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Äbslract. Queuching is a complex thenro-rnechano-rnctallurgic.'rl plobli:m. During the quench-

ing process, transient heat conduction, mctallic phase translbrmations, and plastic behaviour of

the rnetals introduce high residual stresses and distortions. This article presents the mathemati-

cal formulation of the physics behind the quenching process, numerical techniques and

optimum of cooling strategies for the selected geometries. The Finite Element Method (FENI)

is used to solve the coupled partial differential equations in the framework of an isothermal-

staggered approach. Coupling effects such as phase transformation enthalpy, transformation-

induced plasticity and dissipation are considered. Numerical examples are presented for an L

profile made up of 100Cr6 steel.

1 Introduction

Quenching can be defined as cooling of metals at a rate faster than cooling in still air.

Quenching is physically one of the most complex processes in engineering and very
difficuit to understand. Quenching used to be called black hole of heat treatment
processes [.|. Most of the metallic parts have to be quenched atter the thermal treat-
ment processes to obtain the required properties such as hardness, micro-structure,
etc. Quenching induces high residual stresses due to several mechanisms like phase
transformation, thermal sbrinkage, and transformation induced plasticity.

The distortion of the L profile can be better understood from Fig. 1, where the
distorted shape of the profile is shown at different stages of cooling. Initially due to
higher thermal shrinkage at the ends of the 1egs, the protile bends torvard the legs (un-
tii 1). However, the ends of the legs soon undergo the phase transition which is also
accompanied by a volume increase. Hence, the distortion changes its direction (1-2).
As the phase transition penetrates through the legs, the distortion again changes its di-
rection and the pro{ile bends toward the iegs one more time (2-3-4). Finally, the phase
transition is completed throughout the profile and the distortion gradually decreases as
the temperature becomes unifbrm (4-5). However, a pennanent deformation remalns
due to the mechanical yielding and transformation induced plasticity.

The computer simulation of the quenching process includes three different analy-
ses: (a) Thermal analysis tbr the computation of cooling curves, (b) Metallurgical
analysis for the computation of micro structure composition, and (c) iVlechanical
analysis for computation of stresses and strains.
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Fig. l. Distortion of L profile at diffcrent stages of qLtetrchrrtg

The latent heat released during the phase transformation increases the non-linearity

of the problem. The heat flow method [2] is used to model the thermal field, and the

FEM is employed for solving the thermal equilibrium equation. In steel like alloys,

diffusive and displacive solid-solid phase transformations occur. The diffusive trans-

fbrmation is time-dependent and occurs in the high temperature zone. During the

diffusive phase transformation, the parent austenite phase transfbrms into product

phases such as pearlite and bainite. Unlike diffusive, the displacive transformation

occurs in the lower tempelatule zone which is independent of the time. Martensite is

the only product of the phase displacive transformation.
The shape change during the quenching process occurs due to the elastic, plastic.

thermal phase changes, and transformation induced plastic strains. The complex

mechanism behind the residual stress evolution during the quenching process is weli

explained by Todinov [3]. References [4-8] give more information about the distor-

tion and residual stress calculation during metal quenching. This article is arranged in

the following manner: Section 2 presents the mathematical formulation of the three

physical fields. The FEM implementation with the isothermal staggered algorithm is

described in Section 3. The simulation results are presented with numerical examples

in Section 4.

2 MathematicalFormulation

During the quenching process, the temperature, micro-structure, and stresses at evely

material point change with respect to time. The thermal, metallurgical, and mechani-

cal fields are modelled separateiy and discussed in this section

2.1 Thermal Field

Let an open bounded domain QclRn/ (na=1,2,3) be the configuration of a non-

linear thermo-plasric body gwith particles defined by i e Ös, f =04 its smooth

boundary and the time interval of analysis re T (T c IR*). As usual. Ö=Quland
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f = la ufq . The metal quenching problem consists of finding the absolute tempera-

ture field d : ÖxT 4P+ such that [9]

p  r r ä = - Y .  4 +  q ,

subject to the boundary conditions

0 = 0 ,

4 ' i  =  -q ,

0 t i  . i l  =  e , , (x  \'  l r=0

i n  f , )xY ( l )

in  f r  xT

i n f o x T

(2)

(3)

and the initial condition

in O (4)

Eq. (1) r'epresents the energy balance obta:ined frorn the filst law of thermodynam-

ics. The density p and the specific heat capacity cp, are both functions of the tempera-

ture and the phase fractionf. The heat generation per unit volume is denoted by q,,

and { is the heat flux vector. The internal heat generation accounts for both the phase

transformation enthalpies and mechanical energy dissipation

q , = X o r t P

whereTis the fraction of mechanical energy converted into thermal energy, q,is the

yield strength, sp is the rate of effective plastic strain, L; is the latent heat of the indi-

vidual phase transformation, i it the phase transition rate and nn is the number of

product phases. In Eq. (0.2), d" is the prescribed surface temperature on fa On the

heat flux boundary f,,, q. is the normal heat flux due to convection-radiation phe-

nomenon. Using the temperature-dependent overall Heat Transfer Coefficient (HTC)

q, q.t canbe stated according to Newton's law of convection as

q , = - a ( e ) @ - 0 - ) ,  ( 6 )

where 9is the surface temperature, and d-is the ambient temperature. Fourier's law of

heat conduction states that the heat t'lux vector { is proportional to the temperature

gradient

d : -k(o,fr) ve , Q)

where k is the temperature and phase fraction-dependent second-order thermal con-

ductivity tensor.

2.2 Phase Transformation Field

Phase transformations in solids can be classified as diftusive and displacive transfor-

mations. During the transformations in steel, the parent phase austenite may transform

into product phases such as pearlite (diffusive) and martensite (displacive).

r 5 l* T l .  f'  
/  , - t  J  t .
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2.2.1 Diffusive Transformation
The evolution of the diffusive phase transitions is best described by Time-
Temperahrre-Transforrnation (TTT) diagranrs, which are constructed using the
isothermal phasc change data. The IT (also nanred TT1') diagrarns can be obtained
flom the Johnson-Mehl-Avrami-Kolmogorov (JMAK) law 110i. In the l'l' diagram,
the double C-curves ale plottecl for l% (the transformation start time, t,) ancJ 997o (the

transformation end time, r") ofthe product phase fraction at every temperature dusing
the JMAK law. The isothermal formation of the new phase is described by a simple
linear iso-kinetic rule [8]

which states that the rate of phase üansformation is constant in the isothermal case.
The r, and /" can be obtained form the IT diagram. ln the non-isotherrnal case, the
cooling curve is considered to be composed of small isothermal steps. The transfor-
mation begins at the incubation time t6,'a;ad it ends when the phase fraction reaches
unity or the temperature is out of the transformation range. Using Scheil's additivity
rule, the incubation t ime is given as

(8)

|  -  d t = 1 .
d  rs (d( r ) )

(e)

2.2.2 Displacive Transformation
Shear-dominant, diffusionless, martensitic transformations occur when the tempera-
ture of the steel drops rapidly below a critical temperature M". Martensite, which is
hard and brittle, is a solid solution of carbon in tetragonally, distorted BCC iron. In
this work, the displacive transformation is modelled using Koistinen-Marburger's law

t8l

f u  =  f e { t - e x p f t y ( . e - M , ) l ] ,  w h e n  9 < M , . (10 )

wherefia and/a are martensite and austenite phase fractions, M- is the martensite start
temperature and k, (- 0.011) is the stress-dependent transformation constant.

time interval of analysis r e T (-I'c R.'), has to satisfy the equilibrium equation

2.3 Displacement Field

A thermo-plastic body @ wtth

boundary f, , traction boundary

V T + b = 0

subject to the boundary conditions

interior c) c IR."r' (.n1 =1, 2, 3) and displacement

f , ,  f  =  f ,  u f ,  t o g e t h e r  a s  Ö = Q u F a n d  t h e

i n  Ö x T

i n f , x T

( 1 1 )

(12 )ü = ü "
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rvhele T is the stress tensor, 1.r is tlre body folce vector, 17, is the prescribed displace-

ment vector, and ü, is the prescribed traction vcctorwith unit outward normal ri , T'he

total defbrmation observed in the quenching process is less than 4olo. Therefore, using

the advantage of small deformation theory, the total strain E can be additively decom-
posed into four components as in [6]

n =)rva+ (vt)r l  = D" + EP +EIP +E'o , (14 )

where E" is the elastic strain tensor, Ep is the plastic part oI strain tensor' E"'/'is the
'fransi'olmation Intluccd l)lastic (TRll)) strain tensor, aud ll'i' is the volumetric sttaiu

tensor due to temirerature and phase changes. Once estiurating tire plastic, the thermal

phase change, and the TRIP strain tensors, the elastic strain tensor can be obtained

from the total sffain tensor, and its methods of estimation are discussed in the subse-
quent subsections in detail. Using the elastic part of the strain tensor E'", the stress ten-

sor T can be determined from the constitutive law ofthe material.

2.3.1 Volumetric Thermal Phase Change Strain
During the quenching process, the temperature and phase fractions of the material

change drastically. The density of the material undergoing a phase change is a tunc-

tion ofthe temperature and the phase ftactions. For non phase-changing materials like

aluminium, copper, nickel. etc, the densitv depends only on temperature. This nature

of varying density produces a reversible strain E'P. Insteacl of using the coefficient of

thermal expansion, E" is expressed in terms of the reference density pR and the cur-

rent density p ( 0 , f  , l  of the mirture

(15 )

2.3.2 Transformation Induced Plastic Strain (TRIP)

During the phase change period, austenite mav transform into any combination of the

lbllowing micro-structures: pearlite, bainite and martensite. There is an irreversible

sftain always associated with the phase change pheuomena which is known as TRIP

strain, and it is proportional to the stress deviator T' and the rates of phase transforma-
tionf. Even though the induced stress lies below the yield limit, the TRIP strain oc-

curs in phase changing materials like steel. The TRIP strain rate can be calculated

trom the macroscopic material behaviour based on the micro-mechanical approach,

and it is given as in [81
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l . n = t i n l , x T ,

n l

i " ip =_ir ,zf  n,  n(  f  i ) . f  i I ,
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( 1 3 )

(  16)
J = l

where \ is callcd the Greenu'ood-Johnson (GD coefficient which must be determined

experimentally.



2.3.3 Plastic Strain
Whentheequivalentstressexceedstheyieldstress,plast icdeformationsoccur.Using
a classical ratc-indepe'4ent, isotropic, tire.no-plastic material model with a tempera-

i"r"- ^"4 phase fraciion-.l"p"rrcl"ni"onstitutive.law., ancl [ry systenratically employing

the yielcl criterion, toadrngi.ii"rlon, flow rule,hardening rule, antl consistency condi-

tion u,hich are discussetl ,.pu,o."ty,in iletail, tlre plastic strain can be estimatcd. 
.fhe

isotropic constitutive law of the material can be written as in [11]
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T=C"  .E "  = r r r (  E -E tp  ) l +Z l t (  E ' -E " ' e  -Ee  ) (  17)

where(C ' is the fou l tho lc tc re las t i c i t y tensor , ' r i s thebu lkmodt r lusand lz is theshcar
modulus, together ftrnctions of ternperattrre and phase fractions'

1 . | , ie ldcr i te r ion ' ' f l r cvon-Misesy iek lc r i te r io r rhas t l respec ia l fe i r tu reo l . t l re
smooth surface *ith ",rnu"*ity which is suitable for pressure-independent

ductile materials and given as

Q(r ' ,eP,r ,  f  , )=i l  r '  l l -G",GP .0,  f  ) , (  18 )

where tP is the effective plastic strain which is used as a strlin hardemng tn-

ternal variable, and du is the temperature- and phase fractions-dependent

yield strength.

2. Loading criterion. The loading criterion can be stated as

/ = 0 and 6l,u=,o,,,> 0 loading

4i = 0 and ö\r,,="o^u= 0 neutral loading

d = o and Qlr, =,onn < o unloading

3. FIow rule. An associated flow rule is employed and glven as

n,  =s"#=t tn=)"z ,  (1e)

where ,i. an<l n r are the plastic multiplier and the flow surtäce normal or

stress deviator direct ion' respectively'

4. Hardening rule. A linear isotropic hardening rule is considered' and the

vierd strength t' *':,;::j ', ',t 

, = o,"r, r,) + H(g, f ,) ep (20)

where o, is the leld sffength at the virgin state' and H is the plasttc

modulus'Thehardeningstate"variableisintegratedfrclmtheplasticmult i-
olier

6
tn  =  , l - ;  I

Y J

(21)
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5. Consistency condition, In general, the consistencv condition / = 0 yields

the value of the plastic multiplier2. The isothermal staggered algorithm [3]
suggests that the temperature and phase frac:tions should be kept constant

( i .e.,  0 =0 and I,  = 0), so that the plast ic mult ipl icr [11] becomes

' )_zpnl, (i-n"w ) (22)
)  t t + L I f

3 Solution Methodology

'l 'he non-linear couplccl simultaneous crprations obtained through FEN! arc solved us
ing lhe isotherrnal staggered algorithm [131. Thermal, rnetallurgical and mechanical
fields are sequentially solved in every time step in the following way: (a) the thermal
field is solved at fixed configuration and phase fractions, (b) the metallurgical field is
solved at fixed configuration and constant temperature, (c) the mechanical field is
solved at constant temperature and phase fractions. In each time step, first the tran-
sient temperature field is solved iteratively, then the phase transitions are computed,
and finally the displacement fieid is computed iteratively. The discrete form of all
coupled equations are derived and discussed in detail in the following subsections.

3.1 Thermal Field Formulation

Using FEM, the final matrix tbrm of thermal equilibrium is given as

(23)

where K'is the global conductance matrix, Cdis the global capacitance matrix, Fais
the global thennal force vector. antl Rdis the gtobal residual thermal force vector.
The elemental form of these matrices and vectors are given as in [141

{*' '"o'  
* 

*"t i*o'}t  
o"l  = plr+tt -  Rd'+^',

K?' , "o '=

c?',** =

Fdr+^, -

[[u 
t rl' ' n'l ,lo + [f Nsaj.o, 1 ws 1t I ,rr,

. ' l '  
'  

. ' L  
' I  1

J[* oi-o' cet*^' Nr ] ,/e
o

I [ *  n , ' 'o , ]ao+ J[N G:*^ 'o- ) ( t rq
o F "

( )J \

K?: ' *  = l  [n t  k , ' *o 'H lao Io , i ' ' '  +ce" : * f  o "1 'o : -@" ' ]
L , i ' . r l  ( ^ t )

where N is the elernent shape function and H is the element temperature-gradient
interpolation operator.
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3.2 Phase Field Formulation

At thc encl of thermal field comptrtation, the curent tempelatttre Otn^t and the current

temperature increment AO - OI+A/ - Or are knor.vn at every integration point of the

elernents- The displacive and diffusive phase transitions are computed using these

temperature details. Martensitic evolution can be directly determined fr-om the Eq.

(0.Ib). Pearlite is considered as the only product of diffusive transformation which is

a reasonable simplitication. Scheil's sum increment ÄS at the current time step can be

computed using the IT diagram information [8]

AI
As = 

rr+o-5^r
(2s)

The curent Scheil's sum can be updated to St+^r = St + A5' . 
'Ihe general phase

fraction evolved during the curent time step can be given as

^ f =
( L t (26)

.  r+0 .5^r  ,  1+0.54 ,
L ,  

-  I s

The following three possibilities arise in this calculation:

l .

z .

St+^t < I, then Af =0.

Sr+^/ < 1 and St*& > l, the incubation time is reached during the current time

Sl+Ar  _  l
step, and only a fraction foflt contributes to phase transition and ( =

A^t

3. If St*^' > 1 and also St > 1, the phase transition already started and {=1, since the

full time step contributes to phase transition.

3.3 Displacement Field Formulation

The final global form of mechanical equilibrium equation becomes

V u t + A t  A i t  -  f l e t f ^ l  _ P L l  A r
r \ t r \ l (.27)

where K" is the global stiffness matrix, F" is the global equivalent nodal load vector.

R' is the internal reaction vector taken from the previous iteration, and AU is the in-

cremental global displacement vector. Elemental forms of matrices and vectors are

given as in [4]

K:i*o'

F"'l*o'

R:'*o'

* )t t"" o' 
f ar , * J[ Nr u"'*o' ] ,lo

= j[u'
o

= [ [ t "
f l '

= J[u'

C"p,.*^'B)de

T.i*o']  ao

(28)
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where t, is the boundary element traction vector, b.. is the element body force vector,
B is the strain-displacement matrix which is unique for the particular structural prob-
lem which will be discussed in Section 3.4 C"t' , is the elemental tansent elasto-plastic
matrix I  l ] .

3.4 StructuralApplication

Thermal, metallurgical and mechanical field computations which are discussed in
Section 3.1 ,3.2 and 3.3 are similar for any kind of a three dimensional metal quench-
ing process except the calculation of strain-displacement matrix B. The two-
dimensional beam problem is considered in this section. Using an iso-parametric
element fbrmulation, the global co-ordinates and displacements are given in terms of
f ocal co ordinates (4, rt'lby

x((,r) = Ntx, y(4,ry) = Nz Y

u(,€,ri = NrU", u1f,ry; = N?V"
/?q)

The derivatives of the shape functions with respect to the global x and y co-ordinates
are represented bv the operator H of size 2x9 as

(30)

The strain-displacement operator B (subscript 'e' is suppressed) tbr the plane stress
case is the simplest one and it is refereed in this text as standard strain-displacement
operator with size 3x18,

B = Brr,i (3 t1

where .F1* and Hu are thc elements of the llrst and second rows of derivative operator
H. Through the bearn cross-sectional element the long prohles can be analyzed by in-
troducing one e.rtra global node with 3 degrees of freedom. The strain-displacement
matrix for the beam case [8.] has the size 4x21. There is onc additional row and three
additional columns. The introduced addition is named as 87,o.,* and

where tso"o- = j[l y -.r] . (32)

The additkrnal operator B7,no,, is only for computing the strain in the axial direction,
*'hich is just related to axial elongation w and bending curvatures c" and cu. The stan-
dard elasto-plnst ic stress-strain operator is given es

t a l  t a l
n = l ' , ' l N r  = ; - r l T  l * .

l - l  l - l
L d !  J  L n n  )

. l a , o  o  l

I  t  o 'n l '
. lHrs H,g )

l ' "  o
=l 0 r11r

LHr, H"t

[8 " , ,  o  I
B = l  l .

L o Bn"o. )

(33)
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*h"r" P, i, the spherical projector, P2 i, ttr" deviator projector, and nf is the plastic

flow direction proiectol. The projectors are of size 4x4

1 t  [ ä  +  u + l
r  |  ^  r l _ - 2  4  O  : 2  1

l ,  B = + l  I  1 '  ' l
o l '  , l  o  o  r  o l
l l  l - z  - z  n  1 l' r  

I  I  I  I

-*Li1 0

l 0

0 0

1 0

(34)

4 Results and Discussions

An L120x12 protile made up of 100Cr6 steel of unit length is modelecl using the

beam cross-sectional elements as discussed in the Section 3.4' The temperature-

dependent material properties of the individual phases can be found in reference [6].

The clistortion of the long profiles is represented by theü curvature. The volume aver-

ages of the temperature and the effective stresses are considered for the comparison of

different cooling strategies.
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Fig. 2. HTC avs. Curvature and Effective stresses in equal cooling ofL-100Cr6

A series of simulations with equal HTC (a) ranging from 10-4500w/m:K has been

performed to hnd out the critical cooling regions. The computed linal distortion, the

avefage and the maximum effective sffesses are plotted against ArnFig.Z.In the low

cooling runge Cr < 200W/m2K no distortion is observed, that it increases in the

negative direction, reaches maximum at a = 700W/tn2K, and afterward chrrnges its

.ooling range and they reaches a local maximum where the distortion of the profile is
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direction. The internal stresses gradually increase with the increasing a in the low
filst observed. Next, a local minimum of stress indicates that the diiferent parts of the
profile are plastified in the reverse direction which produces the distortion but at the
same time relaxes the residual stress state.

0 . 1 5

0 . 1

0 .05

U

-0.05

-0.1

900 1000 1100 1200 1300 1400

Enhanced HfC q [W/mrK]

Fig.3. Curvature and average effective stress as a function ofenhanced HTC q (L-l00cr6)

During an equal cooling, the temperature gradient is not uniform due to the mass
distribution with respect to the locations of the boundaries. The distortion can be
eliminated by increasing the local cooling at mass lumped regions [6]. This fact is
verified in this section with the first cooling strategy as shown in Fig. 3. Firstly, in-
creasing the HTC only at the mass lumped region moderately equalizes the tenrpera-
ture distribution. The HTC at the mass lumped region is rJesignated by a As the HTC
a1 is increased, the distortion gets reduced and totally etiminated at al =1315Wm2K.
Further increase in the HTC q produces a distortion in the reverse direction. How-
ever, this strategy increases the residual stress continuously as shown in Fig. 3. From
th.is simulation result, one can come to the conclusion that increasing the HTC at the
mass lumped region can only reduce the distortion but not the residual stresses.

Secondly, reducing the cooling at the edges and enhancing the cooling at the mass
lumped region equalizes the temperature distribution inside the material to a grearer
extent [7]. To implement this, strategy 2 in which rrz = 500Wm2K is maintained at
the edges along with uniform cooiing a = i}}wlr#K is introduced. The curvature
and the stresses are plotted for various values of enhanced cooling HTC q. The dis-
tortion is completely eliminated when a, reaches 1040wm2K. The residual stress ar
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(b) Effective stresses evolution

Fig. 4. Comparisons: equal and optimum cooling strategies - curvature and stresses evolution

zero curvature rn strategy 2 is half the value of strategy 1. This fact indicates that with

a continent combination of ar and a2, it is a possible to reduce the residual stresses at

a distort ion frec f inal state.

For a = 700WmrK, the values of ar and c2 are identified through a standard two

parameter optimisation technique. In the case of the optimum cooling strategy, the

distortion is much smaller during the cooling and it is finally eliminated as shown ln

Fig. 4a. The finai maximum equivalent stress is reduced approximately fiom 87.2 to

24MPa. Similarly, the average effective stress is reduced from 16.4 to lO.lMPa as

1).Equal, (x = dt= sz = 700 Wm2K
2). Optimum, a= 70O, (x'r  = 875, az= 286
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shown in Fig. 4b. During the phase transformation the maximum equivalent stress
fluctuates a lot due to the transformation induced plasticity.

5 Concluding Remarks

The metal quenching process is analysed using a non-linear finite element technique
which includes the coupling of the thermal, metallurgical and mechanical fields
within the frame of the isothermal staggered approach. The distortion and residual
stress evolution are calculated for long L profile made of steel. Along with an en-
hanced cooling at the mass lumped region, a reduced cooling at the edges and corners
sirnultaneously reduces both the distortion and the rcsidual stresses.
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