
Chapter 6
Formulations of Strain Gradient Plasticity

Samuel Forest and Albrecht Bertram

Abstract In the literature, different proposals for a strain gradient plasticity theory
exist. So there is still a debate on the formulation of strain gradient plasticity models
used for predicting size effects in the plastic deformation of materials. Three such
formulations from the literature are discussed in this work. The pros and the cons
are pointed out at the light of the original solution of a boundary value problem that
considers the shear deformation of a periodic laminate microstructure.
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6.1 Introduction

The objective of this work is to present three main formulations of strain gradient
plasticity that are available in the literature and to illustrate the pros and the cons of
these approaches by means of a specific example for which an analytical solution
is derived. The targeted model is one of the most simple strain gradient plastic-
ity model which serves as a paradigm for most available strain gradient theories,
namely the well–known Aifantis model [1]. For that purpose we start from an initial
plasticity model for which the set of degrees of freedom and of the state variables
are defined as follows:

DOF0 = {u } STATE0 = {ε∼, α}
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The displacement degrees of freedom are denoted by the vector u from which the
linear strain tensor ε∼ is derived. The hardening/softening properties of materials are
accounted for by means of internal variables, α, that can be tensors of any rank1.
Examples for such internal variables in the context of isotropic plasticity are

α = p, ε∼
p,X∼ ...

where ε∼
p is the plastic strain tensor, p is the cumulative plastic strain, that will be

used for isotropic hardening, and X∼ , the kinematic hardening variable [2, 3]. The
continuum thermomechanics framework with internal variables has been settled in
[4, 5, 6]. Internal variables are computed by integrating the evolution equations that
are time differential equations. It has already been recognized that these evolution
equations may well result from approximations of more general partial differential
equations where the spatial derivatives are neglected due to the rapid local vari-
ations [7]. The objective of gradient theories is therefore to restore the status of
internal degree of freedom to internal variables. Depending on the order of the par-
tial differential equations, additional boundary conditions are usually necessary to
solve boundary value problems. In the following, we call

• internal variables: state variables, the evolution of which is controlled by time
differential equations;

• internal degrees of freedom: state variables the evolution of which is controlled
by time and space partial differential equations, without need for additional
boundary conditions;

• degrees of freedom: variables (not necessarily state variables) controlled by a
space and time partial differential equations, the resolution of which requires
additional boundary conditions to be specified.

The question arises how to enlarge the space of state variables to the gradient of
α–variables, so as to introduce characteristic lengths in the continuum modeling:

STATE = {ε∼, α, ∇α}

Such a gradient term enters in particular Aifantis isotropic model that postulates the
following evolution of the equivalent stress measure under plastic loading:

σeq = R0 +H p− c∇2 p (6.1)

where R0 is the initial yield strength, H is the classical hardening modulus and c
denotes the square of a characteristic length. Various attempts have been proposed
in order to derive the Laplace term introduced in the yield function from a consistent
thermomechanical setting. The first proposal in [8] will be recalled in Sect. 6.2.2. It
is based on the introduction of an extra–entropy flux. In contrast, other authors have
tried to circumvent the introduction of extra–entropy flux or extra energy terms by
setting specific boundary conditions associated to the higher order partial differen-
tial equations, as shown in Sect. 6.2.1. An alternative approach is to formulate an
1 In the present contribution, the variable α is treated as a scalar, for the sake of simplicity.
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extended principle of virtual power, as initially proposed by [9] for damage vari-
ables. This amounts to raising the status of internal variable to additional degrees
of freedom. This is the subject of Sect. 6.3 where the original principle of virtual
power [10] is extended to gradient variables in the spirit of [11]. This track has been
followed in the last ten years in the following works [12, 13, 14, 15].

Finally, a boundary value problem on a periodic two–phase laminate microstruc-
ture under shear loading conditions is solved in order to illustrate the new boundary
or interface conditions and determine the variables which are discontinuous across
the interface. This example has been originally handled for Cosserat and micromor-
phic single crystals in [16, 17], but it is solved here for the first time for the Aifantis
model, so that comparisons will be drawn with other generalized continuum theo-
ries.

Throughout the work, for the sake of conciseness, the temperature θ is assumed
to be uniform and constant.

6.2 Derivation Based on the Exploitation of the Entropy
Principle

In this section, the energy principle is assumed to hold in its usual local form

ė =P(i), with P
(i) = σ∼ : ε̇∼ (6.2)

where e is the internal energy density and P(i) the usual power density of inter-
nal forces. The Helmholtz free energy density, ψ = e−ηθ , is assumed to depend
on the already defined set STATE and we give the following names to the partial
derivatives with respect to α and its gradient:

ψ = e− θη , a =−∂ψ
∂α

, b =− ∂ψ
∂ ∇α

(6.3)

where η is the entropy density function.

6.2.1 Vanishing Generalized Tractions

The entropy principle is now postulated first in its global form on the material do-
main V ∫

V
θη̇ dV ≥ 0

and converted into the Clausius–Duhem inequality
∫

V

(
P

(i)− ψ̇
)

dV ≥ 0 (6.4)
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∫

V

[(
σ∼ −

∂ψ
∂ε∼

)
: ε̇∼+aα̇ + b ·∇α̇

]
dV ≥ 0 (6.5)

in the absence of extra–entropy flux. The global Clausius–Duhem inequality is
transformed in the following way:

∫
V

[(
σ∼ −

∂ψ
∂ε∼

)
: ε̇∼+aα̇− α̇divb +div(α̇b )

]
dV ≥ 0 (6.6)

∫
V

[(
σ∼ −

∂ψ
∂ε∼

)
: ε̇∼+(a− divb )α̇

]
dV +

∫
∂V

α̇b ·n dS≥ 0 (6.7)

It is temptating to assume at this stage that the flux of b vanishes at the boundary of
the domain V

b ·n = 0, ∀x ∈ ∂V (6.8)

This condition corresponds to a Neumann extra–boundary condition for the partial
differential equation for α . It follows that the residual dissipation takes the follow-
ing canonical form involving the rate of the α–variable and the associated thermo-
dynamical force and dissipation potential

∫
V
A α̇ dV ≥ 0, A := a− divb (6.9)

in addition to the state law σ∼ = ∂ψ/∂ε∼.
Positivity of dissipation can then be ensured by the choice of a convex dissipation
potential Ω providing the evolution equation for α:

α̇ =
∂Ω
∂A

(6.10)

This condition of vanishing flux at a boundary is discussed in [18] in the context of
generalized standard gradient models.

On which domain V of the material body should the previous reasoning be ap-
plied? In principle, the thermodynamical statements are to be applied to each sub-
domain of the body. But it is hard to believe that the condition of vanishing gen-
eralized traction will be applied to the boundary of any subdomain. This point will
be checked in the analytical example of Sect. 6.4. In the literature, the condition is
usually limited to the outer boundary of the considered body (so–called insulation
condition in [19]), or at the boundary of the part of the body which undergoes plas-
tic loading. The latter applies to the finite element implementation of such gradient
models, as proposed in [20].
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6.2.2 Extra–entropy Flux

In general, according to the thermodynamics of irreversible processes [6], an extra–
entropy flux in the entropy inequality cannot be excluded. It is introduced in the
form of the vector field k in the local form of the entropy imbalance:

η̇ + divk ≥ 0 (6.11)

In the isothermal case, the Clausius–Duhem inequality then takes the form:

P
(i)− ψ̇ +divθk ≥ 0 (6.12)

The exploitation of Clausius–Duhem inequality continues as follows:

(σ∼ −
∂ψ
∂ε∼

) : ε̇∼+aα̇ + b ·∇α̇ +divθk ≥ 0 (6.13)

(σ∼ −
∂ψ
∂ε∼

) : ε̇∼+(a− divb )α̇ +div(α̇b + θk )≥ 0 (6.14)

At this point, the following astute choice of the extra–entropy flux is proposed in [8]

σ∼ =
∂ψ
∂ε∼

, k :=− α̇
θ

b (6.15)

With this choice, the residual dissipation reduces to the same form as (6.9), so that
again a dissipation potential Ω(A ) can be introduced, thus setting the framework of
standard generalized gradient models. The difference compared to the previous ap-
proach is that no restriction arises in the derivation concerning the additional bound-
ary condition to solve (6.1). As a result, the flux b ·n can take any needed values at
boundaries and interfaces. The approach provides no indication nor restrictions on
the necessary boundary conditions.

6.3 Derivation Based on the Modification of the Energy Principle

An alternative to the previous approaches is to consider that the introduction of
mechanical gradient effects must be accompanied by a modification of the power
of internal forces which enters the principle of virtual power. When higher order
gradients of the displacement field exist like in Mindlin’s second gradient theory
[11, 21, 22] or gradients of additional degrees of freedom, like in Eringen’s micro-
morphic model [23], the power of internal variable is extended to include a power
induced by the higher order gradients or the gradients of additional degrees of free-
dom. Let us consider for instance Mindlin’s second gradient model which incor-
porates the effect of the strain gradient ∇ε∼. The stress conjugate of the strain rate
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gradient in the power of internal forces is the third rank double stress tensor. If the
strain is decomposed into elastic and plastic contributions,

ε∼ = ε∼
e + ε∼

p, (6.16)

one may consider materials for which most of the gradient effects come from ∇ε∼
p,

so that the effect of ∇ε∼
e can be neglected. The latter term disappears but the triple

contraction of the double stress and of the gradient of plastic strain remains. This
suggests that when the gradient of α–variables is considered, one is entitled to intro-
duce a corresponding internal power. This approach is presented in this section and
has been followed in the references [9, 12, 15] for gradient of damage and plasticity
models.

We introduce the enriched power density of internal forces and of contact forces

P
(i) = σ∼ : ε̇∼+ aṗ+b ·∇ṗ, P (c) = t · u̇ + ac ṗ (6.17)

where a and b are generalized stresses acting on the virtual field α and its gradient,
respectively. The usual traction vector is t and ac denotes the generalized traction.
Such generalized stresses are called micro–forces in [14]. A generalized principle
of virtual power is stated with respect to the virtual fields of displacements and the
α–variable. The methodology originates from the works [10, 22] and was extended
to generalized continua in [13, 24]. The application of this principle results in an
additional balance equation, complementing the usual balance of momentum equa-
tion:

divσ∼ = 0, a = divb , ∀x ∈V (6.18)

written here in the static case and in the absence of body forces. The corresponding
equilibrium conditions at the boundaries are:

t = σ∼ ·n , ac = b ·n , ∀x ∈ ∂V (6.19)

An essential feature of the model is that the extended power of internal forces inter-
venes in the energy balance equation:

ė =P(i) (6.20)

thus including the additional contributions of generalized stresses. This also holds
for the entropy principle in its local form:

P
(i)− ψ̇ ≥ 0 (6.21)

The Clausius–Duhem inequality then becomes:

(σ∼ −
∂ψ
∂ε∼e ) : ε̇∼

e +(a− ∂ψ
∂α

)α̇ +(b − ∂ψ
∂∇α

) ·∇α̇ +σ∼ : ε̇∼
p ≥ 0 (6.22)

At this stage, we adopt the following state laws
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σ∼ =
∂ψ
∂ε∼e , a =

∂ψ
∂α

−R, b =
∂ψ

∂∇α
(6.23)

thus assuming that no dissipation is associated with the generalized stress b . This is
the most simple assumption that is sufficient for deriving Aifantis model, in partic-
ular. R is the dissipative part of generalized stress a.

At this point it is more convenient to specify the internal variable that is required
to derive Aifantis model. We adopt: α ≡ p, so that the considered internal variable
is the cumulative plastic strain. The residual dissipation is then

σ∼ : ε̇∼
p−Rṗ≥ 0 (6.24)

Let us choose a simple quadratic free energy potential

ψ(ε∼
e, p,∇p) =

1
2

ε∼
e : C≈ : ε∼

e +
1
2

H p2 +
1
2

c∇p ·∇p (6.25)

from which the state laws are derived:

σ∼ =C≈ : ε∼
e, R = H p−a, b = c∇p (6.26)

where C≈ is the four–rank tensor of the elastic moduli, H is the usual hardening mod-

ulus and c is an additional material parameter (unit MPa.mm2). The yield function
is taken as

f (σ∼ ,R) = σeq−R0−R (6.27)

Under plastic loading, this gives

σeq = R0 +R = R0 +H p− a= R0 +H p−divb = R0 +H p− c∇2 p (6.28)

so that Aifantis equation (6.1) is recovered. The plasticity flow and evolution rules
are

ε̇∼
p = λ̇

∂ f
∂σ∼

, ṗ =−λ̇
∂ f
∂R

= λ̇ (6.29)

with λ being the plastic multiplier. These equations are used in the next section to
solve a specific boundary value problem.

6.4 Analysis of a Simple Boundary Value Problem for Laminate
Microstructures

Laminate microstructures are prone to size effects especially in the case of metals
for which the interfaces act as barriers for the dislocations. The material response
then strongly depends on the layer thickness. This situation has been considered
for Cosserat and micromorphic single crystals under single and double slip in [16,
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17]. The laminate microstructure is considered here in the case of Aifantis isotropic
model. It is a periodic arrangement of two phases including a purely elastic material
and a plastic strain gradient layer. The unit cell corresponding to this arrangement is
shown in Fig. 6.1. It is periodic along all three directions of the space. It must must
be replicated in the three directions so as to obtain the complete multilayer material.
The thickness of the hard elastic layer is h, whereas the thickness of the soft plastic
strain gradient layer is s.

1

2

O

s h
Fig. 6.1 Unit cell of a periodic two–phase laminate.

6.4.1 Position of the Problem

The unit cell of Fig. 6.1 is subjected to a mean simple shear γ̄ in direction 1. The
origin O of the coordinate system is the center of the soft phase. The displacement
field is of the form

u1 = γ̄ x2, u2(x1) = u(x1), u3 = 0 (6.30)

where u(x1) is a periodic function which describes the fluctuation from the homoge-
neous shear. This fluctuation is the main unknown of the boundary value problem.
We compute the gradient of the displacement field and strain tensors:

[∇u ] =

⎡
⎣ 0 γ̄ 0

u,1 0 0
0 0 0

⎤
⎦ ,

[
ε∼
]
=

⎡
⎣ 0 1

2(γ̄ +u,1) 0
1
2(γ̄ +u,1) 0 0

0 0 0

⎤
⎦ (6.31)

where u,1 denotes the derivative of the displacement u with respect to x1. After
Hooke’s law, the only activated simple stress component is σ12. Due to the balance
of momentum equation and the continuity of the traction vector, this stress compo-
nent is homogeneous throughout the laminate.

The elastic law in the elastic phase and the elastic–plastic response of the soft
phase are then exploited in the next section to derive the partial differential equa-
tions for plastic strain and, finally, for the displacement fluctuation. The explicit
solution is found after considering precise interface conditions regarding continuity
of various variables.
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Note that the solution is known for conventional plasticity, i.e. in the absence of
strain gradient effect. The plastic strain is expected to be homogeneous in the soft
phase for any loading γ̄ . Plastic strain therefore exhibits the usual jump at the in-
terface. The introduction of higher order interface conditions, associated with strain
gradient plasticity, will induce a non–homogeneous plasticity field.

6.4.2 Analytical Solution

Assuming plastic loading in the soft phase, the von Mises criterion is fulfilled:
√

3|σ12|= R0 +H p− cp,11 (6.32)

Since the stress component σ12 is uniform, the previous equation can be differenti-
ated with respect to x1, which gives:

p,1−ω−2p,111 = 0, ω2 =
H
c

(6.33)

The form of the plastic strain field therefore is

p = α cosh(ωx1)+β (6.34)

where α and β are integration constants. In the elastic zone, the stress is given by

σ12 = μ(γ̄ + uh
,1) =⇒ uh

,1 =C (6.35)

where the uniformity of stress has been used again. An additional integration con-
stant C must be determined. The exponent h has been added to indicate the displace-
ment fluctuation inside the elastic phase. The arbitrary translation for uh will be set
to zero. The field us can be determined from the elasticity law in the soft phase:

σ12 = μ(γ̄us
,1−

√
3p) (6.36)

An additional constant D arises from the integration of this equation, that remains
to be determined.

The four unknown integration constants α,β ,C,D will be determined from 4
conditions at the interface between both materials at x1 =±s/2:

• Continuity of simple traction:
√

3μ(γ̄ +C) = R0 +Hβ (6.37)

• Continuity of displacement u(x1) at s/2:

us
( s

2

)
= uh

( s
2

)
(6.38)



146 Samuel Forest and Albrecht Bertram

uh(x1)=Cx1, us(x1)=

[
R0

μ
√

3
+(

H
μ
√

3
+
√

3)β − γ̄
]

x1+

√
3α
ω

sinh(ωx1)+D

(6.39)
• Periodicity of displacement u(x1):

us
(
− s

2

)
= uh

( s
2
+h

)
(6.40)

• Continuity of plastic strain p at the interface x1 =
s
2

p
( s

2

)
= 0 (6.41)

α cosh
(

ω
s
2

)
+β = 0 (6.42)

The last condition is necessary to close the system. Differentiability and hence con-
tinuity of plastic strain p is required in strain gradient plasticity theory. In the elastic
phase, p = 0 so that p should also vanish at the interface.

The identification of the constants provides:

β =

(
γ̄− R0

μ
√

3

)
(s+ h)

H
μ
√

3
(s+h)+

√
3s− tanh(ω s

2)
2
√

3
ω

(6.43)

α = − β
cosh(ω s

2)
(6.44)

C =
R0

μ
√

3
− γ̄ +

H√
3μ

β (6.45)

D = C
s
2
−
[

R0

μ
√

3
+(

H
μ
√

3
+
√

3)β − γ̄
]

s
2
−
√

3α
ω

sinh
(

ω
s
2

)
(6.46)

where homogeneous elasticity has been assumed for simplicity, with μ being the
shear modulus of both phases.

As a result, we find that the double traction cannot vanish on the soft side of the
interface, x1 = s−/2.

b1(x1) = cα sinh(ωx1) , b1(
s
2
−
) = cα sinh

(
ω

s
2

)

= 0 (6.47)

In the elastic phase, the generalized stress identically vanishes since no plastic strain
occurs. It follows that the generalized traction b1 exhibits a jump across the inter-
face.

We illustrate the previous solution for a special choice of material parameters
oriented towards plasticity of metals at the micron scale. The parameters used in the
simulations are:

s = 0.007 mm, h = 0.003 mm, γ̄ = 0.01,
μ = 300 GPa, R0 = 20 MPa, H = 10 GPa, c = 0.005 MPa.mm2.
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b1/((s+ h)R0)
u2/((s+ h)γ̄)

p/γ̄

x1/(s+ h)

0.60.40.20-0.2

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

Fig. 6.2 Distributions of plastic strain, normalized displacement fluctuation and normalized gen-
eralized stress vector component in the unit cell of the laminate microstructure.

The distribution of plastic slip, of displacement and of generalized stress compo-
nent b1 are shown in Fig. 6.2. The plastic strain displays a typical cosh profile with
boundary layer effects close to the interface, due to the continuity requirement. The
displacement fluctuation is clearly periodic. The jump of the generalized traction at
the interface is also visible.

6.5 Discussion

Three different formulations of strain gradient plasticity have been reported in this
contribution. The first model is based on the assumption of vanishing general trac-
tion at the boundary of some domain and in particular, as advocated by several
authors, at the interface between the elastic and plastic loading domain. The exam-
ple of the laminate microstructure considered in Sect. 6.4 clearly shows that this
assumption cannot be valid systematically. Indeed, if a condition of vanishing dou-
ble traction is imposed on the interface x1 = s/2 in the laminate microstructure, this
amounts to prescribe vanishing of the plastic strain and its first derivative at the in-
terface. Accordingly, the solution of the equation (6.33) yields p =Cst, which is the
standard solution in classical plasticity.

The presented analytical example is compatible with the second formulation of
strain gradient plasticity based on the introduction of an additional entropy flux.

The third approach based on the introduction of the extended power of internal
forces has the advantage that it provides a variational formulation of the strain gra-
dient plasticity boundary value problem in the form of a generalized principle of
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virtual power. This has a direct implication on the numerical treatment by means
of the finite element method for instance. In the finite element implementation, the
plastic strain is handled as an additional degree of freedom. The power of inter-
nal forces is discretized in space and the generalized stresses are computed from
the constitutive equations (6.26). The plastic multiplier is computed by taking the
enhanced hardening rule into account [24]. A Lagrange multiplier is then needed
to ensure that the additional degree of freedom coincides with the time integrated
cumulative plastic strain. The additional boundary condition arises naturally from
the finite element formulation, the reaction to the nodal degrees of freedom being
related to the generalized traction.

It seems that there is a real necessity for an energy cost associated with the devel-
opment of the plastic strain gradient. Finite element simulations are presented in lit-
erature that include the plastic strain gradient, computed at the end of the increment,
in the hardening rule. They do not consider generalized stresses nor associated addi-
tional boundary conditions. Such a procedure is known to lead to mesh–dependent
results even in the hardening regime [25]. This pleads for the adoption of the third
proposed approach to strain gradient plasticity.
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