

and, consequently, 

   S(t)  =  20 C 
 p(C(t), K(t),  (t))   

(2.159)   H(t)  =  0 K 
p(C(t), K(t),  (t))   

   (t)  =  p(C(t), K(t),  (t)) –   p(C(t), K(t),  (t))  

   (t)  =  –  p(C(t), K(t),  (t)) . 

We assume further on that these functions are continuous and continuously differentiable on  
Ep

 , and as such extendible to  Conf     R +  V  3 .  

Two assumptions are needed to specify elastoplastic behavior. 
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Assumption 2.3. At the end of each thermo-kinematical process {C( ), K( ),  ( ), g0( ) 
0

t
t } 

of a thermoelastoplastic material point, there exists a thermoelastic range such that 

 the terminate value of the process is contained in it 

   {C(t ), K(t ),  (t ), g0(t
 )} Ep   

 and the caloro-dynamic state is determined by its thermoelastic laws (2.158) and (2.159), 
the same as for any continuation of this process that remains in  Ep  at all times. 

For many materials it is a microphysically and experimentally well-substantiated fact that  
during yielding the elastic behavior hardly alters even under very large deformations, which 
will certainly not be the case for porous media, for foams, under damage, etc., but holds for 
most solid metals. This assumption reduces the effort for the identification tremendously, since 
otherwise one would have to identify the elastic constants at each step of the plastic defor-
mation anew. We now give this assumption a precise form.  

Assumption 2.4. The thermoelastic laws of all elastic ranges are isomorphic. 

Note that this assumption only refers to the thermoelastic laws associated to the elastic range, 
and not to the set  Ep  itself. So nothing is said here with respect to changes of the latter due to 
hardening or softening or the like. 

   If all elastic laws belonging to different elastic ranges are mutually isomorphic, then they all 
are isomorphic to some appropriately chosen elastic reference laws  q0 , 0 . While the current 
elastic laws  qp  and  p  vary with time during yielding, these reference laws can always be 
chosen as constant in time. We express this useful fact in the following theorem using Theorem 
2.4. 

Theorem 2.5. Let  0  and  q0  be the elastic reference laws for an elasto-plastic gradient  
material. Then for each elastic range  {Ep , p , qp}  there are two tensors  (P, P ) UnimComb  
and two real constants  c  and  c   such that 

(2.160)   p(C, K,  )  =  0(P
T  C, PT ○ K + P,  ) + c –

  c 

   qp(C, K,  , g0)  =  P  q0(P
T  C, PT ○ K + P,  , PT  g0) 

hold for all  (C, K, , g0)  Conf     R +  V  3 .   

In our theory, the two tensors (P, P ) UnimComb  and the two real constants  c  and  c  play 
the role of (plastic) internal variables. They do not have the interpretation of (plastic) defor-
mations, but instead of (plastic) transformations.  

Note that the additive constants  c  and  c  can not depend on the current thermo-kinematical 
variables  C , K,  , and  g0  after the above Assumption 2.4. 

We introduce the following abbreviations  

    Ce  : =  PT C P  =  PT  C   

(2.161)   Ke
  : =  PT ○ K + P

   ge : =  PT g0  =  PT  g0
 . 
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The time derivatives of these elastic variables will later be needed. They are 

(2.162)   Ce
=  PT  C + 2 sym(Ce P –1 P) 

where  sym  stands for the symmetric part of a dyadic, and  

(2.163)  Ke
  =  PT ○ K  + P  P –1 P  (Ke  P) 2 subsym [(Ke  P) P –1 P]

where  subsym  stands for the symmetric part of a triadic with respect to the right subsymmetry.  

As consequences of (2.138) - (2.140) we obtain the isomorphic forms for all constitutive  
equations  

     =  0(Ce , Ke ,  ) + c –
  c 

   S  =  P  20 Ce 
0(Ce , Ke ,  )   

(2.164)   H  =  P ○ 0 Ke 
0(Ce , Ke ,  ) 

     = 0(Ce , Ke ,  ) + c   

   q0  =  P  q0(Ce , Ke ,  , ge) 

     =  0(Ce , Ke ,  ) + c   

with    0(Ce , Ke ,  ) : =  –  0(Ce , Ke ,  )    

and   0(Ce , Ke ,  ) : =  0(Ce , Ke ,  )  –   0(Ce , Ke ,  ) . 
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Yielding and Hardening 
 

The boundary  Ep  of some elastic range  Ep  is called yield limit or yield surface of the  
thermo-elastic range.  

However, there is no material known for which the yield limit depends on the temperature  
gradient, so that  Ep  is assumed to be trivial in its last component  V  3 . In the sequel we will 
suppress this last component of Ep  , so that  Ep  is considered as a subset of only  Conf     R +. 
In order to practically describe such subsets we introduce the yield criterion as an indicator 
function. More precisely, a yield criterion associated with some thermoelastic range is a  
mapping 

    p  :  Conf     R +    R        {C, K,  }    p(C, K,  )  

the kernel of which forms the yield surface 

(2.165)   p(C, K,  )  =  0       {C, K,  }  Ep . 

We refer to the equation (2.165) as the yield condition. For the distinction of states in the  
interior  Ep

o  and beyond the thermo-elastic range, we demand 

(2.166)   p(C, K,  )  < 0      (C, K,  )  Ep
o. 

The loading condition is 

(2.167)   p(C, K,  )  =  Cp  C  + K p  K  +  p    >  0 . 

Note that we defined the elastic ranges in the space of the independent variables, so that the 
yield criterion is expressed in terms of thermo-kinematical variables. If one prefers a descrip-
tion in the stress space, one can easily use the elastic laws (2.164) to transform them into the 
space of the caloro-dynamic variables.  

Such a yield criterion is associated with a particular elastic range. A yield criterion can be 
found for every elastic range, but it is by no means unique. The differentiability my not be  
given for singular points like vertices of the yield surface. However, we will only refer to 
smooth yield surfaces in the rest of the text, for simplicity.  

   Up to now we only considered a yield criterion for one specific elastic range. We will next try 
to generalize this concept to all the other potential elastic ranges of the same material point. For 
the general yield criterion of all elastic ranges we use the ansatz   (C, K,  , P, P, Zp)  with 
hardening variables  Zp  assumed to be differentiable in all arguments so that 

(2.168)   p(C, K,  )  =   (C, K,  , P, P, Zp)  

holds.  Zp  is a tensor of arbitrary order or even a vector of such tensors. For convenience, we 
notated it as a dyadic. The general form of the yield condition is then 

(2.169)    (C, K,  , P, P, Zp)  =  0    

and the loading condition 

(2.170)    C   C  + K   K 
 +      > 0 , 

which is not the complete time-derivative of   . 
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For the rate-independent flow and hardening rules we make the following ansatz 

   P =   p (C, K,  , g0 , P, P, Zp , C, K ,  ) 

(2.171)   P =   P (C, K,  , g0 , P, P, Zp , C, K ,  ) 

   Zp
=   h (C, K,  , g0 , P, P, Zp , C, K ,  ) 

with the increments of the thermo-kinematical variables 

(2.172)   C : = 
 C

/    K  : = K /    : =   /  

normed by a positive factor   

(2.173)     : = (C2  + L2K 2  + 2/0
2) 

with respect to a freely chosen reference temperature  0 , and a parameter  L  of dimension 
"length". The consistency parameter    is assumed to have a switcher, which sets its values to 
zero if not both the yield criterion and the loading condition are simultaneously fulfilled. We 
introduce the abbreviations for the yield directions and for the hardening direction 

   P  : =  P /  =  p (C, K,  , g0 , P, P, Zp , C, K ,  ) 

(2.174)   P   : =  P  /  =  P (C, K,  , g0 , P, P, Zp , C, K ,  ) 

   Zp  : =  Zp
 /  =  h (C, K,  , g0 , P, P, Zp , C, K ,  ) . 

As the yield condition must permanently hold during yielding, we obtain the consistency  
condition 

       0  =   (C, K,  , P, P, Zp)
   

(2.175)  =   C    C + K   K 
 +     + P   P + P   P  + Zp   Zp

 

  =   C    C + K   K 
 +     + P    P + P   P  + Zp    Zp 

which allows us to determine the consistency parameter as the quotient 

(2.176)       (C, K,  , g0 , P, P, Zp, C
, K 

,  )   

  =   (C   C + K   K 
 +    ) / (P   P + P   P  + Zp   Zp) . 

Due to the loading condition (2.170),    is positive during yielding. If we substitute     into the 
rules (2.171), we obtain the consistent yield and hardening rules as rate forms for the internal 
variables. Because of the switcher in    these are incrementally nonlinear, which is typical for 
elastoplasticity. However, for cases of yielding,   is linear in the increments  C , K 

,  , 
which assures rate-independence. The KUHN-TUCKER conditions hold 

(2.177)      =  0  with     0 and          0  

since at any time one of the two factors is zero. 
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Thermodynamic Consistency 
 

The additive constants in the free energy and in the entropy  c  and  c  must remain constant 
during elastic processes because of the assumption of isomorphic thermo-elastic ranges, and 
thus cannot depend on  C, K, , or g0 . They can only depend on those state variables that are 
constant during elastic processes, namely  P, P, and Zp .  Consequently, after (2.164) we obtain 

     =  0(Ce , Ke ,  ) + c(P, P, Zp) –
  c(P, P, Zp) 

(2.178)     =  0(Ce , Ke ,  ) + c(P, P, Zp) 

     =  0(Ce , Ke ,  ) + c(P, P, Zp) . 

In the literature, an additive split of the free energy into elastic and plastic parts is often  
assumed33. In the present context this is a consequence of the isomorphy assumption 2.4. Note 
that the plastic parts of the internal energy and the entropy cannot depend on the temperature, 
while the plastic part of the free energy  

(2.179)   c(P, P, , Zp)  : =  c(P, P, Zp) –  c(P, P, Zp) 

is linear in the temperature.   

The material time-derivative of the free energy (2.178.1) is  

(2.180)     =  Ce
 0  Ce

 + Ke
0  Ke

 +  0     

   + (P c –
  P c)  P + (P c –

  P c)  P   

   + (Zp c –
  Zp c)  Zp

  –   c .  

Without physical effect in the present setting, we assume the symmetry of  Ce
0  and the right 

subsymmetry of  Ke
0 . By use of the rules (0.13) and (0.17) and of (2.162), (2.163), we  

continue   

 (2.181)    =  (P  Ce 
0)  C + (P ○ Ke 

0)  K  + ( 0
  – c)     

   + Ce 
0  (2 Ce P

 –1 P)  

   + Ke 
0  [P  P –1 P   (Ke  P) 2 (Ke  P) P –1 P ] 

   + (P c –
  P c)  P + (P c –

  P c)  P  + (Zp c –
  Zp c)  Zp

. 

We substitute this and the stress power density (2.24) into the CLAUSIUS-DUHEM inequality 
(2.132) using (2.160), (2.161), (2.178) and (2.179)  

(2.182)   0    [ 
0

1

2
 S + P  Ce

0]  C + [ 
0

1


 H+ P ○ Ke

0]  K   

   + [ 0
 +0]    + 

0

1

 
q0  g0  

                                                 
33 see, e.g.,  EKH et al. (2007) 
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   + Ce
0  (2 Ce P –1 P)  

   + Ke
0  [ P –1 P   (Ke  P) 2 (Ke  P) P –1 P ] 

   + P c  P + (P c + Ke 
0)  P  + Zp c  Zp

. 

If we exploit this inequality first for cases without yielding (P  0, P   0, Zp
  0), it leads 

again to the thermoelastic relations  (2.138) - (2.141) in the form  

(2.183)   S  =  P
  20 Ce 

0    (potential for the stresses) 

(2.184)   H  =  P ○ 0 Ke 
0    (potential for the hyperstresses)   

(2.185)   0
  =  –  0   (potential for the elastic part of the entropy)   

(2.186)   0    q0  g0     (heat conduction inequality). 

In the case of yielding, the above findings must still hold because of continuity. Additionally, 
we obtain the residual dissipation inequality 

   0    Ce
0  (2 Ce P –1 P )  

(2.187)   + Ke 
0  [ P –1 P    (Ke  P) 2 (Ke  P) P –1 P ]  

   + P c  P + (P c + Ke 
0)  P  + Zp c  Zp

 

or with a positive    with (2.174)  

   0    (2 P –T Ce Ce
0 + P c)  P  

(2.188)   + Ke 
0  [2 (Ke  P) P –1 P P –1 P  (Ke  P)]  

   + (Ke 
0 + P c)  P  + Zp c  Zp 

posing a restriction on the flow rules and the hardening rule (2.171). Note that not each of these 
terms has to be negative, but only the sum of them. Thus, yield against the stresses is not  
excluded by the second law34.  

We state these findings in the following 

Theorem 2.6. The CLAUSIUS-DUHEM inequality (2.132) is fulfilled for a thermoelastoplastic 
gradient material during every thermo-kinematical process if and only if the free energy does 
not depend on the temperature gradient, and the conditions (2.183) - (2.186) and the residual 
inequality (2.188) hold. 

The first conditions are familiar from thermo-elasticity. They must hold for the thermo-elastic 
reference laws, and are then automatically valid for all isomorphic laws, including the current 
ones. 

The specific stress power (2.24) becomes with the potentials (2.183) - (2.185) and (2.162) - 
(2.163) 

   i  =  Ce 
0(Ce , Ke ,  )  (Ce

Ce P –1 P )  

                                                 
34 see the example in BERTRAM/ KRAWIETZ (2012) and BERTRAM/ FOREST (2014). 
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(2.189)   + Ke 
0(Ce , Ke ,  ) [Ke

  P + P –1P   (Ke  P) 2 (Ke  P) P –1 P ] 

   =  0(Ce , Ke ,  ) +  0(Ce, Ke ,  )  + Sp P   

   + Hp  [P  P –1 P   (Ke  P) 2 (Ke  P) P –1 P ]  

with the plastic stress and plastic hyperstress tensor defined as 

(2.190)   Sp  : =   P –T Ce Ce 
0(Ce, Ke ,  )  =   

0

1

2
C S P –T  

   Hp  : =   Ke 
0(Ce, Ke ,  )  =   P –1 ○ 

0

1


H . 

using (2.161), (2.183) and (2.184). Accordingly, the stress power is split into a part that is 
stored in the reference elastic free energy, and a dissipative part which works on the rates of the 
plastic transformations  P and  P being linear in these rates), and is only active during 
yielding. 
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Temperature Changes 
 

In order to determine the change of the temperature of the material point under consideration, 
we use the local form of the first law of thermodynamics with the heat supply  Q , which results 
from irradiation and conduction. We substitute the internal energy (2.178) and the stress power 
(2.189) into the energy balance (2.131) 

(2.191)   Q  =  0(Ce , Ke ,  ) + c(P, P, Zp)
  

 0(Ce , Ke ,  ) 
   0(Ce , Ke ,  )   Sp P  

  Hp  [P  P –1 P   (Ke  P) 2 (Ke  P) P –1 P ] . 

y using (2.130) for the elastic parts we get 

(2.192)   Q  =    0(Ce , Ke ,  ) + c(P, P, Zp)
  

     Sp P   Hp  [P  P –1 P   (Ke  P) 2 (Ke  P) P –1 P ] . 

This can be split into a thermoelastic heat generation 

(2.193)   Qe  : =   0(Ce , Ke ,  ) 
 

=  –   (R  Ce
 + R  Ke

) + c    

with the abbreviations for 

 the specific heat       c (Ce , Ke ,  )  : =    0 

 the 2nd-order stress-temperature tensor   R(Ce , Ke ,  )  : =  – Ce
0 

 the 3rd-order stress-temperature tensor   R(Ce , Ke ,  )  : =  – Ke 
0 , 

and a plastic heat generation 

(2.194)   Qp  : =  c(P, P, Zp)
  Sp P  

 Hp  [P  P –1 P   (Ke  P) 2 (Ke  P) P –1 P ] . 

This can be solved for the temperature change 

(2.195)      =  
1

c
{Q +   R  Ce

 +   R  Ke
  c(P, P, Zp)

 

  + Sp P  + Hp  [P  P –1 P   (Ke  P) 2 (Ke  P) P –1 P ]} . 

By this equation, we can integrate the temperature along the process and so determine the final 
temperature after some arbitrary elasto-plastic process. Accordingly, temperature changes are 
caused by 

 the heat supply  Q  from the outside; 

 thermoelastic transformations due to the second and third term in (2.195); 

 the heat  Qp  generated by plastic yielding and hardening, which can be determined by 
use of the flow and hardening rules (2.171).  
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3.  N th-order Gradient Materials 
 

   This chapter extends the results from  

Bertram, A.; S. Forest: The thermodynamics of gradient elastoplasticity. Continuum 
Mech. Thermodyn. 26, 269-286 (2014) 

where only first and second gradients are taken into account, to higher-order continua within 
the linear theory for small deformations. 

In doing so, we generalize the approach of BERTRAM/ KRAWIETZ (2012) to such gradient 
materials. Within the frame of plasticity, we decompose the deformation tensor and the  
gradient of the deformation tensor into its elastic and its plastic parts. The theory is based on 
the usual assumption of identical thermoelastic behavior in all elastic ranges which means that 
all measurable thermoelastic properties are not affected by plastic deformations. This concept 
has been introduced by BERTRAM (1998, 2005) in the context of large deformations. In the 
present work, however, we limit ourselves to small deformations for the sake of simplicity and 
clearness.  

   This chapter is organized as follows. We start with providing appropriate notations and  
variables for such a theory. Then we consider the linear theory of a mechanical gradient elasto-
plasticity. This format will afterwards be extended to a thermodynamical theory of elasto-
plasticity. There the consequences of the second law of thermodynamics are worked out.   

   We start with the kinematics of small deformations. For an Nth-order gradient material the 
following set of kinematical variables will be included as higher gradients of the displacement 
field  u 

(3.1)   
 i
U  : =  grad i u  =  u   i  =  u    ...    (i-times)   

for  i  =  1, 2, ..., N , which forms a tensor field of order i +1. Within the format of small defor-
mations, we do not have to distinguish between the spatial and the material nablas.  

All these tensors are subsymmetric with respect to all entries except the first, like, e.g.,  

Uijk = Uikj  and  Uijkl = Uikjl = Uijlk , etc.  For  i    1 we have  
 1

U   grad  u = H , i. e., the  
displacement gradient from the classical theory. Due to the postulated invariance of the  
material response under rigid rotations, only the symmetric part of this tensor can enter  

constitutive laws. This leads to the classical linear strain tensor  E , so that we identify  
 1

U    E.  

   In order to facilitate the notation, we introduce the following hyper-vector of tensors 

(3.2)   U  : =  {
 1

U , 
 2

U , ... , 
 N

U } . 

We extend the scalar product on tensor spaces of different order to our hyper-vectors in the 

following way. For two hyper-vectors  U : =  {
 1

U , 
 2

U , ... , 
 N

U }  and  N : =  {
 1

N , 
 2

N , ... , 
 N

N }  
the scalar product is defined as 
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(3.3)   < U , N >  : =  
 1

U 
 1

N  + 
 2

U 
 2

N + ... + 
 N

U 
 N

N  

where  ""  stands for N+1 contractions.  

The tensors  
 i
U  have the following number of independent variables 

 for  i    1 6 as symmetric dyadics 

 for  i    2 18 as triadics with right subsymmetry 

 for  i    3 54 as tetradics with two right subsymmetries 

 for  i   2  3i 

so that the hyper-vector  U  has 

(3.4)   6 + 18 + ... + 2  3N  = 2  
N

i=1
3i 

independent variables. 

Dual to this kinematical set  U , we introduce the power conjugate hyperstresses 

(3.5)   T  : =  {
 1

T , 
 2

T , ... , 
 N

T }  =  { T , 
 2

T , ... , 
 N

T } 

with the usual (symmetric) CAUCHY stress tensor  T as its first component, such that the 
stress power density becomes 

(3.6)   i    =  < T , U    =  
 1

T   
 1

U  + 
 2

T  
 2

U + ... + 
 N

T ...
 N

U . 

The first term on the right-hand side stands for the classical stress power of simple materials 

(3.7)   
 1

T   
 1

U =  T  E
 

At any instant, the mechanical balance laws have to be fulfilled after Theorem 1.21, namely 

 the balance of linear momentum    

(3.8)   div 
 1

T   div2 
 2

T  + div3 
 3

T  ... + (1)N+1 div N 
 N

T  +  b  =   u

 the balance of angular momentum 

(3.9)    T  =  TT.   

The latter condition will be satisfied by appropriate constitutive equations.  

The boundary conditions for higher gradient materials are less simple. For N  1 we have the 
classical displacement or traction boundary conditions (CAUCHY 1823). For N  2 we have 
displacement or traction boundary conditions after (1.142)  and (1.143)  (TOUPIN 1962). For N 
 3 we have displacement or traction boundary conditions (1.168) - (1.170) after MINDLIN 
(1962, eq. 18).  
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3.1   Linear N th-order Gradient Elasticity 
 

   The mechanical theory of gradient elasticity is constituted by a linear dependence between T 

andU  which we denote as 

(3.10)   T  =  C [U ] 

with a linear operator  C .  

This elastic law contains all possible linear combinations between all 
i

U  and all 
j

T  and is, thus, 
in general highly coupled.  

The material is called hyperelastic, if an elastic energy density  w(U )  exists such that 

(3.11)   i   =  w(U ) 

holds for all states of the material point. This leads to the potential relation for the hyperstresses 

(3.12)    T  =  U w(U ) .   

In our linear theory, the elastic energy is given as a square form of the strain vector which we 
denote as 

(3.13)   w(U)  =  ½ C [U , U ] 

again leading to the linear elastic law (3.10) by means of (3.12). Here 

(3.14)   C =  2
U w(U )  

is the elastic operator. One can bring this operator in the following notation. Let 
 i,k

C  be a tensor 
of order (i+k+2) which defines a bilinear form 

(3.15)   
 i,k

C [
 i
U , 

 k

U ] . 

Then one can organize  C  in an N x N  quadratic hyper-matrix, the (i , k)-th element of which 

is such 
 i,k

C . This hyper-matrix has the major symmetry if for all i , k = 1 , ... , N 

 (3.16)   
 i,k

C [
 i
U , 

 k

K ]  =  
 k,i

C [
 k

K ,
 i
U ] 

holds for all tensors  

 i
U , 

 k

K  of order i+1 and k+1, respectively.  

By standard arguments the symmetry of the elastic operator is a necessary and sufficient  
integrability condition of the elastic law (3.10) to the energy (3.13). 

The number of independent variables of a symmetric  C  can be calculated after 

(3.17)   (M 2 + M) / 2   with  M  : = 2  
N

i=1
3 i. 

This gives  



Compendium on Gradient Materials  2016                                                               109 
 

 

 for  N    1 21 

 for  N    2 300 

 for  N    3 3,081 

independent elastic constants. 

 

Elastic Symmetry 
 
   The number of independent elastic constants can be further reduced by exploiting material 
symmetries of the elastic behavior. Since we are dealing here only with solids, we can restrict 
our considerations to orthogonal symmetry transformations, i. e., to rotations and reflections.  

Let  u(x)  be an arbitrary displacement field of the body. Elasticity is time-independent, so that 
we do not have to take the time-dependence of the displacements into account here. Further, let  
Q  be some orthogonal tensor. We now create a second displacement field in the body region 

(3.18)   u(x)  : =  Q  u(x)     with  x : = Q  x , 

which is simply the result of a rotation of the field  u(x)  by  Q  around the origin.  

After the chain rule, we obtain for the displacement gradient for the rotated displacement field  

(3.19)   H  =  grad  u  =  x u  =  u u  x u  x x   

=  Q  H  QT  =  Q  H . 

The same rotation applies also to its symmetric part 

(3.20)   E  =  Q  E 

and to all higher gradients 

(3.21)   
 i
U   =  Q  

 i
U . 

This gives rise to the following rotation for hyper-vectors 

(3.22)   U  =  Q  U    
 i
U   =  Q  

 i
U  for all i = 1, ... , N . 

Note that we achieve   ( Q)  
 i
U =  Q  

 i
U  for odd  i , and   ( Q)  

 i
U =   (Q  

 i
U )  for even  

i. So it matters whether the orthogonal tensor  Q  is proper or improper. 

An analogous rotation will now be applied to the corresponding stress fields, namely 

(3.23)   T  =  Q  T  QT  =  Q  T 

for the second-order stress tensors,  
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(3.24)   
 i
T   =  Q  

 i
T  

for the i-th hyperstress tensor, and 

(3.25)   T  =  Q  T  

for the hyper-vector of the stresses. 

This leads to the following 

Definition. An orthogonal tensor  Q  is called a symmetry transformation of the linear elastic 
law (3.10) if 

(3.26)  Q  (C [U ])  = C [Q  U ] 

holds for all deformations  U . The set of all symmetry transformations of  C  is called the 
symmetry group  G   of the material. 

Obviously, the set  G  fulfills the axioms of a group under composition in an algebraic sense, 
which justifies the name symmetry group.  

It is easy to see that the symmetry condition (3.26) is equivalent to the following one 

(3.27)   Q  C  =  C  

which again implies a rotational invariance of all stiffness components.  

We call the elastic law centro-symmetric, if  G  contains the negative identity   I . As a con-
sequence of the group axioms, we would then also have 

(3.28)   Q  G        Q  G . 

This transformation gives 

(3.29)    ( I)  
 i
U  =  ( 1)i+1

 i
U   

i.e., it changes the sign for odd-order tensors, while it is the identity on even-order tensors. This 

is why the coupling parts 
 i,k

C  disappear in the centro-symmetric case if  i + k  is odd.  

One calls the elastic law isotropic if the symmetry group contains all proper orthogonal  
tensors. The classical definitions of all the other symmetry classes for solid crystals35 can now 
be applied in a strictly analogous way.  

 

                                                 
35 see, e.g., BERTRAM/ GLÜGE (2015) 
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3.2   N th-order Gradient Elastoplasticity 
 

   The mechanical theory of gradient plasticity consists of the following ingredients. 

 1.) an additive decomposition of all higher gradients   

(3.30)    
 i
U   =  

 i
U e

 + 
 i
U p  

which gives rise to a decomposition of the hyper-vector 

(3.31)    U  =  Ue
 + Up 

in a straightforward way. For all parts, elastic and plastic ones, we assume the same symmetry 

properties as we previously did for  
 i
U   itself.  

   It depends on the specific approach whether all  
 i
U p  are considered as independent of each 

other (unconstrained gradient plasticity) or, alternatively, as  
 i
U p =  grad

 i-1

U p  in analogy to 
(3.1) (constrained gradient plasticity). Since the first case seems to be more general, we will 
consider the unconstrained case in what follows, and only eventually mention the constrained 
one. 

2.) an elastic energy taken as a square form of the elastic strain vector  

(3.32)    w(Ue)  =  ½ C [Ue , Ue] 

leading to the elastic law 

(3.33)    T  =  C [Ue] 

by use of a linear elasticity operator  C  reflecting the material symmetry properties  
(anisotropies) of the elastic behavior.  

The underlying assumption of this law is that the stresses depend only on the elastic variables 
and are unaffected by plastic deformations. 

3.) a yield criterion, which indicates the limit of the current elastic range. The  
general ansatz for the yield criterion in the strain space is  

(3.34)     (Ue , Up , Zp)  

where  Zp  is the vector of additional scalar or tensorial internal variables such as hardening 
variables. In what follows we will also denote it as a hyper-vector thus leaving enough space to 
implement different hardening variables and mechanisms. Eventually a scalar-product in the 
space of the hardening variables is applied. We notate it again in the same way as for the other 
hyper-vectors. The index  p  tells us that this variable can only evolve during yielding.   

The yield limit is the kernel of this function 

(3.35)     (Ue , Up , Zp)  =  0 

(yield condition), while we assume  
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(3.36)     (Ue , Up , Zp) < 0   

(only) in the interior of the elastic range.  

One can always transform the yield criterion from the strain space into the stress space by using 
the elastic law (3.33).  

Necessary and sufficient conditions for the material to yield are the yield condition (3.35) and 
the loading condition 

(3.37)    < Ue  , U    > 0  

which states a violation of the yield criterion if the total deformation increments would be  
purely elastic.  

This presentation is limited to rate-independent plasticity, but viscoplasticity can be introduced 
in a straightforward manner into the model. 

4.) a flow rule which determines the evolution of  Up . A general rate-independent  
unconstrained ansatz for it would be a first-order ODE depending on practically all variables 
and the rate of the total deformation 

(3.38)   Up
  =  U(Up , Ue , Zp

 , U ) . 

Since we want to consider an unconstraint gradient plasticity, the evolution laws for the  
different components of the hyper-vector  Up  can be chosen independently of each other.  

5.) an evolution equation for the additional variable(s)  Zp  called hardening rule, which is 
assumed to be of the same form as the flow rule above 

(3.39)   Zp
  =  Z(Up , Ue , Zp

 , U ) . 

These constitutive laws establish a complete mechanical rate-independent format for a gradient 
elasto-plasticity.  

 We now specify the ansatz for the rate-independent evolution (3.38) and (3.39) for the plastic 
variables, namely the flow and the hardening rules in the following form 

(3.40)    Up
  =   U(Up , Ue , Zp

 ) 

(3.41)    Zp
  =   Z(Up , Ue , Zp

 ) 

with a joint plastic consistency parameter    and two functions  U  and  Z   of the listed  
arguments (by an abuse of notation we use the same symbols for the functions as before).  

  is introduced as zero if and only if no yielding occurs, i.e., during elastic events. During 
yielding, however,    is positive. In all cases the KUHN-TUCKER conditions hold in the form 

(3.42)      = 0  with     0       and          0 . 

The plastic parameter can be determined during yielding by the consistency condition as a 
consequence of the yield condition (3.35) 

(3.43)        0  =  < Ue  , U   + < Up  ,  U(Up , Ue , Zp
 ) > + < Zp  ,  Z(Up , Ue , Zp

 ) > 

which can be solved for the plastic parameter 
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(3.44)       =   < Ue  , U  / [< Up  , U(Up , Ue , Zp
 ) > + < Zp  , Z(Up , Ue , Zp

 ) >] .        

Due to the loading condition (3.37),    must be positive during plastic events. After (3.42),    
alone is positive, and so    must also be positive. After (3.44) this is a restriction to the flow 
rule  U , the hardening rule  Z ,   and the yield criterion   .  
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3.3  N th-order Gradient Thermo-Elastoplasticity  

 

We use the energy balance (first law of thermodynamics) in the local form 

(3.45)         =   Q + <T , U  > . 

with the stress power density  <T , U  >  after (3.6) and the heat supply per unit mass and time  
Q , which results from irradiation  r  and conduction  q  in the usual form 

(3.46)       Q  =  r  –  (div q) / . 

By the introduction of the HELMHOLTZ free energy 

(3.47)     : =    –   

we assume as the second law the CLAUSIUS-DUHEM inequality in the form 

(3.48)   
1


 <T , U  >        

  
1


q  g    0 . 

Thus, the specific dissipation, which consists  of the mechanical dissipation 

(3.49)   m  : =  
1


<T , U  >  –    –    

  =  θ η    Q  

by using (3.45) and (3.47), and the thermal dissipation 

(3.50)   th  : =   – 
1


q  g 

fulfill the dissipation inequality 

(3.51)     =  m + th    0 .  

   In order to enlarge the mechanical plasticity theory to a thermo-mechanical one, we add the 
temperature and the temperature gradient to the list of independent variables called thermo-
kinematical variables, and the heat flux, the entropy, and the internal energy or the free energy 
to the dependent variables called caloro-dynamic variables.  

   Thermoplastic materials can be understood as material models with internal variables. The 
set of the internal variables contains in the case of plasticity the plastic strains and, eventually, 
hardening variables. For all of these variables we assume rate-independent evolution equations 
in the general form 

(3.52)   Up
  =  U(Ue ,  , g , Up , Zp

 , U , , g)  

(3.53)   Zp
  =  Z(Ue ,  , g , Up , Zp

 , U , , g)  

as generalizations of (3.38) and (3.39). The set of additional constitutive equations for a 
thermomechanical material with internal variables is assumed to be 

   T  =  T (Ue ,  , g , Up , Zp) 



Compendium on Gradient Materials  2016                                                               115 
 

 

(3.54)   q  =   q (Ue ,  , g , Up , Zp) 

     =   (Ue ,  , g , Up , Zp) 

     =     (Ue ,  , g , Up , Zp) 

or     =    (Ue ,  , g , Up , Zp) . 

Instead of elastic ranges of the mechanical theory, we will now have to deal with thermoelastic 
ranges. These are specified by a yield criterion assumed as a function 

(3.55)    (Ue , , g  , Up , Zp) 

which induces the yield condition  

(3.56)     (Ue , , g  , Up , Zp)  =  0   

and the loading condition 

(3.57)   <  Ue  , U  +     
 + g   g  >  0 . 

If not both conditions are simultaneously fulfilled, a (thermo) elastic event takes place, and 
hence the plastic variables do not evolve   

(3.58)    Up
  0     Zp

  0   Ue
  U 

  

which are side conditions of the functions U  and Z . Otherwise it is a plastic event or an event 
of yielding, in which the plastic variables necessarily have to evolve according to (3.52) - 
(3.53).  

   We will next investigate the restrictions imposed on the constitutive equations by the  
CLAUSIUS-DUHEM inequality. With the free energy from (3.54) we obtain for the dissipation 
inequality (3.48) 

  0    < Ue  , Ue

 +    

 + g   g + < Up  , Up

 + < Zp  , Zp


 > 

(3.59)   +   
 – 

1


<T , Ue

 + Up
  >  + 

1


q  g   

=  <  Ue   – 
1


T , Ue


 > + (  + )  

  + g    g  

<  Up   – 
1


T , Up


 >  + < Zp  , Zp


 > + 

1


q  g . 

If we first consider elastic events, then due to (3.58) there remains only the inequality 

(3.60)  0    < Ue   – 
1


T , U 


> + (  + )  

 + g    g + 
1


q  g . 

The exploitation of this inequality for states below the yield limit, where  U 
  and   

  are not 
restricted, leads by standard arguments to the conditions from gradient thermoelasticity, namely 
the independence of the free energy of the temperature gradient   

(3.61)     =   (Ue ,  , Up , Zp) 
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instead of (3.54), and the thermoelastic potentials 

(3.62)   T  =   Ue    =  T (Ue ,  , Up , Zp) 

(3.63)     =  –     =   (Ue ,  , Up , Zp) 

as well as the heat conduction inequality 

(3.64)   q  g    0   

as necessary and sufficient conditions for the second law to hold during elastic events. With 
these findings, the mechanical dissipation  m  vanishes during elastic events. 

Because of continuity, restrictions (3.61) - (3.64) must also hold when reaching the yield limit. 
If yielding occurs, however, then the additional terms of the CLAUSIUS-DUHEM inequality 
(3.59) must fulfill the residual dissipation inequality  

(3.65)            < 
1


T – Up 

 , Up
 >    < Zp  , Zp

 >     0 . 

This is a restriction on the yield criterion and the flow and hardening rules. The term   Up   

can be interpreted as back stress. We conclude the following 

Theorem 3.1. The CLAUSIUS-DUHEM inequality is fulfilled if and only if the following  
conditions hold: 

 the representation of the free energy (3.61),  

 the thermoelastic potentials (3.62) for the stress tensors and the entropy, 

 the heat-conduction inequality (3.64),   

 the residual dissipation inequality (3.65). 

 

Identical Thermoelastic Behavior 

 

   Up to this point, our analysis has been rather general. In order to further specify this setting 
for gradient plastic materials, we introduce another important assumption, which is the genera-
lization of the Assumption 2.4 of isomorphic elasticity for all elastic ranges. 

Assumption 3.1. The thermoelastic behavior within all thermoelastic ranges of the elasto-
plastic material is identical. 

This means more precisely that during elastic events all measurable quantities like the stresses, 
the heat flux, and the heat supply depend only upon the elastic strains and the temperature and 
its gradient, but not upon the plastic variables Up  and Zp . The consequences of this  
assumption shall be investigated next. 

We obtain for elastic events zero mechanical dissipation and hence from (3.49) 

(3.66)   m  =  0      Q  =    η     
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with the local heat supply  Q , which we consider as a measurable quantity - at least in  
principle. With (3.63) the right-hand side becomes for elastic events with  U  Ue 

(3.67)    η  =    (< Ue  , U  > +    
) 

which shall be independent of  Up ,  and  Zp
 . This can only be the case if the following  

decomposition of the entropy exists 

(3.68)    (Ue ,  , Up , Zp)  =  e (Ue ,  ) + p
 (Up , Zp) .  

After the above assumption, also the stresses shall not depend on the plastic variables. Hence 
we have the reduced stress law 

(3.69)   T  =  T(Ue ,  ) 

and instead of (3.62)  

(3.70)   T(Ue ,  )  =   Ue 
 . 

Instead of (3.63) we obtain with (3.68) 

(3.71)   e (Ue ,  ) + p
 (Up

 , Zp)  =  –    

which leads to the split of the free energy with (3.47) 

(3.72)     =  e
 (Ue ,  )   p

 (Up , Zp) + p
 (Up , Zp)  

such that 

(3.73)   e (Ue ,  )  =  –  e (Ue ,  )  

with a (for the present) arbitrary function  p  of the plastic variables  Up  and  Zp .  

The internal energy follows from (3.47) 

(3.74)     =  e
 (Ue ,  ) + p

 (Up , Zp)    

with 

(3.75)     e
 (Ue ,  )  : =  e

 (Ue ,  ) +  e (Ue ,  ) . 

After the above assumption, the heat conduction can neither depend on the plastic variables   
 Up  and  Zp

 , which gives rise to the reduced form of (23.3) 

(3.76)   q  =  q (Ue ,  , g)  . 

We state these findings in the following 

Theorem 3.2. The assumption of equal thermoelastic behavior in all elastic ranges is fulfilled 
if and only if the following representations hold for the 

 entropy    =  –  e (Ue ,  ) + p
 (Up , Zp)   

 internal energy   =  e
 (Ue ,  ) –   e (Ue ,  ) + p

 (Up , Zp) 

 free energy    =  e
 (Ue ,  )   p

 (Up , Zp) + p
 (Up , Zp)   

 heat conduction  q  =  q (Ue ,  , g) 
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 hyperstresses   T  =    Ue
 e (Ue ,  )    

Accordingly, the following constitutive equations completely constitute the thermoplastic mate-
rial model  

 the elastic free energy    e
 (Ue ,  )    

 the plastic entropy    p
 (Up , Zp)   

 the plastic internal energy   p
 (Up , Zp)    

 the heat conduction law    q (Ue ,  , g) 

 the yield criterion     (Ue ,  , g , Up , Zp)   

together with the flow and hardening rules to be considered later. 

(3.72) gives for the residual dissipation inequality (3.65) 

   0    < 
1


T – Up p +  Up p , Up

 > 

(3.77)   +  <  Zp 
p +  Zp p , Zp


 >      

=  
1


< T , Up


 > +  p

 (Up , Zp)  p
 (Up , Zp).  

In order to determine the change of the temperature of the material point under consideration, 
we use the first law of thermodynamics (3.45) together with (3.31) and (3.74) 

(3.78)   Q  =      
1


< T , U  >   =  Qe + Qp   

with a split of the heat supply into an elastic part 

(3.79)        Qe(Ue ,  , Ue
,  

)  : =  e
 (Ue ,  )   

1


< T , Ue

 >   

with (3.66)  =   e (Ue ,  )   

=  c  
 – 




< R , Ue
 >  

with  

 the specific heat       c (Ue ,  )  : =    e 

 the stress-temperature tensor of order (i+1) 
i

R (Ue ,  )  : =  –    i
eU
 e 

 the stress-temperature hyper-vector    R(Ue ,  )  : =  {
1

R  , 
2

R , ... , 
N

R } 

and a plastic part 
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(3.80)        Qp  : =  p
 (Up , Zp)  

1


< T , Up

 > .  

(3.78) and (3.79) can be solved for the temperature rate 

(3.81)   c  
  =  Q – Qp + 




 < R , Ue
 > . 

By this  equation, we can integrate the temperature along the process and so determine the final 
temperature after some elasto-plastic process. Accordingly, temperature changes are caused by 

1.) the heat supply  Q  from the outside 

2.) the heat  – Qp  generated by plastic yielding and hardening, and 

3.) thermoelastic transformations due to the last term in (3.81). 

   We now specify the ansatz for the rate-independent evolution (3.52) - (3.53) for the plastic 
variables, namely the flow and the hardening rules in the following form 

(3.82)   Up
  =   U(Ue ,  , g , Up , Zp) 

(3.83)    Zp
  =   Z(Ue ,  , g , Up , Zp) 

with a joint plastic consistency parameter     and two functions  U  and  Z  of the listed  
arguments.   is zero if and only if no yielding occurs, i.e., during thermo-elastic events.  

During yielding, however,    is positive. In all cases the KUHN-TUCKER-conditions hold in 
the form 

(3.84)      = 0  with     0      and          0 . 

The plastic parameter can be determined during yielding by the consistency condition as a 
consequence of the yield condition (3.56) 

   0  =  < Ue  , Ue
 >  +    

 + g   g 

(3.85)     + < Up  ,  U(Ue ,  , g , Up , Zp) >   

    + < Zp  ,  Z(Ue ,  , g , Up , Zp) > 

which can be solved for the plastic parameter 

(3.86)       =    
–1 [< Ue 

 , Ue
 >  +    

 + g   g]          

with a scalar denominator    

(3.87)               (Ue ,  , g , Up , Zp)  
  : =  – < Up  , U(Ue ,  , g , Up , Zp) >  – < Zp  , Z(Ue ,  , g , Up , Zp) > . 

Due to the loading condition (3.57),   must be positive during plastic events. After (3.84),    
alone is positively introduced, and so    must also be positive. After (3.87) this is a restriction 
to the functions   U  and  Z ,   and the yield criterion   .  
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Another restriction on these functions is obtained by the second law. We substitute (3.82) - 
(3.83) into the residual dissipation inequality (3.77)   

(3.88)    < T –  Up p +   Up 
p , U(Ue ,  , g , Up , Zp) >    

   + <   Zp p +   Zp p , Z(Ue ,  , g , Up , Zp) >     0 . 

In the example at the end of the next chapter it is demonstrated how this inequality can be  
satisfied for specific material functions.   
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4.1  2nd-Order Gradient Elasto-Plasticity 
 
   In this chapter we will particularize the approach of the preceding chapter to a second-order 
gradient theory. However, to make this chapter self-contained, we will repeat the entire  
deduction in a slightly reduced form so that it can be read independently. The notations also 
deviate from the ones in the preceding chapter whenever it seems to be appropriate.  

   We start with the kinematics of small deformations.  

For small deformations of simple materials, on uses the displacement gradient   

(4.1)   H  : =  Grad u  =  F  I 

and takes its symmetric part, the linear strain tensor 

(4.2)   E  : =  sym H . 

In the linear theory, no distinction is made between material and spatial differentiation. So we 
set 

(4.3)   H =  grad u  =  grad v  =  L 

with its symmetric part  

(4.4)   D  =  sym grad u. 

For a second gradient material, we have different choices. MINDLIN/ ESHEL (1968) suggest 
three sets of second-gradient variables. 

(i) The second displacement gradient 

(4.5)   grad H  =  grad grad u 

with right subsymmetry and 18 DOFs; 

(ii) The gradient of the strain tensor 

(4.6)   M  : =  grad E  = grad sym grad u  

with left subsymmetry and 18 DOFs; 

(iii) The completely symmetric part of the gradient of the strain tensor 

(4.7)   sym grad E  =  sym grad sym grad u  

with 10 DOFs, and the gradient of the curl of the displacement 

(4.8)   grad curl u 

with 8 DOFs.  

In most cases, the second choice is made, and so do we here. As a consequence, all triadics in 
the rest of this chapter show the left subsymmetry.  

   The mechanical theory of gradient plasticity consists of the following ingredients. 

 1.) an additive decomposition of the linear strain tensor  E  into an elastic and a plastic part  
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(4.9)    E  =  Ee
 + Ep  

and an analogous one of the gradient of the strain tensor   

(4.10)   M   =  Me
 + Mp  

with the following symmetry properties:  E = ET  and  M ijk  =  M jik (left subsymmetry), which 
also apply to their elastic and plastic parts and to the conjugate stresses. 

 It depends on the specific approach whether  Ep  and  Mp  are considered as independent of 
each other (unconstrained gradient plasticity) or, alternatively, as  Mp =  grad Ep  in analogy to 
(4.10) (constrained gradient plasticity). Since the first case seems to be more general, we will 
consider the unconstrained case in what follows, and only eventually mention the constrained 
one, as in the Appendix of this chapter. 

2.) two elastic laws taken as linear mappings of the elastic strain tensors into the second and 
third-order stress tensors 

(4.11)   T  =  
4

C E  Ee + 
5

C EM  Me 

(4.12)   G  =  
5

C ME  Ee + 
6

C M  Me 

(see MINDLIN/ ESHEL, 1968) by use of a fourth-order elasticity tensor  
4

C E , two fifth-order 

elasticity coupling tensors  
5

C EM  and  
5

C ME , and a sixth-order elasticity tensor 
6

C M . The under-
lying assumption of these laws is that the stresses depend only on the elastic variables and are 
unaffected by plastic deformations. 

For  T  and  Ee  being symmetric and  G  and  Me  having the left subsymmetry, these symme-
tries can also be assumed for the corresponding elasticity tensors.  

Moreover, if the elastic laws are also hyperelastic, a major symmetry of the elasticity tensors 

can be imposed to 
4

C E  and 
6

C M , and 

(4.13)   Ee  
5

C EM  Me  =  Me  
5

C ME  Ee 

holds for all  Ee  and  Me , so that  
5

C EM   is completely determined by 
5

C ME .  

These laws can be isotropic or anisotropic. In the central symmetric case, however, the fifth-
order tensors disappear.  

   At any instant these variables have to fulfill the mechanical balance laws after Theorem 1.21, 
namely 

 the balance of linear momentum   div (T  div G) +  b  =   u

 the balance of angular momentum   T  =  TT.   

The displacement or traction boundary conditions are (1.142)  and (1.143) after MINDLIN 
(1965). 

3.) a yield limit (yield criterion), which indicates the limit of the current elastic range. The  
general ansatz for the yield criterion in the strain space is  
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    (Ee , Me , Ep , Mp , Zp)  

where  Zp  is the vector of additional scalar or tensorial internal variables such as hardening 
variables. In what follows we will denote it as a second-order tensor, however, without the  
intention to constrain our considerations to this special case. The internal variables introduced 
in the formulation comprise the classical hardening or damage variables used in material  
modeling but also new variables related to the strain gradient or the elastic or plastic parts of 
the strain gradient. An internal variable is characterized by the fact that its evolution law is  
given by an ODE.   

The yield limit is the kernel of this function 

(4.14)    (Ee , Me , Ep , Mp , Zp)  =  0 

(yield condition), while we assume  

(4.15)    (Ee , Me , Ep , Mp , Zp) < 0   

(only) in the interior of the elastic range.  

One can always transform the yield criterion from the strain space into the stress space by using 
the elastic laws (4.11) and (4.12).  

Necessary and sufficient conditions for the material to yield are the yield condition and the 
loading condition 

(4.16)   Ee   E  + Me   M   > 0  

which states a violation of the yield criterion if the total deformation increments would be  
purely elastic.  

The presentation is limited to rate-independent plasticity, but viscoplasticity can be introduced 
in a straightforward manner into the model, for instance, but not exclusively, by the intro-
duction of a viscoplastic potential from which viscoplastic flow rule and evolution laws for 
hardening variables are derived, see FOREST/ SIEVERT (2003). 

4.)  flow rules which determine the evolution of  Ep  and  Mp . A general rate-independent  
unconstrained ansatz for them would be first-order ODEs depending on practically all variables 
and the rates of the total  deformations 

(4.17)  Ep
  =  E (Ep , Ee , Mp , Me , Zp

 , E, M )  

(4.18)  Mp
  =  M(Ep , Ee , Mp , Me , Zp

 , E, M ) . 

If we, however, would assume  Mp = grad Ep (constrained gradient plasticity) then the second 
flow rule  M  is not needed since the evolution of  Mp  would be given by 

(4.19)   Mp
  =  grad E (Ep , Ee , Mp , Me , Zp

 , E, M ) 

In what follows we will not use (4.19) but instead (4.17) and (4.18) which we consider as  
describing the more general case. 

5.) an evolution equation called hardening rule for the additional variable(s)  Zp , which is 
assumed to be of the same form as the flow rules above 
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(4.20)  Zp
  =  Z(Ep , Ee , Mp , Me , Zp

 , E, M ) . 

These constitutive laws establish a complete mechanical rate-independent format for a gradient 
elasto-plasticity.  

 We now specify the ansatz for the rate-independent evolution (4.17), (4.18), (4.20) for the 
plastic variables, namely the flow and the hardening rules in the following form 

(4.21)   Ep
  =   E(Ee , Me , Ep , Mp , Zp)  

(4.22)   Mp
  =   M(Ee , Me , Ep , Mp , Zp) 

(4.23)   Zp
  =   Z(Ee , Me , Ep , Mp , Zp) 

with a joint plastic consistency parameter    and three functions  E , M , and  Z   of the listed 
arguments.   is zero if and only if no yielding occurs, i.e. during elastic events. During  
yielding, however,   is positive. In all cases the KUHN-TUCKER-conditions hold in the form 

(4.24)      = 0  with     0       and          0 . 

The plastic parameter can be determined during yielding by the consistency condition as a 
consequence of the yield condition (4.14) 

   0  =  Ee   Ee
 + Me   Me

   

(4.25)   + Ep    E(Ee , Me , Ep , Mp , Zp)  

   + Mp    M(Ee , Me , Ep , Mp , Zp)   

   + Zp    Z(Ee , Me , Ep , Mp , Zp) 

which can be solved for the plastic parameter 

(4.26)      =    
–1 (Ee   Ee

 + Me   Me
)          

with a scalar denominator    

(4.27)             (Ee , Me , Ep , Mp , Zp) : =  – Ep   E(Ee , Me , Ep , Mp , Zp)  

   – Mp   M(Ee , Me , Ep , Mp , Zp)  – Zp   Z(Ee , Me , Ep , Mp , Zp). 

Due to the loading condition (4.16),    must be positive during plastic events. After (4.24),    
alone is positive, and so    must also be positive. After (4.27) this is a restriction to the  
functions  E ,  M ,  Z ,   and the yield criterion.  
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4.2  2nd-Order Gradient Thermo-Elastoplasticity  
 

We use the energy balance (first law of thermodynamics) in the local form 

(4.28)         =   Q + T  E + G  M . 

with the stress power density  T  E + G  M   and the heat supply per unit mass and time   
Q , which results from irradiation  r  and conduction  q  in the usual form 

(4.29)       Q  =  r  –  (div q) / . 

By the introduction of the HELMHOLTZ free energy 

(4.30)     : =    –   

we assume the second law as the CLAUSIUS-DUHEM inequality in the form 

(4.31)   
1


T  E  +  

1


G  M        

   
1


q  g    0 . 

Thus, the specific dissipation, which consists  of the mechanical dissipation 

(4.32)   m  : =  
1


T  E + 

1


G  M   –    –    

  =  θ η    Q  

by using (4.28) and (4.30), and the thermal dissipation 

(4.33)   th  : =   – 
1


q  g 

fulfill the dissipation inequality 

(4.34)     =  m + th    0 .  

In order to enlarge the mechanical plasticity theory to a thermo-mechanical one, we add the 
temperature and the temperature gradient to the list of independent variables called thermo-
kinematical variables, and the heat flux, the entropy, and the internal energy or the free energy 
to the dependent variables called caloro-dynamic variables.  

   Thermoplastic materials can be understood as material models with internal variables. The 
set of the internal variables contains in the case of plasticity the first and second-order plastic 
strains and, eventually, hardening variables. For all of these variables we assume as generaliza-
tions of  (4.17), (4.18), (4.20) rate-independent evolution equations in the general form 

(4.35)   Ep
  =  E(Ee , Me ,  , g , Ep , Mp , Zp

 , E, M , , g)  

(4.36)   Mp
  =  M(Ee , Me ,  , g , Ep , Mp , Zp

 , E, M , , g)  

(4.37)   Zp
  =  Z(Ee , Me ,  , g , Ep , Mp , Zp

 , E, M , , g) . 

Again,  M  will only be needed if we consider  Mp
  as an internal variable independent of  Ep . 

The set of additional constitutive equations for a thermomechanical material with internal  
variables is assumed to be 
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   T  =  T (Ee , Me ,  , g , Ep , Mp , Zp) 

   G  =  G (Ee , Me , , g , Ep , Mp , Zp) 

 (4.38)   q  =   q (Ee , Me , , g , Ep , Mp , Zp) 

     =   (Ee , Me , , g , Ep , Mp , Zp)  

     =     (Ee , Me , , g , Ep , Mp , Zp)  

or     =    (Ee , Me , , g , Ep , Mp , Zp) . 

Instead of elastic ranges we will now have to deal with thermoelastic ranges. These are  
specified by a yield criterion 

(4.39)    (Ee , Me , , g  , Ep , Mp , Zp) 

which induces the yield condition  

(4.40)    (Ee , Me , , g , Ep , Mp , Zp)  =  0   

and the loading condition 

(4.41)   Ee   E + Me   M  +     
 + g   g  >  0 . 

If not both conditions are simultaneously fulfilled, we consider it as a (thermo) elastic event 
and, hence, the plastic variables do not evolve   

(4.42)    Ep
  0    Mp

  0     Zp
  0  

    Ee
  E   and  Me

  M 
  

which are side conditions of the functions E , M , and Z . Otherwise it is a plastic event or an 
event of yielding, in which the plastic variables necessarily have to evolve according to (4.35) - 
(4.37).  

   We will next investigate the restrictions imposed on the constitutive equations by the  
CLAUSIUS-DUHEM inequality. With the free energy (4.30) we obtain for the inequality 
(4.31) 

  0    Ee   Ee
 + Me    Me

 +    
 + g   g + Ep 

  Ep
 + Mp   Mp

 

(4.43)  + Zp   Zp
 +   

 –  
1


T  (Ee

 + Ep
) – 

1


G  (Me

 + Mp
)  + 

1


q  g   

=  (Ee   –  

T

)  Ee
 + (Me   – 

1


G)  Me

 + (  + )  
  + g    g  

+ (Ep   –  

T

)  E
p
 + (Mp   – 

1


G)  Mp

  + Zp   Zp
 + 

1


q  g . 



Compendium on Gradient Materials  2016                                                               127 
 

 

   By standard arguments which can be found in the preceding chapter, we obtain the following 
results. 

Theorem 3.1. The CLAUSIUS-DUHEM inequality is fulfilled if and only if the following  
conditions hold: 

 the representation of the free energy  

(4.44)     =   (Ee , Me ,  , Ep , Mp , Zp)  

 the thermoelastic potentials (4.45) - (4.47) for the stress tensors and the entropy 

(4.45)   T  =   Ee   =  T (Ee , Me ,  , Ep , Mp , Zp) 

(4.46)   G  =   Me    =  G(Ee , Me ,  , Ep , Mp , Zp) 

(4.47)     =  –    =   (Ee , Me ,  , Ep , Mp , Zp) 

 the heat-conduction inequality  

(4.48)   q  g     0     

 the residual dissipation inequality  

(4.49)           (

T

 – Ep )  Ep
 + (

1


G – Mp 

)  Mp
   Zp   Zp

     0 . 

 

 

Identical Thermoelastic Behavior 
 

   If we again apply the Assumption 3.1 of identical thermoelastic behavior in all thermoelastic 
ranges, we can conclude that during elastic events all measurable quantities like the stresses, 
the heat flux, and the heat supply depend only upon the elastic strains and the temperature and 
its gradient, but not upon the plastic variables Ep , Mp , and Zp . The consequences of this  
assumption have already been investigated in the preceding chapter. Here we just summarize 
the results in analogy to Theorem 3.2. 

Theorem 4.2. The assumption of equal thermoelastic behavior in all elastic ranges is fulfilled 
if and only if the following material functions 

with the following material functions  

 the elastic free energy    e
 (Ee , Me ,  )    

 the plastic entropy    p
 (Ep

 , Mp , Zp)   

 the plastic internal energy   p
 (Ep

 , Mp , Zp)    

                                                 
36 see also the formulations by FOREST/ AMESTOY (2008) and VOYIADJIS/ FAGHIHI 
(2012, 2013). 
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 the heat conduction law    q (Ee
 , Me ,  , g) 

give the representations for the total 

 entropy    =  –  e (Ee , Me ,  ) + p
 (Ep

 , Mp , Zp)   

 internal energy   =  e
 (Ee , Me ,  ) –   e (Ee , Me ,  ) + p

 (Ep
 , Mp , Zp) 

 free energy    =  e
 (Ee , Me ,  )   p

 (Ep
 , Mp , Zp) + p

 (Ep
 , Mp , Zp)   

 heat conduction  q  =  q (Ee
 , Me ,  , g) 

 2nd-order stresses  T  =    Ee e (Ee , Me ,  ) 

 3rd-order stresses  G  =    Me e (Ee , Me ,  ).   

These material functions constitute together with the yield criterion (4.39) and the flow and 
hardening rules the complete material model for a second-gradient elastoplastic material. 

(4.59) gives for the residual dissipation inequality (4.49) 

   0    (
1


T – Ep p +  Ep 

p)  Ep
 + (

1


G – Mp p +  Mp p)  Mp

 

(4.50)   +  ( Zp 
p +  Zp p)  Zp

      

=  
1


T  Ep

 + 
1


G  Mp

 +  p
 (Ep

 , Mp , Zp)  p
 (Ep

 , Mp , Zp).  

In order to determine the change of the temperature of the material point, we use the first law of 
thermodynamics (4.28) together with (4.9) and (4.10) and (4.60) to obtain the split 

(4.51)   Q  =  Qe + Qp   

into an elastic part 

(4.52)       Qe(Ee , Me ,  , Ee
, Me

,  
)  : =  c  

 – 



(R  Ee
 + R  Me

 ) 

with  

 the specific heat       c (Ee , Me ,  )  : =    e 

 the 2nd-order stress-temperature tensor   R(Ee , Me ,  )  : =  –  Ee
 e 

 the 3rd-order stress-temperature tensor   R(Ee , Me ,  )  : =  –  Me
 e 

and a plastic part 

(4.53)       Qp  : =  p
 (Ep

 , Mp , Zp)    

T
 Ep

   
1


G  Mp

.  

This can be solved for the temperature rate 

(4.54)   c  
  =  Q – Qp + 




 (R  Ee
 + R  Me

) . 
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By this  equation, we can integrate the temperature along the process and so determine the final 
temperature after some elasto-plastic process. Accordingly, temperature changes are caused by 

1.) the heat supply  Q  from the outside 

2.) the heat  – Qp  generated by plastic yielding and hardening, and 

3.) thermoelastic transformations due to the last term in (4.54). 

   We now specify the ansatz for the rate-independent evolution (4.35) - (4.37) for the plastic  
variables, namely the flow and the hardening rules in the following form 

(4.55)   Ep
  =   E(Ee , Me ,  , g , Ep , Mp , Zp)  

(4.56)   Mp
  =   M(Ee , Me ,  , g , Ep , Mp , Zp) 

(4.57)   Zp
  =   Z(Ee , Me ,  , g , Ep , Mp , Zp) 

with a joint plastic consistency parameter     and three functions  E , M , and Z  of the listed 
arguments.   is zero if and only if no yielding occurs, i.e. during thermo-elastic events.  

During yielding, however,    is positive. In all cases the KUHN-TUCKER-conditions hold in 
the form 

(4.58)      = 0  with     0       and          0 . 

The plastic parameter can be determined during yielding by the consistency condition as a 
consequence of the yield condition (4.40) in the form   = 0  as 

(4.59)      =    
–1 (Ee   Ee

 + Me 
  Me

  +    
 + g   g)          

with a scalar denominator    

              (Ee , Me ,  , g , Ep , Mp , Zp)  
   : =  – Ep   E(Ee , Me ,  , g , Ep , Mp , Zp)  

(4.60)  – Mp   M(Ee , Me ,  , g , Ep , Mp , Zp)   

  – Zp   Z(Ee , Me ,  , g , Ep , Mp , Zp) . 

Due to the loading condition (4.41),   must be positive during plastic events. After (4.58),    
alone is positively introduced, and so    must also be positive. After (4.60) this is a restriction 
to the functions  E , M , Z ,   and the yield criterion.  

Another restriction on these functions is obtained by the second law. We substitute (4.55) - 
(4.57) into the residual dissipation inequality (4.50)  

   (T –  Ep 
p +   Ep 

p)  E(Ee , Me ,  , g , Ep , Mp , Zp)  

(4.61)   + (G –  Mp p +   Mp 
p)  M(Ee , Me ,  , g , Ep , Mp , Zp)    

+  (  Zp p +   Zp p)  Z(Ee , Me ,  , g , Ep , Mp , Zp)    0 .  

This restriction on the functions  E ,  M ,  Z , and the yield criterion will be considered in the 
following example.  
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Example 
 

   We will next discuss the foregoing framework for gradient plasticity by means of a simple 
example, which is a generalization of the one in BERTRAM/ KRAWIETZ (2012). It is based 
on a one-dimensional PRAGER model with two springs and a ST.VENANT element which 
stands for dry friction. This model performs an elastoplastic behavior with linear kinematical 
hardening induced by the spring  D , while the stresses can be determined by the strains in the 
spring  C . We will generalize this model into three dimensions first with full anisotropy, and 
finally particularize it to the isotropic case.  

 

     D  C 

 

     p  e  

 

Within the format of a linear theory, the elastic part of the free energy has a quadratic form 
familiar from linear thermoelasticity  

(4.62)   e
 (Ee , Me ,  )  =  ½ Ee 

4

C E  Ee + ½ Me 
6

C M   Me + Ee 
5

C EM  Me 

        + c  ( –  ln 





) +  (R  Ee + R  Me) 

with higher-order elasticity tensors 
4

C E , 
6

C M ,
5

C EM  with the same symmetry properties as in 
(4.13), two constant stress-temperature tensors  R  and  R , a constant specific heat  c  after 
(4.51), a reference temperature  0 ,  and the deviation from  it   : =  – 0 .  

Since all material parameters are taken as constant, this model applies only to moderate  
temperature changes and small deformations.  

We obtain with (4.56) - (4.57) the thermoelastic laws for the stresses 

(4.63)      T  =  
4

C E  Ee + 
5

C EM  Me +  R  

(4.64)   G  =  Ee  
5

C EM + 
6

C M  Me +  R 

in analogy to (4.11) - (4.12).  

By the results of Theorem 4.2 we get for the elastic entropy 

(4.65)        e (Ee , Ke ,  )  =  – R  Ee  R  Me +  c ln 





   

and for the elastic internal energy 
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(4.66)     e
 (Ee , Me ,  )  =  ½ Ee 

4

C E  Ee + ½ Me 
6

C M  Me   

 + Ee 
5

C EM  Me + c    0 (R  Ee + R  Me) . 

  For the heat flux we choose a FOURIER-type law 

(4.67)   q  =  – K  g 

with a second-order positive semi-definite tensor  K  so that the heat conduction inequality 
(4.48) is always fulfilled.  

   In accordance with the PRAGER model we write for the back stresses two elastic laws in the 
plastic strains 

(4.68)   TB  =  
4

D E  Ep + 
5

D EM  Mp 

(4.69)   GB  =   Ep  
5

D EM  + 
6

D M  Mp 

with material tensors  
4

D E , 
6

D M ,
5

D EM  with the usual symmetry properties (4.13).  

We introduce the specific plastic work in some time interval  [t0 , t1]  as the work of the  
effective stresses upon the plastic deformations 

(4.70)   wplast  : =  
1

0

t

t


1


[(T – TB)  Ep

 + (G – GB)  Mp
] dt   

   wplast

   =  

1


(T – TB)  Ep

 + 
1


(G – GB)  Mp



as the only hardening variable in our example, so  Zp  wplast .  

   The plastic part of the entropy is set to zero 

(4.71)   p
 (Ep

 , Mp , Zp)  =  0 . 

We will later show under which restrictions this ansatz will satisfy the residual dissipation  
inequality, and also that other non-trivial choices for the plastic entropy will work as well.  

   We also assume a quadratic form for the plastic part of the internal energy  

(4.72)    p
 (Ep

 , Mp , Zp)  =  ½ Ep 
4

D E  Ep + ½ Mp 
6

D M  Mp  

+ Ep 
5

D EM  Mp +   wplast  

with a scalar coefficient   .  

In accordance with (4.49) and (4.71) we can in fact verify the ansatz (4.68) and (4.69) for the 
back stresses. 

   We use a generalization of the anisotropic v. MISES yield criterion (1928) in the stress space 

(4.73)         =  (T – TB) 
4

W  (T – TB) + (G – GB)  
6

W  (G – GB)  
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+ (T – TB)  
5

W  (G – GB) – Y
 (wplast ,  , g)2 

with three material tensors 
4

W , 
5

W , and 
6

W  with the same symmetry properties as in (4.13), 
and reflecting the symmetry of the material, and a scalar yield stress  Y  depending on the  
plastic work, the temperature, and the temperature gradient.  However, to the best of our 
knowledge a direct dependence of the yield function on the temperature gradient has not yet 
been proposed in the literature.  

   Uniqueness and regularity of the model are ensured if the yield function is convex with  
respect to all its arguments, including the higher-order strain (or stress). In the proposed  
quadratic potential (4.73), convexity of the yield surface is ensured if the linear elastic mapping 
is positive-definite. 

If the stresses and the back stresses are substituted by (4.63), (4.64), (4.68), (4.69), the assumed 
form of the yield criterion can in fact be transformed into the strain space  

      (Ee , Me ,  , g , Ep , Mp , wplast)
    

    =  (
4

C E  Ee + 
5

C EM  Me +  R – 
4

D E  Ep  
5

D EM  Mp)  
4

W  

(4.74)    (
4

C E  Ee + 
5

C EM  Me +  R – 
4

D E  Ep  
5

D EM  Mp)  

+ (Ee  
5

C EM + 
6

C M  Me +  R – 
6

D M  Mp  Ep  
5

D EM)  
6

W   

 (Ee  
5

C EM + 
6

C M  Me +  R – 
6

D M  Mp  Ep  
5

D EM)  

+ (
4

C E  Ee + 
5

C EM  Me +  R – 
4

D E  Ep  
5

D EM  Mp)  
5

W   

 (Ee  
5

C EM + 
6

C M  Me +  R – 
6

D M  Mp  Ep  
5

D EM)  

– Y (wplast ,  , g)2 

such that the loading condition (4.41) becomes 

    0  <  [2(T – TB) 
4

W + 
5

W  (G – GB)]  [
4

C E  E + 
5

C EM  M  +    R] 

(4.75)   + [2(G – GB) 
6

W + (T – TB) 
5

W ]  [E 
5

C EM + 
6

C M  M  +  
 R]   

– 2Y  ( Y  
 + g

 Y  g) . 

The associated flow rules are 

(4.76)   Ep
  =   T   =   [2

4

W  (T – TB) + 
5

W  (G – GB)] 

(4.77)   Mp
  =   G   =   [2

6

W  (G – GB) + (T – TB) 
5

W ] 

with a joint plastic consistency parameter   . The consistency condition requires with (4.9), 
(4.10), (4.63), (4.64), (4.68), (4.69), (4.74), (4.76), (4.77) 

     0  =   (Ee , Me ,  , g , Ep , Mp , wplast) 
   
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 =  2 (T – TB)  
4

W   (T – TB) + 2 (G – GB)  
6

W  (G – GB) 

  + (T – TB)  
5

W  (G – GB) + (T – TB)  
5

W  (G – GB)  

  –  2Y  {wplast
 Y [

1


(T – TB)  Ep

 + 
1


(G – GB)  Mp

]  +  Y  
 + g

 Y  g} 

 =  [2 (T – TB) 
4

W + 
5

W  (G – GB)] 

    [
4

C E  (E  Ep) + 
5

C EM  (M  Mp) +  
 R – 

4

D E  Ep
  

5

D EM  Mp
]  

  + [2 (G – GB) 
6

W + (T – TB) 
5

W ] 

   [(E  Ep) 
5

C EM + 
6

C M  (M  Mp) +  
R – 

6

D M  Mp
  Ep

  
5

D EM]  

  –  2Y  {wplast
 Y [

1


(T – TB)  Ep

 + 
1


(G – GB)  Mp

]  +   Y  
 + g

 Y  g} 

 (4.78) =  [2 (T – TB) 
4

W + 
5

W  (G – GB)] 

   [
4

C E  (E   {2
4

W  (T – TB) + 
5

W  (G – GB)})  

  + 
5

C EM  (M    {2
6

W  (G – GB) + (T – TB) 
5

W }) +  
 R 

  – 
4

D E   {2
4

W  (T – TB) + 
5

W  (G – GB)}  

   
5

D EM   {2
6

W  (G – GB) + (T – TB) 
5

W }]  

  + [2 (G – GB) 
6

W + (T – TB) 
5

W ] 

   [ (E   {2
4

W  (T – TB) + 
5

W  (G – GB)})  
5

C EM  

  + 
6

C M  (M 
   {2

6

W  (G – GB) + (T – TB) 
5

W }) +  
 R 

  – 
6

D M   {2
6

W  (G – GB) + (T – TB) 
5

W } 

    {2
4

W  (T – TB) + 
5

W  (G – GB)} 
5

D EM]  

  –  2Y  [wplast 
Y (

 B


T T

   {2
4

W  (T – TB) + 
5

W  (G – GB)} 

  + 
1


(G – GB)   {2

6

W  (G – GB) + (T – TB) 
5

W })  +   Y  
 + g

 Y  g]  

or 

[2 (T – TB) 
4

W + 
5

W  (G – GB)]  [
4

C E  E + 
5

C EM  M  +  
 R]  
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+ [2 (G – GB) 
6

W + (T – TB) 
5

W ]  [E  
5

C EM + 
6

C M  M  +  
 R] 

   –  2Y  ( Y  
 + g

 Y  g) 

 (4.79)    =   [(T – TB)  {2
4

W   [
4

C E  2
4

W  + 
5

C EM  
5

W * + 
4

D E  2
4

W + 
5

D EM  
5

W *]  

 + 
5

W  [2
4

W  
5

C EM + 
6

C M  
5

W * + 
6

D M  
5

W * + 
5

D EM
*  2

4

W ]  

 + 4Y  
1


wplast 

Y 
4

W }  (T – TB) 

  +  (G – GB) {
5

W * [
4

C E  
5

W  + 
5

C EM  2
6

W  + 
4

D E  
5

W + 
5

D EM  2
6

W ]  

 + 2 
6

W   [
5

C EM
*  

5

W + 
6

C M  2
6

W  + 
6

D M  2
6

W + 
5

D EM
*  

5

W ]  

 + 4Y  
1


wplast

 Y 
6

W }  (G – GB) 

 + (T – TB)  {2 
4

W  [
4

C E  
5

W  + 
5

C EM  2
6

W  + 
4

D E  
5

W + 
5

D EM  2
6

W ]  

 + 
5

W  [
5

W   
5

C EM + 
6

C M  2
6

W  + 
6

D M  2
6

W + 
5

D EM
*  

5

W ]  

 + 2Y  
1


wplast

 Y 
5

W }  (G – GB)  

  + (G – GB) {
5

W *  [
4

C E  2
4

W  + 
5

C EM  
5

W * + 
4

D E  2
4

W + 
5

D EM  
5

W *]  

 + 2
6

W  [2
4

W  
5

C EM
* + 

6

C M  
5

W * + 
6

D M  
5

W *+
5

D EM
*  2

4

W ]   

 +  2Y  
1


wplast

 Y 
5

W *}  (T – TB)]  

where the superimposed asterisk indicates that particular transposition of a fifth-order tensor 
5

W  which fulfils 

   G 
5

W * T  =  T 
5

W  G 

for every second-order tensor  T  and every third-order tensor  G . 

This linear equation can be uniquely solved for the consistency parameter  . The left-hand 
side of this equation is positive due to the loading condition (4.75). If the elasticities have the 
usual positive definiteness properties, and if hardening occurs with  wplast

 Y > 0 , then the 

terms in {}-brackets are always positive, so that    will in fact be positive during yielding, as it 
should be. If we substitute    into the flow rules (4.76) - (4.77), we obtain the consistent flow 
rules, which is straightforward but not done here for brevity.   

If we substitute (4.76) - (4.77) into the definition of the plastic work (4.70), we obtain  



Compendium on Gradient Materials  2016                                                               135 
 

 

 (4.80)   wplast

  =  




 { (T – TB)  [2
4

W  (T – TB) + 
5

W  (G – GB)] 

+ (G – GB) [2
6

W  (G – GB) + (T – TB)  
5

W } . 

By an appropriate choice of  
4

W , 
5

W , and  
6

W   (positive semi-definiteness) we can assure that 
the plastic work is non-negative.  

The heat generated by yielding   Qp  after (4.53) is then according to (4.68), (4.69), (4.72) 
determined by 

(4.81)      Qp  =   
1


 (Ep 

4

D E  Ep
 + Mp 

6

D M  Mp
 + Ep

 
5

D EM  Mp 

+ Ep 
5

D EM  Mp
)    wplast

 +  

T
 Ep

 +  

M

 Mp
 

=  [
 B


T T

  Ep
   Ep p]  Ep

 + [
1


(G – GB)    Mp p]  Mp

   wplast
   

=  (1  ) wplast
    (Ep p  Ep

 + Mp p  Mp
)  .     

(1)  can be interpreted as a TAYLOR-QUINNEY factor. The residual dissipation inequality 
(4.50) becomes with (4.53), (4.71), and (4.81)  

(4.82)   0    Qp +  p
  =  (1  )  wplast

 .    

This can always be satisfied by choosing  0    1.  We see that a non-trivial ansatz for the 
plastic part of the entropy instead of (4.71)  

(4.83)   p
    γ w 

plast  

with any non-negative real constant  γ  would also satisfy the dissipation inequality. So the 
plastic part of the entropy is only weakly restricted by the second law and by no means unique.  

We finally obtain for the free energy for our model with (4.62), (4.72) and (4.83) 

  =  
1

2
 Ee 

4

C E  Ee  + 
1

2
 Me 

6

C M  Me + 
1


Ee 

5

C EM  Me 

(4.84)   + c  ( –  ln 





)  +  
1


(R  Ee + R  Ke) 

+ 
1

2
 Ep 

4

D E  Ep +  
1

2
 Mp 

6

D M  Mp  

+ 1


Ep 

5

D EM  Mp + (1  ) wplast   

which completes the model equations for the general anisotropic example.  
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Isotropic Example 

For isotropic centro-symmetric materials we use the isotropic representations by CAUCHY and 
MINDLIN/ ESHEL (1968) for the constitutive equations. For the free energy we obtain after 
(4.84) 

     =  a1 (Ee  I)2 + a2 Ee  Ee + a3 I  Me  Me  I + a4 (Me  I)  (Me  I)  

+ a5 (I  Me)  (I  Me) + a6 Me  Me + a7 Me  Me
t
 + c  ( –  ln 






) 

  (4.85)  +  a8 I  Ee +  (     γ) wplast 

+ b1 (Ep  I)2 + b2 Ep  Ep + b3 I  Mp  Mp  I + b4 (Mp  I)  (Mp  I)  

+ b5 (I  Mp)  (I  Mp) + b6 Mp  Mp + b7 Mp  Mp
t  

where the following particular transposition for a triadic   [Mt]ijk : =  Mkji  is used.  ai  and  bi  

are scalar material constants. 

This gives the following stresses after (4.63) and (4.64) 

(4.86)  T  = 2a1 (Ee  I) I  + 2a2 Ee +  a8 I  

(4.87)  G  =  2a3 I  Me  I + 2a4 (Me  I)  I + 2a5 I  I  Me + 2a6 Me + 2a7 Me
t. 

The back stresses of (4.68) and (4.69) reduce in the isotropic case to 

(4.88)  TB  =  2d1 (Ep  I) I  + 2d2 Ep 

(4.89)  GB  =  2d3 I  Mp  I + 2d4 (Mp  I)  I + 2d5 I  I  Mp + 2d6 Mp + 2d7 Mp
t 

with scalar material constants  di .  

   The FOURIER law for the heat flux (4.67) obtains the usual form 

(4.90)   q  =  – g 

with a non-negative coefficient   . 

    For the entropy after (4.65) and (4.83) we obtain  

(4.91)         =  – 
1


 a8 I  Ee + c ln 






 + γ wplast . 

   The v. MISES-type yield criterion (4.73) becomes in the isotropic case 

(4.92)      =  g1 [(T – TB)  I]2 + g2 (T – TB)  (T – TB)  

  + g3 I  (G – GB)  (G – GB)  I + g4 [(G – GB)  I]  [(G – GB)  I]  

  + g5 [I  (G – GB)]  [I  (G – GB)] + g6 (G – GB)  (G – GB)  

  + g7 (G – GB)  (G – GB)t – Y
2(wplast ,  , g) 
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with scalar material constants  gi  one of which can be generally normalized to one.  

The associated flow rules (4.76) - (4.77) are accordingly 

(4.93)  Ep
  =   {g1 [(T – TB)  I] I  + g2 (T – TB)} 

(4.94)  Mp
  =   {g3 I  (G – GB)  I + g4 [(G – GB)  I]  I + g5 I  I  (G – GB) 

 + g6 Ke + g7 (G t – GB
t)} 

where the factor 2  has been drawn into the plastic parameter.  

If the flow criterion is density-insensitive then  g1 = g2 /3 , and  (T – TB)  is deviatoric, the same 
as  Ep .  
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Appendix: On Constrained Gradient Elastoplasticity 
 

   In the preceding parts we considered unconstrained gradient elastoplasticity. Since many 
authors in the field of gradient materials prefer a constrained format, we want to give some  
remarks on this class of models.  

  As in the unconstrained case, we assume an additive decomposition of the strain tensor into an 
elastic and a plastic part 

(4.1)   E  =  Ee
 + Ep  

and an analogous one of the gradient of the strain tensor   

(4.2)   M  : =  grad E  =  E   =  Me
 + Mp  

However, in contrast to the procedure before, we assume the constraint 

(4A.1)   Mp =  grad Ep  

and consequently  

(4A.2)   Me =  grad Ee . 

According to this ansatz, we need only one flow rule 

(4A.3)   Ep
  =   E(Ee , Me ,  , g , Ep , Mp , Zp) 

and a hardening rule 

(4A.4)   Zp
  =   Z(Ee , Me ,  , g , Ep , Mp , Zp) . 

This gives after the chain rule for the plastic increment 

Mp
  =  grad Ep

  =  grad [ E(Ee , Me ,  , g , Ep , Mp , Zp)]  

(4A.5)   =  E(Ee , Me ,  , g , Ep , Mp , Zp)  grad  

   +   [Ee E  grad Ee + Me E  grad Me
  +  E  g  + g E  grad g 

   + Ep E  grad Ep + Mp E  grad Mp
  + Zp E  grad Zp] . 

The consistency condition after (4.72) becomes in this case 

   0  =   (Ee , Me ,  , g , Ep , Mp , Zp)    

       =  Ee   Ee
 + Me   Me

  +    
  + g   g  

   + Ep   Ep
 + Mp   Mp

  + Zp   Zp
   

(4A.6)   =  Ee   Ee
 + Me   Me

  +    
  + g   g 

   + Ep    E(Ee , Me ,  , g , Ep , Mp , Zp)  

   + Mp
   {E(Ee , Me ,  , g , Ep , Mp , Zp)  grad  

   +  [Ee E  Me + Me E  grad Me
  +  E  g  + g E  grad g 
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   + Ep E  Mp + Mp E  grad Mp
  + Zp E  grad Zp]}  

   + Zp    Z(Ee , Me ,  , g , Ep , Mp , Zp) . 

This is no longer a linear equation for the plastic parameter   , which can be easily solved like 
(4.59), but a PDE instead. 

The CLAUSIUS-DUHEM inequality gives with a free energy (4.38)  

0     +   
 –  


T
 E  –  

1


G  M  + 

1

 
q  g     

=  Ee   Ee
 + Me   Me

 +      + g   g + Ep   Ep
 + Mp    Mp

 

(4A.7)  + Zp   Zp
 +   

 –  

T
 E –  

1


G  grad E  + 

1

 
q  g   

=  Ee   (E  Ep
)  + Me 

  (grad E  grad Ep
) +    

 + g   g  

+ Ep   Ep
 + Mp    Mp

 

  + Zp   Zp
 +   

 –  

T
 E –  

1


G  grad E  + 

1

 
q  g   

with (4A.5) =  (Ee   –  

T

)  E + (Me   – 
1


G)  grad E + (  + )  

  + g   g  

+ (Ep   –  Ee )  Ep
  

+ (Mp   – Me 
) {E(Ee , Me ,  , g , Ep , Mp , Zp)  grad  

  +   [Ee E  grad Ee + Me E  grad Me
  +  E  g  + g E  grad g 

 + Ep E  grad Ep + Mp E  grad Mp
  + Zp E  grad Zp]}   

+ Zp   Zp
 + 

1

 
q  g . 

If we first consider elastic events, then there remains only the inequality 

(4A.8)  0    (Ee   – 
T

)  E + (Me   – 
1


G)  grad E + (  + )    

+ g   g + 
1

 
q  g . 

The exploitation of this inequality for states below the yield limit, where  E ,  grad E ,  and  θ 
  

can locally be varied independently, leads by standard arguments to the conditions from  
gradient thermoelasticity, namely the independence of the free energy of the temperature  
gradient   
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(4A.9)     =   (Ee , Me , , Ep , Mp , Zp) 

instead of (4.38), and the thermoelastic potentials 

(4A.10)  T  =   Ee   =  T (Ee , Me , , Ep , Mp , Zp) 

(4A.11)  G  =   Me   =  G(Ee , Me , , Ep , Mp , Zp) 

(4A.12)    =  –    =   (Ee , Me , , Ep , Mp , Zp) 

as well as the heat conduction inequality 

(4A.13)  –  q  g     0   

as necessary and sufficient conditions for the second law to hold during elastic events. 

Because of continuity, restrictions (4A.10) - (4A.13) must also hold when reaching the yield 
limit. If yielding occurs, however, then the additional terms of the CLAUSIUS-DUHEM  
inequality (4A.7) must fulfill the residual inequality 

    0   (Ep   –  

T

)  Ep
 + (Mp  – 

1


G)  grad Ep

   Zp   Zp
 .       

   =  (Ep   –  

T

)   E(Ee , Me ,  , g , Ep , Mp , Zp)  

(4A.14)  + (Mp   – 
1


G)  {E(Ee , Me ,  , g , Ep , Mp , Zp)  grad  

   +   [Ee E  grad Ee + Me E  grad Me
  +  E  g  + g E  grad g 

   + Ep E  grad Ep + Mp E  grad Mp
  + Zp E  grad Zp]}   

     Zp 
  Z(Ee , Me ,  , g , Ep , Mp , Zp)  .       

using (4A.4) and (4A.5). This is also a PDE and can only be evaluated as a result of the 
boundary value problem.  

  We must conclude that the constraint gradient plasticity leads to complicated PDEs for both 
the consistency condition and for the CLAUSIUS-DUHEM inequality which can be hardly 
exploited in general, in contrast to the unconstrained case. 
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5.  On Isotropic Stiffness Hexadics 
 

The following chapter is based on the article 

R. Glüge, J. Kalisch, A. Bertram: The eigenmodes in isotropic strain gradient  
elasticity, to appear in Generalized Continua as Models for Classical and Advanced 
Materials. Edts. H. Altenbach, S. Forest. Springer-Verlag (in press) 

It aims at investigating the stiffness tensors for linear isotropic second gradient elasticity. In 
doing so, we refer to the notations introduced in Chapter 3, specified for the case  N  2 .  

In particular, we use the following set of kinematical variables  

   E  : = sym grad u 

   
 2

U  : = grad grad u 

with the following symmetry properties by definition 

(5.1)   Eij = Eji   and      Uijk = Uikj . 

The work-conjugate stress tensors  T  and 
 2

T  are assumed to show the same symmetries. 

According to the notations of Chapter 3, the linear elastic law within this format is constituted 

by the following tensors: 
 1,1

C ,
 1,2

C ,
 2,1

C ,
 2,2

C  such that 

(5.2)   T  =  
 1,1

C E + 
 1,2

C 
 2

U  

   
 2

T  =  
 2,1

C  E +
 2,2

C 
 2

U . 

 The stiffness tensors inherit the following subsymmetries from the above variables 
 1,1

C ijkl  =
 1,1

C jikl  =
 1,1

C ijlk   

(5.3)   
 1,2

C ijklm  = 
 1,2

C jiklm  = 
 1,2

C ijkml   
 2,1

C ijklm  = 
 2,1

C ikjlm  = 
 2,1

C ijkml   
 2,2

C ijklmn  = 
 2,2

C ikjlmn  = 
 2,2

C ijklnm .  

The material is hyperelastic, if an elastic energy exists of the following form as a special case 
of (3.13) 

(5.4)   w(E , 
 2

U )  =  ½ E 
 1,1

C E + ½ 
 2

U  
 2,2

C 
 2

U + E 
 1,2

C 
 2

U  

so we can assume the additional symmetries 

(5.5)   
 1,1

C ijkl  =
 1,1

C klij  

 2,2

C ijklmn  = 
 2,2

C lmnijk   
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while  
 1,2

C is completely determined by 
 2,1

C  according to (3.16), and vice versa. 

Moreover, if the material is centro-symmetric, 
 1,2

C and 
 2,1

C vanish because of (3.29). 

If we restrict our concern in this chapter to the centro-symmetric isotropic case, the tensors 
 1,1

C and 
 2,2

C must obey 

(5.6)   Q  
 1,1

C   =  
 1,1

C  and  Q  
 2,2

C   =  
 2,2

C   

for all orthogonal symmetry transformations  Q  after (3.27). 

The representation of an isotropic tetradic like  
 1,1

C   is in principle known since two centuries 

and enjoys a clear physical interpretation. For isotropic hexadics like  
 2,2

C   we find them in 
MINDLIN/ ESHEL (1968), see (4.84). However, a physical interpretation for the latter is still 
lacking. In what follows we want to further the understanding and knowledge of such isotropic 
hexadics. 

   An isotropic hexadic can be represented by 

(5.7)   
 2,2

C = 
5

i=1
 ci Bi   

as a linear combination of five base hexadics with components 

B1 ijklmn   =  δjk δim δnl + δ jk δin δml + δji δkl δmn + δjl δik δmn  

B2 ijklmn   =  δji δkm δnl + δjm δki δnl + δji δkn δml + δjn δik δml  

(5.8) B3 ijklmn   =  δjm δkl δin + δjl δin δkm + δjn δim δkl + δjl δim δnk  

B4 ijklmn   =  δjn δil δkm + δjm δkn δil  

B5 ijklmn   =  δjk δil δmn   

with respect to any orthonormal basis  {ei  ej  e k  el  em  en} . 

The metric of  {Bi}  is 

 

 

(5.9) Bi   Bj  = 

168 96 96 24 36

96 192 72 48 12

96 72 192 48 12

24 48 48 72 18

36 12 12 18 27

 
 
 
 
 
 
  

  

 

 

 We observe that 

 ½ B4  maps every subsymmetric triadic onto itself 

 1/3 B5 maps every tensor of the form  v  I  onto itself 

 1/8 B2  maps every tensor of the form  I  v onto  sym23 (I  v) , i.e., its right  
subsymmetric part.  

Before turning to the spectral decomposition,  a more suitable basis is introduced by 

 B1 : =   1/15 (B1 + B2 + B5) + 1/6 (B3 + B4) 
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 B2 : =  1/12 (2 B1  B2  2 B3 + 4 B4  4 B5)  

(5.10) B3 : =  1/60 (6 B1  9 B2 +16 B5) 

 B4 : =  1

6 5
 (3 B1  4 B5) 

 B5 : =  1/20  (2 B1 + 3 B2 + 8 B5) . 

The metric of this basis is diagonal with  

(5.11) Bi   Bj  =  {7, 5, 6, 6, 6}.  

The components of  
 2,2

C  with respect to this base are  

 c1  =  2 (c4 ­ c3) 

 c2  =  4 c3 + 2 c4 

 (5.12) c3  =  1/6 (12 c1 ­ 16 c2  + 2 c3 + 9 c5)  

 c4  =  
2 5

3
 (3c1 + 2 c2 + 2 c3) 

  c5  =  1/2 (4 c1 + 8 c2  + 2 c3 + 4 c4 + 3 c5) . 

The spectral representation of  
 2,2

C  can be expressed with respect to this basis as 

(5.13) 
 2,2

C = 
4

i=1
 i Pi   

with the eigenvalues 

 1  =  c1  cr  =  ½ (3  4) 

(5.14) 2  =  c2  c3  =  cr cos    

  3  =  c5 + cr  c4  =  cr sin    

 4  =  c5   cr c5  =  ½ (3 + 4) 

with  cr  = 2 2
3  4c +c  and the eigenprojectors 

 P1 =  B1 

 P2 =  B2 

(5.15) P3  =  1/2 (B5 + 3

r

c

c
B3  + 4

r

c

c
 B4)  

 P4  =  1/2 (B5  3

r

c

c
B3   4

r

c

c
 B4) . 

We introduce a dimensionless parameter    by   
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(5.16) cos   =   3

r

c

c
       sin   = 4

r

c

c
 

which allows us to use the four eigenvalues  1 , ... , 4  and this parameter as the five indepen-
dent material constants, where    determines the last two eigenprojectors. One can express the 
dependence of the projectors and eigenvalues on this angle like 

(5.17) P3 ()   =  P4 ( +)  

 3 ()   =  4 ( +) 

so that it is reasonable to restrict    to the interval  [0 , ) . The metric of this basis is diagonal 
with  

(5.18) Pi    Pj  =  {7, 5, 3, 3},  

i.e., the multiplicities of the eigenvalues are 5, 7, 3, and 3. The projectors fulfill the usual  
conditions like the bi-orthogonality 

(5.19) Pi  Pj  =  δij Pi  

and the completeness since  
4

i=1
 Pi  gives the sixth-order identity on triadics with right 

subsymmetry. These equations resemble those of the spectral decomposition of a transversely 
isotropic stiffness tetradic, which also contains in general five independent components and 
four distinct eigenvalues37.  

The previous formulae are convenient if one knows the parameters  c1 , ... , c5  and wants to 
determine the eigenvalues and the third and fourth eigenprojector. The inversion of these  
equations is 

 c1  =  [10 1  4 2  3 (3 + 4) + 3 (3  4) (cos  + 5 sin  )] /60 

 c2  =  [10 1  8 2 + 3 (3 + 4)  3 (3  4) cos  ] /120 

(5.20)  c3  =  (2  1) /6  

 c4  =   (21 +2) /6 

  c5  =  [5 1  2 + 3 (3 + 4) + (3 4) (2 cos  + 5 sin  )] / 15. 

 

Harmonic Decomposition 

These results become clearer from the point of view of the harmonic decomposition of a third-
order tensor with one subsymmetry38. The projectors, or more precisely, the parameter    
distinguishes a specific decomposition of the first-order harmonic contribution, which is  
discussed next39. 

                                                 
37 see Appendix A of KALISCH/ GLÜGE (2015). 
38 see OLIVE/ AUFFRAY (2014), ZHENG/ ZOU (2000). 
39 see GOLUBITSKY/ STEWART/ SCHAEFFER (1988), 
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We will denote the set of all triadics with right subsymmetry by Triad  . In this space live 
 2

T and   
 2

U . By virtue of the harmonic decomposition, a triadic  H  is decomposed into a sum of  
mutually orthogonal tensors 

(5.21) H  = 
N

i=1
 Hi       with   Hi  Hj  =  0  for  i  j 

which can correspond to the eigentensors of 
 2,2

C . Here  N  is the number of different eigen-
values. Each  Hi  is related to a different harmonic tensor  H n

i  by an isotropic linear mapping 
3+n

iL so that  

(5.22)  Hi  =  
3+n

iL  H n
i  

with an n-fold contraction. The order n of the harmonic tensors does not exceed that of the  
decomposed tensor. The harmonic tensor spaces are denoted by  Hi   with dimension  2i +1 due 
to the fact that harmonic tensors are completely symmetric and traceless, i.e., zero for all  
possible index contractions. 

Triad   is decomposed into the direct sum () of mutually orthogonal subspaces  Hi . These sub-
spaces are closed under the action of the RAYLEIGH product (0.4) with an element of  Orth + , 
i.e., 

 H   Hi   Q  H   Hi  . 

A further decomposition without loss of this property is not possible. For this reason this  
decomposition is irreducible.  

The harmonic decomposition can be thought of as the diagonalization of a matrix. The matrix 
originates from the action of the group Orth +  on the tensor space as rotations by means of the 
RAYLEIGH product. Subspaces for harmonic spaces of equal order form block matrices on the 
main diagonal, unless we define additional orthogonal decompositions.  

The respective tensor  H  can be represented by a linear combination of products of the form 

(5.23) H  =  
3

i=1


6

j=1
 Cij ei  Ej  

with two orthonormal bases  {ei}  and  {Ei}  in the three-dimensional EUCLIDean space and 
the space of symmetric second-order tensors, respectively. The harmonic decomposition of  
these spaces is given by  H1   and  H0   H2 , respectively. The three-dimensional space cannot 
be decomposed into harmonic subspaces, hence it is represented by the three-dimensional space   
H1 . The six-dimensional space of symmetric second order tensors is decomposed into the well-
known spherical and deviatoric symmetric parts, the first of which is one-dimensional and  
corresponds to  H0 , while the second one is five-dimensional and corresponds to the symmetric 
and traceless second-order tensors of  H2 . 

Similar to the decomposition (5.23), one can construct the space Triad  as the dyadic product of 
the form  
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(5.24) Triad   = H1   (H0   H2) . 

With the CLEBSCH-GORDAN rule 

(5.25) Hm   Hn  = 
m+n

k = m-n
 Hk 

we achieve 

 Triad   =  H1   (H0   H2) 

 =  (H1   H0)  (H1   H2)     

(5.26) =  H1   H1  H2   H3     

 =  H3   H2  H1 
2 . 

Thus we get two three-dimensional, one five-dimensional, and one seven-dimensional  
subspace, altogether forming the 18-dimensional space  Triad  of third-order tensors with right 
subsymmetry.    

The harmonic decomposition is unique regarding the number and the dimensionality of the  
subspaces. However, when two subspaces of equal dimension appear, then there is an arbitrari-
ness in the isomorphisms that connect  Hi   and  H n

i  after (5.22). In our representation, this  
arbitrariness corresponds to the angle   that determines the direction of the two eigenprojectors  
P3  and  P4  of the eigenvalues  3   and  4 , each having the multiplicity of three. The relations 
(5.22) are here  

 H1   H 3
1  

 H2     H 2
2  with the permutation triadic  

(5.27) H3    H 1
3 cos ( /2) P4/1 5 sin  /2 P4/2  

 H4    H 1
4 sin  /2 P4/1 5 cos  /2 P4/2  

where H 3
1 , H 2

2 , H 1
3 , and  H 1

4  denote the completely traceless and symmetric tensors of 

dimension 7, 5, 3, and 3, and Hi  the eigentensors of  
 2,2

C . Further, P4/1,2  are the isotropic  
projectors from the spectral decomposition of isotropic stiffness tetradics with the compression 
modulus  K  and shear modulus  G   

(5.28) 
 1,1

C =  3K P4/1 + 2G P4/2   

with the isotropic fourth-order eigenprojectors  P4/1 = 1/3  I  I  and  P4/2 =  (I S   1/3 I  I)  

with the fourth-order symmetrizer  I S : =  ½ (ei  ej + e j  ei)  (ei  ej + e j  ei) . 

 

The 7-dimensional eigenspace  H1 

A displacement field  u  associated with the third-order harmonic tensor 
 2

U  has the following 
properties 
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 ui ,jj =  0            u  =  div grad u  =  o 

(5.29) ui ,ik  =  0          grad div u  =  o 

 ui ,jk  =  uj ,ik     grad rot u  =  0  . 

Here    denotes the LAPLACE operator. Thus,  u  is a harmonic function, and the volumetric 
strain must be homogeneous. The HELMHOLTZ representation theorem tells us that there is a 
scalar field    and a vector field  a  that is divergence free (COULOMB´s gauge) such that  

(5.30) u  =   +   a    and   div a = 0 

hold. Using  ui ,i = div u = tr H  =    , we find with (5.29.2) 

(5.31) grad    =   grad   =  o   

since for sufficiently smooth fields the LAPLACEan and the gradient operation commute. 
(5.29.3) is equivalent to 

(5.32) grad rot u  =  (u  )    =  0 . 

So the rotational part of  u  is also homogeneous. The HELMHOLTZ representation and  
COULOMB´s condition imply 

(5.33) ( a)    =   grad a  =  0 . 

Since the LAPLACEan and the gradient operation commute,    = ui ,i  and   a  are homo-
geneous (5.31), (5.33), and    and  a    are harmonic functions due to (5.31) and (5.33). 

In conclusion, the displacement fields that generate the eigenstrain gradients in  H1 

 are free from volumetric strain gradients (5.29.2), 

 their components have zero mean curvature (5.29.1), 

 the gradient of the axial vector  u    vanishes (5.33), i.e., the rotational part of the  
displacement field is homogeneous.   

 

The 5-dimensional eigenspace H2 

For convenience we drop the indices of the components of  H 2
1  in what follows. With respect 

to an ONB we get 

(5.34) ui ,jk  =  ½ (ijl Hlk + ikl Hlj)  

where  ui  is the component of the displacement field that produces only strain gradients in the 
5-dimensional eigenspace that is isomorphic to  H2 .  

We cannot directly transfer the traceless and symmetric properties of  H 2
1  to the displacement 

gradient, since a summation index is involved in  H 2
1  but not in  ui ,jk . Taking the two inde-

pendent traces  ui ,jk  gives 

(5.35) ui ,jj  =  ½ (ijl Hlj + ijl Hlj) = ijl Hlj  =  0      axi skw H 2
1 = o 

 uj ,jk  =  ½ (jjl Hlk + jkl Hlj) = ½ ijl Hlj  =  0      axi skw H 2
1 = o . 

so that both conditions bear the same information.  
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The skew part of  H 2
2  (and hence the axial vector of it) is zero by definition. Thus we find that 

the eigenstrain gradients of the 5-dimensional eigenspace belong to harmonic displacement 
fields without volumetric strain gradient, as in the case before.  

Now we consider 

 2 (nij ui ,j) ,k  =  2 nij ui ,jk = nij (ui ,jk  uj ,ik) 

 =  nij ½ (2ijm Hmk + ikm Hmj  jkm Hmi) 

(5.36) =  ½ (2ijn ijm Hmk + ijn ikm Hmj  jni jkm Hmi) 

 =  2 δnm Hmk + ½ [(δjk δnm  δjm δnk) Hmj  (δnk δim  δnm δik) Hmi ] 

 =  2 Hnk + ½ (Hnk   δnk Hmm   δnk Hmm + Hnk) 

 =  3 Hnk . 

In symbolic notation we thus have 

(5.37) H 2
1    (u  )    =  ( a)    =   (a  ) . 

H 2
1  is symmetric and deviatoric. The latter property is in accordance with COULOMB´s  

condition on  a . The symmetry of  H 2
1  implies another constraint on  a    

(5.38)  (a  )  =   (  a) 

 0  =   (a      a) 

(5.39) =     (a  ) 

(5.40)     o  =   (a  )   =  ( a)   . 

The divergence of (5.38) provides by means of the COULOMB condition 

 o  =  [ (a      a)]  

(5.41) =   [(a  )   (  a) ] 

 =   ( a   (a )  =    a . 

Therefore,  a  must be a biharmonic function. In conclusion, the displacement fields that  
generate eigenstrain gradients in  H2 

 are free from volumetric strain gradients, 

 have zero mean curvature,  

 and the divergence of the gradient of the axial vector  u    vanishes. 

The last restriction is weaker than in the case of  H1  since we have less constraints to exploit in 
the present case (one zero trace and one symmetry vs. two zero traces and one symmetry).  

 

The 3-dimensional eigenspaces 

Unfortunately,  H 1
3  and  H 1

4   have no symmetry or zero trace that could be exploited. The 
third and the fourth eigenmode depend on the angle    which depends on the coefficients   
c1, 2, 3, 5 through (5.16). Thus we can determine canonical angles by taking one of the  c1, 2, 3, 5  as  
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infinite, or consider more general directional limits with fixed rations between  c1, 2, 3, 5 . When 
doing so, two special cases emerge, namely when  c2  or  c5  are infinite. In both cases, the third 
eigenvalue  3  becomes infinite, and its eigenprojector  P3  becomes  1/8 B2  or  1/3 B5

 ,  
respectively. The angles   that belong to these materials can be inferred from (5.16) and one 
finds the following limits 

 c2    :  cos      2/3 ,  P3 = 1/8 B2  , 3     

 c5    :  cos     1 ,  P3 = 1/3 B5  , 3     

However, we can also adjust    and the eigenvalues  1, 2, 3, 4  independently. 

 

The case  cos  =  2/3 

The eigentensors of the third and fourth eigenvalue are related to the harmonic tensors  H 1
3  

and  H 1
4  through 

(5.42) H3  =  H 3
1  I S  =  sym23 I  H 1

3  

 H4  =  H 1
4  (I S  6 P4/1) / 5 . 

This case is closest to the usual strain decomposition into dilatoric and deviatoric parts. The 
eigenmodes of the third eigenvalue are gradients of the volumetric strain. Unfortunately, the 
fourth eigenmode does not correspond to a gradient of a deviatoric strain.  

By considering  

(5.43) cos   =   3

r

c

c
 =  2/3      and     sin   =  4

r

c

c
 = 5 /3 

 remember the restriction of    to the interval  [0 , )  , by eliminating  and summarizing, 
one finds that this case corresponds to 

(5.44) 4c1 + 2 c3 + c5  =  0 . 

 

The case  cos  = 1 

The eigentensors of the third and fourth eigenvalue are related to the harmonic tensors  H 1
3  

and  H 1
4  by  

(5.45) H3  =  H 1
3  P4/1 

 H4  =  H 1
4  P4/2 . 

A calculation similar to the symbolic examination of the 7- and 5-dimensional eigenspaces 
shows that both eigenstrain gradients  H3  and  H4  result from displacement fields with a  
biharmonic field    in their HELMHOLTZ representations. In terms of  ci , this case corre-
sponds to 

(5.46) 3c1 + 2 c2 + 2 c3  =  0 . 
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Relations to other forms of the strain gradient elasticity 

We next summarize the conversion of the parameters between the two forms of strain gradient 
elasticity, namely those of MINDLIN/ ESHEL (1968), NEFF/ JEONG/ RAMEZANI (2009), 
and LAZAR/ MAUGIN/ AIFANTIS (2006). 

 

MINDLIN/ ESHEL´s second form of strain gradient plasticity 

MINDLIN and ESHEL´s two forms for the isotropic strain gradient energy comprise the  
following non-classical terms 

(5.47)    ½ 
 2

U   
6

C U  
 2

U                            with 
 2

U  : = grad grad u  

    ½ M  
6

C M   M                               with  M  : =    E . 

With respect to the basis  {Bi} , the components of the first hexadic expressed by those of the 
second are related as 

 cU 1  =  1/2 (cM 1 + cM 2) 

 cU 2  =  cM 1 /2 + cM 2 /4 + cM 5 /4   

 (5.48) cU 3  =  3cM 3 /4 + cM 4 /4   

 cU 4  =  1/2 (cM 3 + cM 4) 

  cU 5  =  cM 2 . 

Note that MINDLIN uses another basis as we do, so that his components are also different from 
ours.  

 

The form of NEFF/ JEONG/ RAMEZANI (2009) 

The following table gives the conversion of special cases of strain gradient elasticity to the 
components of MINDLIN´s isotropic stiffness hexadic (5.47). 
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elastic energy  w   c1, 2, 3 ,4, 5   λ1, 2, 3, 4  ,  κ 

 u ⊗∇ ⊗∇2 

∆ u2 

sym(u ⊗∇) ⊗∇2 

dev sym(u ⊗  ∇) ⊗∇2 

skw (u ×∇) ⊗∇)2 

(u ×∇) × ∇2 

(u ·∇)∇2 

(u ×∇) ⊗∇2 

dev[(u ×∇) ⊗∇]2 

sym[(u ×∇) ⊗∇]2 

dev sym[(u ×∇) ⊗∇]2 

sym[sym(u ⊗∇) ×∇]2 

0, 0, 0, 1, 0 

0, 0, 0, 0, 2 

0, 0, 1/4, 1/2, 0 

0, −1/6, 1/4, 1/2, 0 

−1/2, 1/4, 0, 0, 1 

−1, 1/2, 0, 0, 2 

0, 1/2, 0, 0, 0 

0, 0, −1/2, 1, 0 

0, 0, −1/2, 1, 0 

1/2, −1/4, −1/2, 1, −1 

1/2, −1/4, −1/2, 1, −1 

1/8, −1/16, −1/8,  1/4,  −1/4 

2, 2, 2, 2 , arbitrary 

0, 0, 6, 0, 0 

2, 1/2, 2, 1/2, arccos(1/9) 

2, 1/2, 7/6, 0, arccos(19/21)

0, 0, 3, 0, arccos(−1/9) 

0, 0, 6, 0, arccos(−1/9) 

0, 0, 4, 0, arccos(−2/3) 

0, 3, 3, 0, arccos(−1/9) 

0, 3, 3, 0, arccos(−1/9) 

0, 3, 0, 0, arbitrary 

0, 3, 0, 0, arbitrary 

0, 3/4, 0, 0, arbitrary 

 

Table. Special cases of strain gradient elasticity translated into the parameter set ci .  
dev means deviatoric part, skw means skew part, sym means symmetric part. 

 

 

The form of LAZAR/ MAUGIN/ AIFANTIS (2006) 

These authors recommend the use of 

(5.49) 
 2,2

C ijklnm  =  l 2 
 1,1

C jkmn δil  

with an internal length parameter  l  with respect to the form (5.47.1). In the case of anisotropic 
elasticity, the second order tensor that extends the stiffness tetradic is invariant under the action 
of the material symmetry transformations. In the case of isotropy and cubic elasticity, this  
tensor is spherical. This leads to the following relationships with our coefficients 

 c1  =  0 

 c2  =  l 2 (K / 4  G / 6)  

 (5.50) c3  =  l 2 G / 4   

 c4  =  l 2 G / 2 

  c5  =  0 

with compression modulus  K and shear modulus  G . 

This gives for MINDLIN´s second form (5.47.2) only two non-zero parameters 
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 c1, 2, 3  =  0  

(5.51) c4  =  l 2 G 

  c5  =  l 2  

with the LAMÉ constant   . 
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6.  Internal Constraints 
 

The following chapter is based on the article 

Bertram, A.; Glüge, R.: Gradient Materials with Internal Constraints. 
Mathematics and Mechanics of Complex Systems (to appear) 

 

6.1  Mechanical Internal Constraints 
 

The theory of internal constraints as it is described in, e.g., TRUESDELL/ NOLL sect. 30 
(1965), is a useful tool for the description of incompressible materials, inextensible composites, 
and many more material classes. It provides us with a basis upon which both theoretical and 
practical investigations can be developed. Particularly, it provides a change of the structure of 
the basic balance equations, which can be helpful for the construction of solutions of the field 
problem. This way, the only non-homogeneous universal solutions for simple materials are 
those for constrained materials40.  

For gradient materials, one wants to introduce internal constraints other than the classical ones 
to again benefit from such extensions. The question arises whether such an extension is  
possible, or demands substantial alterations of the entire format. It turns out, and will be shown 
in the sequel, that such an extension is in fact straight-forward once a theory of gradient  
materials has been constructed, at least within the mechanical context.  

 

Classical Internal Constraints 
 

The classical theory of internal constraints is based on two assumptions.  

Assumption 6.1. (internal constraint) 
There are restrictions upon the possible deformations of the material, such that a scalar valued 
function of  the motion and its gradient equals zero for all possible deformations 

(6.1)   ( , Grad )  =  0 

Assumption 6.2. Principle of determinism for simple materials subject to internal constraints 
The stress is determined by the deformation process only to within an additive part  TR  that 
does no work in any possible motion satisfying the constraint.  

If one applies the Principle of Invariance under Rigid Body Modifications (Axiom 2.1) to the 
material function   , one can show that a function  red(C)  with the right CAUCHY-GREEN 
tensor  C  (0.36) is invariant and, hence, a reduced form.  

Such a constraint would be considered as isotropic if  it is invariant under arbitrary rotations 

(6.2)   red(C)  =  red(Q  C  QT) 

                                                 
40 see ERICKSEN (1955) 
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for all orthogonal tensors  Q . In this sense, incompressibility would be an isotropic constraint, 
while inextensibility in one direction is not.  

By exploiting the second assumption, we start with an additive split of the CAUCHY stresses 
into an extra part and a reactive part 

(6.3)   T  =  TE + TR     

so that the specific stress power of the latter vanishes for every compatible process 

(6.4)   1/ TR  D  =  0 .  

We can bring the constraint equation into a rate form 

   red(C) =  grad red(C)  C   =  0 

and express the stress power in terms of a reactive 2nd PIOLA-KIRCHHOFF stress 

(6.5)   1/0 SR  C  =  0  with  SR  : =  F –1  J TR . 

If we multiply this equation by a LAGRANGEan multiplier and add it to the constraint  
equation, we find that the 2nd PIOLA-KIRCHHOFF reaction stress  SR  must have the  
representation 

(6.6)   SR  =   C red(C)    

and the CAUCHY reaction stress 

(6.7)   TR  =   F  C (C)  FT     with    R . 

As a normalization of the decomposition, we can pose the orthogonality condition 

(6.8)   TR  TE  = 0  

or  

(6.9)   SR  SE  = 0 . 

This is, however, not necessary and often not even practical. 

If there is more than one internal constraint (say N ≤ 6), we also have more than one reaction 
stress, which can be superimposed to the total stress as 

(6.10)   T  =  TE + 
N

i 1
 i F  C i (C)  FT    with  i  R .  

TRUESDELL/ NOLL (1965) put these assumptions in an axiomatic way, without giving any 
substantiation for them other than the plausibility of their consequences in particular  
applications. 
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Non-Classical Internal Constraints 
 

The question arises, if one could generalize such a construction to gradient materials. It turns 
out that such a generalization is straight-forward. We again make the two assumptions. 

Assumption 6.3. There are restrictions upon the possible deformations of the material, such 
that a scalar valued function of  the motion, deformation gradient, and the second gradient 
equals zero for all possible deformations 

(6.11)   ( , Grad  , Grad Grad )  =  0 

If this is understood as a constitutive equations, it must fulfill the EUCLIDean invariance  
Axiom 2.1. This leads to the following reduced form of the non-classical internal constraint 

   red :  Conf     R 

such that 

(6.12)   red(C, K)  =  0 

holds for all motions. The rate form of the constraint equation is 

(6.13)   C red  C + K red  K  =  0 .  

Assumption 6.4. Principle of determinism for simple materials subject to internal constraints 
The stresses and the hyperstresses are determined by the deformation process only to within 
additive parts  TR andGR  that do no work in any possible motion satisfying the constraint.  

The decomposition of the stress tensors is therefore 

   T  =  TE + TR    and  G  =  GE + GR    

or of the material stresses 

   S  =  SE + SR     and  H  =  HE + HR . 

It has been shown in (2.24) that the specific stress power for a second-gradient material can be 
brought into the following EULERean and LAGRANGEan forms. After the second assumption 
we have 

(6.14)   0  = 1/ (TR  grad v + GR  grad grad v)   

=  1/0 (½ SR
  C + HR  K) . 

By subtracting an -fold of the constraint equation in the rate form, we obtain 

(6.15)   0  =  (
0

1

2
 SR

   C red)  C + (
0

1


 HR   K red)  K 

so that the following equations must hold 

(6.16)   SR  =   C red(C, K)    

HR  =   K red(C, K) 
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with a joint LAGRANGEan parameter   which couples the two reactive stresses.    

The constraint equation allows for the following choice: Certain parts of the deformation  
gradient cannot vary in space.  

For  F  having nine independent components, and the space having three linear independent 
directions, 9 x 3 = 27 such constraints on  Grad F  are possible. This, however, reduces to 18 
independent constraints because of SCHWARZ´ commutation law since  Grad F  has the right 
subsymmetry 

(6.17)   Fij , k  =  i , jk  =  i , kj =  Fik , j . 

This subsymmetry also applies to the configuration tensor  K . 

In SEPPECHER/ ALIBERT/ DELL’ISOLA (2011) one finds examples of materials with  
microstructures with such properties.     

By imposing 18 independent constraints of this kind, the deformation gradient can only be  
constant in space. Bodies with this property have been investigated in the past under the label 
homogeneous strains, see SLAWIANOWSKI (1974, 1975), or pseudo-rigidity, see COHEN 
(1981), COHEN/ MUNCASTER (1984), COHEN/ MAC SITHIGH (1989), ANTMANN/ 
MARLOW (1991), CASEY (2004, 2006, 2007). However, these approaches are completely 
different from the present one, since there the homogeneity of strains is imposed on the body as 
a global constraint, while in the present approach we still assume local constraints as an exten-
sion of classical constraints to gradient materials.  
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6.2  Thermomechanical Constraints 
 

Not only in mechanics, but also more general in thermo-mechanics, the introduction of internal 
constraints can be advantageous. In the literature, several suggestions have been made to  
generalize the mechanical concepts of constraints to thermodynamics, see GREEN/ NAGHDI/ 
TRAPP (1970), TRAPP (1971), ANDREUSSI/ PODIO-GUIDUGLI (1973), GURTIN/ 
PODIO-GUIDUGLI (1973), CASEY / KRISHNASWAMY (1998), BERTRAM (2005), 
CASEY (2011).  

   In what follows, we extend the concept made in TRAPP (1971) and BERTRAM (2005), 
where one also finds examples for thermomechanical constraints like temperature-dependent 
incompressibility or inextensibility. 

Definition 6.1. A thermo-mechanical internal constraint consists of material functions 

  J   :   Conf   R +      Triad (C, K ,  )     J(C, K ,  )       

(6.18)  J   :   Conf   R +      Sym (C, K ,  )     J(C, K ,  )       

  j    :   Psym   R +      V  3   (C, K ,  )     j(C, K ,  ) 

  j    :   Psym   R +     R   (C, K ,  )    j(C, K ,  ) 

such that for all admissible thermo-kinematical processes the constraint equation 

(6.19)  J(C, K ,  )  K  + J(C, K ,  )  C + j(C, K ,  )  g0 + j(C, K ,  )    =  0 

holds at each instant. 

Since we made use of material variables, this constraint is already in a reduced form. The first 
two terms, to which the equation is reduced in the isothermal case, corresponds to the  
mechanical constraint in its rate form (6.13).  

   Once again, we have to modify the Principle of Determinism. 

Assumption 6.5. Principle of determinism for materials with thermo-mechanical internal 
constraints 
The current values of the hyperstress, stress, heat flux, internal energy, and entropy are deter-
mined by the thermo-kinematical process only up to additive parts that are not dissipative  
during all admissible processes that satisfy the constraint equation (6.19). 

Thus, we have the decompositions of the dependent variables into reactive parts and extra 
parts: 

 hyperstress   H  =  HE + HR 

PIOLA-KIRCHHOFF stress S  =  SE + SR 

(6.20) heat flux   q0 = q0E + q0R 

internal energy    = E + R 
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entropy     = E + R 

and, consequently, also for the  

free energy     =  E + R –  E  –  R  = :  E + R  

where only the extra-terms depend on the thermo-kinematical process. The reaction parts do 
not dissipate in the sense of the CLAUSIUS-DUHEM inequality  

(6.21)   
0

1


 (½ SR

  C + HR  K)  –  
0

1

θ ρ
q0R  g0  – R

 – R    =  0  

for all admissible thermo-kinematical processes. If we subtract from this equation an -fold of 
the constraint equation we get 

(6.22)   (
0

1

2
SR –  J )  C + (

0

1


HR –  J )  K –  (

0

1

θ ρ
q0R +  j)  g0   

   – R
 – (R + j )    = 0  

for any real   . Because of the arbitrariness of  C , K, g0 , and    , this is solved for all  
constrained materials only by  

(6.23)   HR  =   0 J(C, K ,  ) 

   SR  =  2  0 J(C, K ,  ) 

   q0R  =  –   0   j(C, K ,  )  

   R
  =  0 

   R  =  –   j (C, K ,  ) 

or spatially  

(6.24)   GR  =    F  ○ J(C, K ,  ) with   GR  = F ○ J –1 HR  

   TR  =  2  F  J(C, K ,  ) with   TR =  F  J –1 SR 

   qR  =  –     F  j(C, K ,  ) with  qR =  F  J –1 q0R . 

With this form, for no    R  can a contradiction to the CLAUSIUS-DUHEM inequality  
occur if the extra terms already fulfill it alone.  

Since the free energy is only determined up to a constant, we can principally assume  R  =  0 . 

As a normalization of the decomposition, one can pose the orthogonality condition 

(6.25)   HR  HE + ¼ SR  SE  + q0R  q0E / 2  + 0
2 R  E  =  0 . 

This is, however, not compulsory and perhaps not even practical.  

If more than one constraint is active, then the reactive parts are simply additive superpositions 
of those resulting from each constraint alone. 
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Introduction of internal constraints in a natural way 
 

In BERTRAM (1980, 1982) another approach to establish a theory of internal constraints has 
been suggested, claiming to be in a natural way. Here only solids are considered for which the 
stresses are (at least partly) caused by elastic deformations. The idea there is, roughly speaking, 
to consider constraint material behavior as a limit of hyperelastic behavior with increasing 
stiffness for certain deformation modes.  

If one starts with hyperelastic behavior of a simple material, one can consider a tangential  
stiffness tensor with 6 (not necessary different) eigenvalues called principal stiffnesses in the 
case of classical (non-gradient) materials. If one produces a series of such materials by  
incrementing one of these eigenvalues to infinity and keeping all others finite, one produces in 
the limit a material behavior that is constrained in such a way that the deformation mode  
belonging to this eigenvalue tends to zero if only finite stresses are applied. It has been shown 
there that for an isotropic or anisotropic hyperelastic material, this construction exactly leads to 
the above two Assumptions 4.1 and 4.2.  

The method to produce internal constraints in a natural way can also be applied to gradient  
hyperelastic materials. We can (locally) linearise the elastic laws (2.34) and (2.35) by taking 
their incremental forms 

(6.26)   dS  =  
4

E  dC + 
5

E  dK 

   dG  =  dC  
5

E + 
6

E  dK  

with a 

 fourth-order symmetric stiffness tensor (tetradic)  
4

E   : =  20 CC w(C, K) 

 sixth-order symmetric stiffness tensor (hexadic)   
6

E   : =  0 KK w(C, K) 

 fifth-order stiffness tensor    
5

E   : =  20 CK w(C, K) . 

Interesting for us is the stiffness hexadic  
6

E  since it does not exist for classical materials. We 
can bring the hexadic into a spectral form 

(6.27)       
6

E  =  
18

i 1



i 

6

iP  

with 18 (not necessarily distinct) eigenvalues  i  and the same number of eigenspace projectors 

of sixth-order 
6

iP . These are related to the third-order normalized and orthogonal eigentensors  
Ei   of the stiffness hexadic by the sum 

(6.28)   
6

iP =  
iM

j 1
 Ej  Ej 
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over the multiplicity  Mi  of the particular eigenvalue. The construction of internal constraints 
in a natural way consists of taking for all of these eigenvalues finite values except for one, say 
1 .  

   Let us first consider an eigenvalue of multiplicity one. In the limit, one would not be able to 
deform the material in the corresponding mode by applying finite stresses. Thus, we obtain the 
constraint equation (in this case independent of  C ) 

(6.29)   red(K) : =  E1 K  =  0 

and expect the reaction hyperstresses after (6.16.2) as 

(6.30)   HR  =   K red(K)  =   E1     

with some scalar field   . 

Such a constraint would be considered as isotropic if it is invariant under arbitrary rotations 

(6.31)   red(K)  =  red(Q  K) 

for all orthogonal tensors  Q . Clearly, this is the case if and only if 

(6.32)   E1 = Q  E1 

i.e., for isotropic tensors. But this would be a rather drastic restriction, which should not be 
made in general.  

We can also superimpose the  M  constraints of a multiple eigenvalue in one equation 

(6.33)   red(K) : = K 
6

1P  K  =  0 .  

 

   An alternative approach to create internal constraints was suggested by CASEY (1995) and 
BAESU/ CASEY (2000) in a mechanical, and CASEY/ KRISHNASWAMY (1998) and  
CASEY (2011) in a thermomechanical setting where the constrained material is identified as an 
equivalence class of unconstrained ones.  
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