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Abstract. Quenching is a complex thermo-mechano-metallurgical problem. During the quench-
ing process, transient heat conduction, metallic phase transformations, and plastic behaviour of
the metals introduce high residual stresses and distortions. This article presents the mathemati-
cal formulation of the physics behind the quenching process, numerical techniques and
optimum of cooling strategies for the selected geometries. The Finite Element Method (FEM)
is used to solve the coupled partial differential equations in the framework of an isothermal-
staggered approach. Coupling effects such as phase transformation enthalpy, transformation-
induced plasticity and dissipation are considered. Numerical examples are presented for an L
profile made up of 100Cr6 steel.

1 Introduction

Quenching can be defined as cooling of metals at a rate faster than cooling in still air.
Quenching is physically one of the most complex processes in engineering and very
difficult to understand. Quenching used to be called black hole of heat treatment
processes [1]. Most of the metallic parts have to be quenched atter the thermal treat-
ment processes to obtain the required properties such as hardness, micro-structure,
etc. Quenching induces high residual stresses due to several mechanisms like phase
transformation, thermal shrinkage, and transformation induced plasticity.

The distortion of the L profile can be better understood from Fig. 1, where the
distorted shape of the profile is shown at different stages of cooling. Initially due to
higher thermal shrinkage at the ends of the legs, the profile bends toward the legs (un-
til 1). However, the ends of the legs soon undergo the phase transition which is also
accompanied by a volume increase. Hence, the distortion changes its direction (1-2).
As the phase transition penetrates through the legs, the distortion again changes its di-
rection and the profile bends toward the legs one more time (2-3-4). Finally, the phase
transition is completed throughout the profile and the distortion gradually decreases as
the temperature becomes uniform (4-5). However, a permanent deformation remains
due to the mechanical yielding and transformation induced plasticity.

The computer simulation of the quenching process includes three different analy-
ses: (a) Thermal analysis for the computation of cooling curves, (b) Metallurgical
analysis for the computation of micro structure composition, and (c) Mechanical
analysis for computation of stresses and strains.
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Fig. 1. Distortion of L profile at different stages of quenching,

The latent heat released during the phase transformation increases the non-linearity
of the problem. The heat flow method {2} is used to model the thermal field, and the
FEM is employed for solving the thermal equilibrium equation. In steel like alloys,
diffusive and displacive solid-solid phase transformations occur. The diffusive trans-
formation is time-dependent and occurs in the high temperature zone. During the
diffusive phase transformation, the parent austenite phase transforms into product
phases such as pearlite and bainite. Unlike diffusive, the displacive transformation
occurs in the lower temperature zone which is independent of the time. Martensite is
the only product of the phase displacive transformation.

The shape change during the quenching process occurs due to the elastic, plastic,
thermal phase changes, and transformation induced plastic strains. The complex
mechanism behind the residual stress evolution during the quenching process is well
explained by Todinov [3]. References {4-8] give more information about the distor-
tion and residual stress calculation during metal quenching. This article is arranged in
the following manner: Section 2 presents the mathematical formulation of the three
physical fields. The FEM implementation with the isothermal staggered algorithm is
described in Section 3. The simulation results are presented with numerical examples
in Section 4.

2 Mathematical Formulation

During the quenching process, the temperature, micro-structure, and stresses at every
material point change with respect to time. The thermal, metallurgical, and mechani-
cal fields are modelled separately and discussed in this section.

2.1 Thermal Field

Let an open bounded domain QCR™ (n, =1, 2, 3) be the configuration of a non-
linear thermo-plastic body ¥ with particles defined by Xe QO, T =0Q its smooth

boundary and the time interval of analysis re Y (Y < R"). As usual, Q=Qurland
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=r,ul,.The metal quenching problem consists of finding the absolute tempera-

ture field §- Ox Y —s R * such that [9]

pc,0=-V-j+gq, in QxY ()

subject {o the boundary conditions

6=20, inTyxY @)

4 -n=-—q, inl, xY 3)
and the initial condition

ox,0|_, =6,X) inQ @)

Eq. (1) represents the energy balance obtained from the first law of thermodynam-
ics. The density p and the specific heat capacity c,, are both functions of the tempera-
ture and the phase fraction fj. The heat generation per unit volume is denoted by g,
and g is the heat flux vector. The internal heat generation accounts for both the phase
transformation enthalpies and mechanical energy dissipation

n, )
a,=x 0, +2 L, f;, (5)
j=i

where y is the fraction of mechanical energy converted into thermal energy, o is the
yield strength, £7 is the rate of effective plastic strain, L; is the latent heat of the indi-
vidual phase transformation, f ; is the phase transition rate and n, is the number of
product phases. In Eq. (0.2), 6, is the prescribed surface temperature on I's On the
heat flux boundary T, g, is the normal heat flux due to convection-radiation phe-
nomenon. Using the temperature-dependent overall Heat Transfer Coefficient (HTC)
¢, g, can be stated according to Newton's law of convection as

g, =—a(O)N0-6.), ()

where @1is the surface temperature, and 6..is the ambient temperature. Fourier's law of
heat conduction states that the heat flux vector§ is proportional to the temperature

gradient
j=-k0.f) V0, )
where k is the temperature and phase fraction-dependent second-order thermal con-

ductivity tensor.

2.2 Phase Transformation Field

Phase transformations in solids can be classified as diffusive and displacive transfor-
mations. During the transformations in steel, the parent phase austenite may transform

into product phases such as pearlite (diffusive) and martensite (displacive).
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2.2.1 Diffusive Transformation

The evolution of the diffusive phase transitions is best described by Time-
Temperature-Transformation (TTT) diagrams, which are constructed using the
isothermal phase change data. The IT (also named TTT) diagrams can be obtained
from the Johnson-Mehl-Avrami-Kolmogorov (JMAK) law {10]. In the IT diagram,
the double C-curves are plotted for 1% (the transformation start time, ;) and 99% (the
transformation end time, ¢,) of the product phase fraction at every temperature € using
the JIMAK law. The isothermal formation of the new phase is described by a.simple
linear iso-kinetic rule [8]

/= : (8)

which states that the rate of phase transformation is constant in the isothermal case.
The ¢, and ¢, can be obtained form the IT diagram. In the non-isothermal case, the
cooling curve is considered to be composed of small isothermal steps. The transfor-
mation begins at the incubation time #;,., and it ends when the phase fraction reaches
unity or the temperature is out of the transformation range. Using Scheil's additivity
rule, the incubation time is given as

1;

. |
J1,0a)

dt =1. ¢

2.2.2 Displacive Transformation

Shear-dominant, diffusionless, martensitic transformations occur when the tempera-
ture of the steel drops rapidly below a critical temperature M,. Martensite, which is
hard and brittle, is a solid solution of carbon in tetragonally, distorted BCC iron. In
this work, the displacive transformation is modelled using Koistinen-Marburger’s law

(8]
fu = fa{l—explky (8 -M)H11, when 6 <M, (10)

where f}; and f, are martensite and austenite phase fractions, M, is the martensite start
temperature and ky, (= 0.011) is the stress-dependent transformation constant.

2.3 Displacement Field

A thermo-plastic body & with interior Q = R™ (n, =1, 2, 3) and displacement
boundary T, , traction boundary I,, I'=I, UT, together as Q=QuT and the

time interval of analysis te ¥ (Y < R"), has to satisfy the equilibrium equation

V-T+b=0 inQxY (11
subject to the boundary conditions

i =i, inT, xY (12)
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Tri=rf inT,xT, (13)

where T is the stress tensor, b is the body force vector, i, is the prescribed displace-

ment vector, and 7, is the prescribed traction vector with unit outward normal 7 . The
total deformation observed in the quenching process is less than 4%. Therefore, using
the advantage of small deformation theory, the total strain £ can be additively decom-
posed into four components as in [6]

E= %[Vﬁ + (Vi)' ]=E° +EP + EP + E"7, (14)

where E° is the elastic strain tensor, B is the plastic part of strain tensor, E™ is the
Transformation Induced Plastic (TRIP) strain tensor, and E” is the volumetric strain
tensor due to temperature and phase changes. Once estimating the plastic, the thermal
phase change, and the TRIP strain tensors, the elastic strain tensor can be obtained
from the total strain tensor, and its methods of estimation are discussed in the subse-
quent subsections in detail. Using the elastic part of the strain tensor E’, the stress ten-

sor T can be determined from the constitutive law of the material.

2.3.1 Volumetric Thermal Phase Change Strain

During the quenching process, the temperature and phase fractions of the material
change drastically. The density of the material undergoing a phase change is a func-
tion of the temperature and the phase fractions. For non phase-changing matenials like
aluminium, copper, nickel, etc, the density depends only on temperature. This nature
of varying density produces a reversible strain E”. Instead of using the coefficient of
thermal expansion, E” is expressed in terms of the reference deunsity px and the cur-
rent density p (8 f;) of the mixture

tp _ PR _
EP_(a/——pwyfj) 1)1. (15)

2.3.2 Transformation Induced Plastic Strain (TRIP) .

During the phase change period, austenite may transforn into any combination of the
following micro-structures: pearlite, bainite and martensite. There is an irreversible
strain always associated with the phase change phenomena which is known as TRIP
strain, and it is proportional to the stress deviator T' and the rates of phase transforma-
tion f,. Even though the induced stress lies below the yield limit, the TRIP strain oc-
curs in phase changing materials like steel. The TRIP strain rate can be calculated
from the macroscopic material behaviour based on the micro-mechanical approach,
and it is given as in 8]

E7 =TS { A n(f) ), (16)
=1

where A, is called the Greenwood-Johnson (GJ) coefficient which must be determined
experimentally.
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2.3.3 Plastic Strain

When the equivalent stress exceeds the yield stress, plastic deformations occur. Using
a classical rate-independent, isotropic, thermo-plastic material model with a tempera-
ture- and phase fraction-dependent constitutive law, and by systematically employing
the vield criterion, loading criterion, flow rule, hardening rule, and consistency condi-
tion which are discussed separately in detail, the plastic strain can be estimated. The
isotropic constitutive law of the material can be written as in {11]

T=C* Ef =xtr(E—E? )1+24(E~E" -E7 ) (n
where C¢is the fourth order elasticity tensor, xis the bulk modulus and gz is the shear
modulus, together functions of temperature and phase fractions.

1. Yield criterion. The von-Mises yield criterion has the special feature of the
smooth surface with convexity which is suitable for pressure-independent
ductile materials and given as

JT,eP T f)=] T | -2 0,(7.6.1). (18)

where &F is the effective plastic strain which is used as a strain hardening in-

ternal variable, and o, is the temperature- and phase fractions-dependent
yield strength.

2. Loading criterion. The loading criterion can be stated as

¢=0and g[,_ > 0loading
¢ =0and qB\EF ot 0 neutral loading
¢=0and ¢5Lﬂswm < 0 unloading

3. Flow rule. An associated flow rule is employed and given as

YT .
Ep—ﬂﬁ—/lw,}—‘,“—in]‘, (19)

where Aand n; are the plastic multiplier and the flow surface normal or
stress deviator direction, respectively.

4. Hardening rule. A linear isotropic hardening rule is considered, and the
yield strength is stated as in {12]

0, (7.0, f) =00,/ +H@ [ (20)

where ©,, is the yield strength at the virgin state, and H is the plastic
modulus. The hardening state variable is integrated from the plastic multi-

plier
2 .
A
£ .f3/1 21
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5. Consistency condition. In general, the consistency condition ¢5= 0 yields

the value of the plastic multiplier A . The isothermal staggered algorithm [13]
suggests that the temperature and phase fractions should be kept constant

(ie., 6 =0 and f] = (), so that the plastic multiplier [11] becomes

izz;zn} (E-E"™)

22
2u+iH @2

3 Solution Methodology

The non-linear coupled simultaneous equations obtained through FEM arc solved us-
ing the isothermal staggered algorithm [13]. Thermal, metallurgical and mechanical
fields are sequentially solved in every time step in the following way: (a) the thermal
field is solved at fixed configuration and phase fractions, (b) the metallurgical field is
solved at fixed configuration and constant temperature, (c) the mechanical field is
solved at constant temperature and phase fractions. In each time step, first the tran-
sient temperature field is solved iteratively, then the phase transitions are computed,
and finally the displacement field is computed iteratively. The discrete form of all
coupled equations are derived and discussed in detail in the folowing subsections.

3.1 Thermal Field Formulation

Using FEM, the final matrix form of thermal equilibrium is given as

{K8§+Az + iC€§+Ar }( A@) - F9:+A: _ R95+At , 23)

where K’ is the global conductance matrix, C%is the global capacitance matrix, F?is
the global thermal force vector, and RYis the global residual thermal force vector.
The elemental form of these matrices and vectors are given as in [14]

KO = J'[HT koo HJ dQ+ I[Nsaf+At(NS )T } dr,
Q T

C?f*’” :le":Npit«-At Cprrét NT:ldQ

PO = j[N g J dQ+ J[N ot g, } dr,
Q r,
KO = {J[HT kA H dQ} O, 4 o (*)

where N is the element shape function and H is the element temperature-gradient
interpolation operator.
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3.2 Phase Field Formulation

At the end of thermal field computation, the current temperature ©' *41 and the current

temperature increment A@ = @4 —©' are known at every integration point of the
elements. The displacive and diffusive phase transitions are computed using these
temperature details. Martensitic evolution can be directly determined from the Eq.
(0.10). Pearlite is considered as the only product of diffusive transformation which is
a reasonable simplification. Scheil's sum increment AS at the current time step can be
computed using the IT diagram information [3]

At

AS = PEETETY (25)

The current Scheil's sum can be updated to ™" = §* + AS . The general phase
fraction evolved during the current time step can be given as

_ At
Af = [ H05AL _y £H0.5A (26)

The following three possibilities arise in this calculation:

1. If §7% <1, then Af =0.

2. If % <1 and §** >1, the incubation time is reached during the current time

s:+Ar ~1
As

3. If S™* >1 and also S > 1, the phase transition already started and ¢=1, since the
full time step contributes to phase transition.

step, and only a fraction  of 4t contribates to phase transition and { =

3.3 Displacement Field Formulation
The final global form of mechanical equilibrium equation becomes
Kura Aﬁ o~ purar _ gt (27)

where K“is the global stiffness matrix, F* is the global equivalent nodal load vector,

R* is the internal reaction vector taken from the previous jteration, and AU is the in-
cremental global displacement vector. Elemental forms of matrices and vectors are
given as in [14]

K = [[BT ¢7i*¥ B]dQ

[ o]

F:£+A[ - j[:(NS )T teH»A[ :\ drf + ‘”: NT b€l+At :l 4o (28)
T, Q

Rgrm - BT Tafﬂt a0
[
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where t, is the boundary element traction vector, b, is the element body force vector,
B is the strain-displacement matrix which is unique for the particular structural prob-
lem which will be discussed in Section 3.4 C?, is the elemental tangent elasto-plastic
matrix [11].

3.4 Structural Application

Thermal, metallurgical and mechanical field computations which are discussed in
Section 3.1, 3.2 and 3.3 are similar for any kind of a three dimensional metal quench-
ing process except the calculation of strain-displacement matrix B. The two-
dimensional beam problem is considered in this section. Using an iso-parametric
element formulation, the global co-ordinates and displacements are given in terms of

local co-ordinates (& 7) by
HEm=N'X, y&m=NY 29
w(G,m=N"U,, u&m =NV,

The derivatives of the shape functions with respect to the global x and y co-ordinates
are represented by the operator H of size 2x9 as

3 2
H:{%X}NT:J‘TF;}NT‘ (30)

dy on

The strain-displacement operator B (subscript ‘e’ is suppressed) for the plane stress
case is the simplest one and it is refereed in this text as standard strain-displacement
operator with size 3x18,

Hy 0. |Ho O
B=B,,= 0 Hy,|..|0 Hyg]|, (31
Hyl Hxl Hy9 Hx‘)

where H, and H, are the elements of the first and second rows of derivative operator
H. Through the beam cross-sectional element the long profiles can be analyzed by in-
troducing one extra global node with 3 degrees of freedom. The strain-displacement
matrix for the beam case |8} has the size 4x21. There is one additional row and three
additional columns. The introduced addition is named as B,,,,, and

B _I:Bstd 0

= , where B, =1[1 -x]. 32
0 Bbeam j| b 7 [ y ] ( )

The additional operator By, is only for computing the strain in the axial direction,
which is just related to axial elongation w and bending curvatures ¢, and c,. The stan-
dard elasto-plastic stress-strain operator is given as

e D P 2u G (p .
Cafd:3K'Pl+2fuP2_1_+_HnT~/’LW(PZ—HT)7 (33)

3u



154 A.K. Nallathambi et al.

~ ~
where Pl is the spherical projector, P2 is the deviator projector, and n7 is the plastic
flow direction projector. The projectors are of size 4x4

1101 $F 0 F

5 1101 5 2 40 2
p-1 R L R N 3 (34)

310 0 0 0 210 0 1 O

1101 2 2 g &

3 3 3

4 Results and Discussions

An L120x12 profile made up of 100Cr6 steel of unit length is modeled using the
beam cross-sectional elements as discussed in the Section 3.4. The temperature-
dependent material properties of the individual phases can be found in reference [6].
The distortion of the long profiles is represented by their curvature. The volume aver-
ages of the temperature and the effective stresses are considered for the comparison of
different cooling strategies.
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Fig. 2. HTC avs. Curvature and Effective stresses in equal cooling of L-100Cr6

A series of simulations with equal HTC (@) ranging from 10-4500W/m’K has been
performed to find out the critical cooling regions. The computed final distortion, the
average and the maximum effective stresses are plotted against & in Fig.2. In the low
cooling range o < 200W/m’K no distortion is observed, that it increases in the
negative direction, reaches maximum at & = 700W/m?K, and afterward changes its
cooling range and they reaches a local maximum where the distortion of the profile 1s
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direction. The internal stresses gradually increase with the increasing o in the low
first observed. Next, a local minimum of stress indicates that the different parts of the
profile are plastified in the reverse direction which produces the distortion but at the
same time relaxes the residual stress state.
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Fig. 3. Curvature and average effective stress as a function of enhanced HTC o (L-100Cr6)

During an equal cooling, the temperature gradient is not uniform due to the mass
distribution with respect to the locations of the boundaries. The distortion can be
eliminated by increasing the local cooling at mass lumped regions [6]. This fact is
verified in this section with the first cooling strategy as shown in Fig. 3. Firstly, in-
creasing the HTC only at the mass lumped region moderately equalizes the tempera-
ture distribution. The HTC at the mass lumped region is designated by ¢ As the HTC
& is increased, the distortion gets reduced and totally eliminated at ¢ =1315W/m*K.
Further increase in the HTC ¢ produces a distortion in the reverse direction. How-
ever, this strategy increases the residual stress continuously as shown in Fig. 3. From
this simulation result, one can come to the conclusion that increasing the HTC at the
mass lumped region can only reduce the distortion but not the residual stresses.

Secondly, reducing the cooling at the edges and enhancing the cooling at the mass
lumped region equalizes the temperature distribution inside the material to a greater
extent [7]. To implement this, strategy 2 in which @ = S00W/m’K is maintained at
the edges along with uniform cooling & = 700W/m°K is introduced. The curvature
and the stresses are plotted for various values of enhanced cooling HTC ¢4. The dis-
tortion is completely eliminated when ¢ reaches 1040W/m’K. The residual stress at
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(b) Effective stresses evolution

Fig. 4. Comparisons: equal and optimum cooling strategies - curvature and stresses evolution

zero curvature in strategy 2 is half the value of strategy 1. This fact indicates that with
a continent combination of ¢ and ¢, it is a possible to reduce the residual stresses at
a distortion free final state.

For a = 700W/m°K, the values of ¢4 and o are identified through a standard two
parameter optimisation technique. In the case of the optimum cooling strategy, the
distortion is much smaller during the cooling and it is finally eliminated as shown in
Fig. 4a. The final maximum equivalent stress is reduced approximately from 872 to
24MPa. Similarly, the average effective stress is reduced from 16.4 to 10.1MPa as
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shown in Fig. 4b. During the phase transformation the maximum equivalent stress
fluctuates a lot due to the transformation induced piasticity.

5 Concluding Remarks

The metal quenching process is analysed using a non-linear finite element technique
which includes the coupling of the thermal, metallurgical and mechanical fields
within the frame of the isothermal staggered approach. The distortion and residual
stress evolution are calculated for long L profile made of steel. Along with an en-
hanced cooling at the mass lumped region, a reduced cooling at the edges and corners
simultaneously reduces both the distortion and the residual stresses.
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