
Abstract

A pseudoelastic micromodel that accounts for deformation twinning and crystallo-

graphic slip is used in conjunction with the representative volume element (RVE)

technique. The material parameters are adopted to {101̄2}〈1̄011〉 twinning in a mag-

nesium alloy. The simulation setup follows the commonly conducted compression

tests on extruded Magnesium rods, where due to twinning a strong change of tex-

ture and a strength differential effect can be observed. The simulation setup allows

to observe the twin propagation across grain boundaries. The predicted texture evo-

lution is in good agreement with experimental findings, and the main feature of the

macroscopic stress-strain-curve, namely the zero-hardening-plateau due to twinning

in pure magnesium, could be reproduced as well. However, the hardening behaviour

of magnesium-aluminium is, due to the complex twinning-particle-interaction in these

materials, underestimated.

Keywords: {101̄2}〈1̄011〉, twinning, pseudoelasticity, nonconvex strain energy, mag-

nesium, crystal plasticity.

1 Introduction

Many materials undergo solid to solid phase changes upon thermal or mechanical

loading, which induces, e.g., the shape memory effect (SMA), the transformation in-

duced plasticity effect (TRIP) or the twinning induced plasticity effect (TWIP). In this

work, the focus lies on the isothermal and mechanically induced deformation twin-

ning. Twinning can be considered as the homogeneous shearing of a crystal lattice,

which leaves the atoms in positions such that a rotated copy of the parent lattice is

generated. Although from a chemical point of view one might not want to speak

about a phase change, some characteristic ingredients of phase changes are displayed.
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Twinning produces sharp interfaces, at which the material properties that depend on

the crystal orientation undergo a jump. The twins form as plates inside of grains, and

can alter significantly the morphological and the crystallographic texture, both influ-

encing significantly the yield surface and the elastic anisotropy. Due to its polarity,

twinning can cause a pronounced differential effect on the strength of the material

and the forming limit. For many materials, these effects are not negligible, and need

to be incorporated in the material model. Especially the ductile TWIP steels and

the lightweight hcp metals magnesium and titanium, which are interesting for engi-

neering applications, display extensive twin formation at room temperature. For such

materials, the proper prediction of forming processes requires a material model which

includes mechanical twinning.

One approach, proposed by [1], is to treat phase changes by a non-convex elasto-

static modelling. Summarising roughly, the overall modelling strategy is to construct

an elastic strain energy w(E) which exhibits nonconvex regions. In this regions, no

stable equilibrium state can be attained. Then, the convex branches are assigned to

different phases, which are separated by the nonconvex regions. This leads to the

pseudoelastic boundary value problem, which is ill-posed, since generally no unique

energy-minimising configuration can be given. Different strategies to overcome the

ill-posedness have been proposed, which can be roughly classified into ,,convexifica-

tion” and ,,kinetisation”.

A large amount of work has been contributed to the convexification strategies, be-

ginning with introducing different forms of convexity [2]. Following the first ap-

proach, the ill-posedness may be overcome by confexifying w(E) in E, i.e. by re-

placing w(E) by a convexified strain energy wc(E). wc(E) should reproduce the

main features of w(E). This procedure is also known as ,,relaxation”. Unfortu-

nately, the construction of wc(E) from w(E) is not a straightforward procedure.

Mostly, several simplifying assumptions (small strains, elastic isotropy) are neces-

sary. Moreover, the clear phase separation is lost, i.e. the relaxation is a special

form of homogenisation. Another convexification strategy is to add a capillarity, i.e.

wc(E,E · ∇) = w(E) + c(E · ∇), where c(E · ∇) must be convex in E · ∇. This

corresponds to a penalisation of interfaces at which the strains undergo a jump. The

latter treatment is very challenging from the practical point of view.

The second line of work is to introduce a nucleation criterion and a kinetic relation

for the phase growth, summarised in [3]. In doing so, the modelling approach is

shifted from energy minimisation to evolution tracking. This may even be achieved

by a kinetic relation which is not necessarily connected to the phase growth. E.g., by

incorporating inertia forces, one has to track the propagation of waves in an elastic

medium. Depending on the kinetic relation, the treatment can be complicated as well.

It appears that this path has received less attention then the convexification methods,

although it offers some advantages over the purely elastic modelling. Essentially, the

strain path independence of a purely elastic modelling is resolved. Summaries on

material modelling approaches which include phase mixtures are given by [4] and [5].

The material model relies on a nonconvex elastic stress-strain law plus a New-
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tonian strain rate dependence, which serves as the kinetic relation. The nonconvex

strain energy is constructed from the strain energies of the individual phases, which

can be obtained through the isomorphy of the elastic laws from one elastic reference

law [6]. In order to obtain results that are comparable to experiments conducted on the

macroscale, the numerical homogenisation method of averaging over a representative

volume element (RVE) has been used. Here, we compare the evolution of the twin

volume fraction, of the crystallographic texture, and of the stress state to experimental

results.

1.1 Notation

Throughout the work a direct tensor notation is preferred. If an expression cannot

be represented in the direct notation without introducing new conventions, its com-

ponents are given with respect to orthonormal base vectors ei, using the summation

convention. Vectors are symbolised by lowercase bold letters v = viei, second order

tensors by uppercase bold letters T = Tijei ⊗ ej or bold greek letters. The sec-

ond order identity tensor is denoted by I . Fourth-order tensors are symbolised like

C. The dyadic product is defined as (a ⊗ b) · c = (b · c)a. Matrices are denoted

like [A]. A dot represents a scalar contraction. If more than one scalar contraction

is carried out, the number of dots corresponds to the number of vectors that are con-

tracted, thus a ⊗ b ⊗ c · · d ⊗ e = (b · d)(c · e)a, α = A · · B and σ = C · · ε.

When only one scalar contraction is carried out, the scalar dot is frequently omitted,

e.g., v = Fw, A = BC. The Rayleigh-product is defined by applying a second

order tensor to all base vectors of a tensor. E.g., in case of a fourth order tensor,

P ∗ C = CijklPei ⊗ Pej ⊗ Pek ⊗ Pel, with C = Cijklei ⊗ ej ⊗ ek ⊗ el. Orthog-

onal tensors are denoted by Qβv = ẽi ⊗ ei, mapping one orthonormal basis ei into

another one ẽi. If Q can be interpreted as a rotation, the optional indexing contains

the amount of rotation β and the normalised axial vector v. Two-fold rotations are

rotations of amount π. They are denoted as Rv = −I + 2v ⊗ v, with v being the

normalised axial vector. The derivative of a vector valued vector function with respect

to its argument is denoted like v′(w) = ∂v(w)/∂w = ∂vi/∂wj ei ⊗ ej .

2 Uniaxial testing of extruded magnesium

Twinning in magnesium has been studied in detail firstly by [7, 8, 9, 10, 11, 12]. Since

these pioneering works, a large amount of literature concerning twinning in magne-

sium and its alloys has been published. Usually, the twins are categorised as extension

or compression twins, depending on whether they appear under elongation or com-

pression along the c-axis. Magnesium has c ≈ 0.52103nm and a ≈ 0.32094nm,

which gives c/a ≈ 1.62345, i.e. it is quite close to the densest possible packing

with c/a =
√

8/3. The unit cell is slightly less high than thick. This causes the

{1̄012}〈1̄011〉 twins to be extension twins (see Fig. 2), while twinning along the

{101̄1}, {101̄3}, {303̄4} and {101̄5} planes [13] occurs under c-axis compression.
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Recently, [14] observed {112̄1}-twinning in the magnesium alloy WE54.

e1

e2

e3

a1 a2

a3

c

v

{101̄2}-plane

Figure 1: Simple hexagonal lattice with Miller-Bravais basis (left), hexagonal close

packed multilattice constructed from the simple lattice by introducing additional trans-

lations in v = 〈 1̄

3
01

3

1

2
〉 (right).

Figure 2: Visualisation of the effect of a variation of the c/a ratio on the magnitude

of the shear deformation accompanying {101̄2} twinning. Left: c/a >
√

3, twin-

ning shear increases width of the structure, leading to c-axis compression. Centre:

c/a =
√

3, width and height do not change (the mean deformation is zero, no {101̄2}
twinning). Right: c/a <

√
3, twinning shear increases the height of the structure,

leading to c-axis elongation.

In a recent work [15], plane strain compression tests are carried out on cuboid-

shaped AZ31 samples with different processing histories. One of them is an extruded

sample, that is compressed along the extrusion direction (Fig. 3). Extruded mag-

nesium is textured such that the c-axes and one of the ai directions are distributed

approximately uniformly and perpendicular around the extrusion direction, i.e. a com-

pression along the extrusion direction results in a c-axis elongation and vice versa. In a

compression test, the strongly textured material undergoes a complete shift of texture,

see Fig. 4.
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Figure 3: Schematic diagram of the extrusion process and the resulting texture.

Figure 4: (0002) (left) and (101̄0) (right) pole figures before (above) and after (be-

low) the compression test at ε = 0.28 (courtesy of [15]). The projection direction

is parallel to the extrusion direction. As {101̄2} twinning reorients the c-axis about

approximately 86◦, the outer ring (upper left figure) transforms into the centre peek

(lower left figure). The slight deviation from the approximately rotational symmetric

starting texture comes from the asymmetry of the loading (plane strain compression,

two opposing faces are kept fixed).
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a1a2
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d〈1̄101〉

d〈1̄102〉

Figure 5: Strength differential effect in the AZ31 magnesium alloy (left, courtesy

of [16]), sketch of 〈1̄101〉{11̄02} extension and 〈1̄102〉{11̄01} compression twinning

(right). Note that the extension twins show in the compression test along the extrusion

direction and vice versa.

However, the impressive change of texture does not occur when the loading direc-

tion is reversed. Moreover, one observes a pronounced strength differential effect. The

cause for this is the uni-directionality of twinning. The c-axis elongation is accom-

modated by {1̄012} twins, while compression twins (mostly {1̄011}) accommodate

c-axis compression, i.e. elongation along the extrusion direction. These twinning

modes exhibit strong morphological differences. The {1̄012} tension twins are acti-

vated very easily, (namely at a shear stress of approximately 2.7MPa in pure magne-

sium, [17]), and their boundaries are mobile. The {1̄011} compression twins are thin,

pinned lamellas. Instead of growing in thickness like the elongation twins, double

twinning (first {101̄1} compression followed by {101̄2} extension twins) is observed

as loading continues [18].

Therefore, in a compression test, the major deformation mechanism are the {1̄012}
elongation twins. After virtually occupying the entire volume, elongation twinning is

no more disposable. Due to the reorientation of the c-axis of approximately 86◦, the

deformation is then accommodated by {1̄011} compression twinning [11, 12], as it

occurs from the beginning if the contrary loading direction is chosen. As depicted in

Fig. 5, the stress level is then approximately the same as in the tension test. Due to the

immobile interfaces of the compression twins, the deformation accommodated before

fracture is much lesser than in case of elongation twinning. The double twins have

been identified to be crack initiation sites [19, 20].

3 Characteristics of {1̄012} and {1̄011} twinning

Summarising roughly, {1̄012} tension twins allow for large deformation accommo-

dation, while {1̄011} compression twins precede fracture. A similar behaviour is

observed in titanium [21, 22] and zinc [23], which suggests that the morphological

difference between the twinning modes is intrinsic to the hexagonal lattice structure. It
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is explained by the characteristics of the distinct interfaces and partial dislocations be-

longing to each twinning mode. In a series of articles, Serra and Bacon [24, 25, 26, 21]

analysed twinning with the molecular dynamics technique. Firstly, they examined

which of the different many-body potentials given in the literature suite best to each

hcp metal [24]. [27] even adopted parameters of the many-body potentials such that

they reproduce the elastic properties and c/a ratio for eight hcp metals. With the po-

tentials at hand, the stacking fault and interface energies have been calculated, and

found to be in agreement with experiments [25]. In [26], the mobility of partial dislo-

cations belonging to different twin interfaces has been studied by means of molecular

dynamics. It is found that dislocations in {101̄2} and {112̄1} boundaries are very

glissile, but sessile in {101̄1} and {112̄2} interfaces. In [21], the interaction between

basal slip dislocations and different twin interfaces has been studied. It is found that if

a basal slip dislocation hits a {101̄2} interface, a source for {101̄2} partial dislocations

is created, which forms pairs of partial dislocations if a shear strain of approximately

±0.005 is applied. The source therefore provides a mechanism to move the interface

gradually by generating a pair of partial dislocations, as long as the load is not re-

moved and no obstacle is met. The converse is reported for a basal slip dislocation

that hits a {101̄1} interface. It creates there a pair of partial dislocations, but not an

independent source for twinning dislocations. Together with the findings from [26], a

convincing explanation for {101̄2}-twinning being the most prominent twinning mode

in hcp metals is obtained.

Another explanation for the needle-like {101̄1} twinning and the extensive {101̄2}
twinning is that the {101̄1} twins produce a larger shear strain. Therefore, to accom-

modate a certain deformation, compared to {101̄2} twinning, less volume fraction of

{101̄1} twins is necessary [28, 29]. At least for magnesium this explanation is rather

improbable, as the corresponding shear numbers γ{101̄2} ≈ 0.13 and γ{101̄1} ≈ 0.137
differ only slightly.

Li [30] recently modelled the development of a {101̄1} twin and its interface move-

ment in magnesium by molecular dynamics. In their simulations, a magnesium single

crystal is subjected to a strain driven tensile test. The crystal orientation is such that 2

of the 6 possible twin variants are not triggered, while 4 of them are equally preferable.

It is found that in the process of twin nucleation, initially two twin variants develop,

one of which is assimilated by the other one as the simulation continues. As the model

is symmetric, it is to conclude that a small perturbation, like a dislocation, can cause

the unfortunate twin to be the other one. This underlines the affinity of twinning to bi-

furcation. In order to obtain reproducible results, both the simulation and experimental

setups should avoid ambiguities like equally preferred twin systems. Another interest-

ing result is that 3 kinds of interface steps are observed, namely 1,2 and 4-layer steps.

While the 1-layer step is sessile, the 2-layer step is glissile. The 4-layer step is unsta-

ble and dissociates into two 2-layer steps, between which a repulsive force is acting.

The movement of the interface is connected to the generation of prismatic dislocation.

In another work, [31] focused on the atomic modelling of a {101̄2} twin interface in

magnesium, employing the embedded atom model by [32]. It has been found that

the morphological difference between {101̄1} and {101̄2} twinning in magnesium
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can be explained by the mechanism underlying to the interface movement. In case

of the {101̄1} twinning, the interface movement rests upon the movement of partial

dislocations, while in case of the {101̄2} twinning, atomic shuffling appears to play

the leading role, and no pronounced partial dislocation is observed. Therefore, unlike

{101̄2} twinning, the {101̄1} twin propagation is restricted by the partial dislocation

density, which renders the {101̄2} interfaces more glissile compared to the {101̄1}
interfaces.

4 The material model

The material model is based on a nonconvex elastic energy. The elastic energy is ob-

tained by combining the elastic energies of the possible configurations in a regularised

version of the Ball and James-approach w̃(C) = min(w1(C), w2(C)...wn(C)) [33].

The individual strain energies are obtained by exploiting the isomorphy of the parent

and the twin lattices [6]. To avoid an overestimation of the critical twinning stress,

a modification of the strain energy in the transition zones is necessary. Inside the

parent configuration, basal slip is possible, which is approximated by the card glide

mechanism. As kinetic relation, a viscous regularisation is introduced.

The index 0 indicates the parent configuration, while the indices 1...n run over the

possible twin variants, and sums are explicitly written.

The plastic transformations map the elastic reference law of each phase to the ref-

erence placement. P 0 is given by the parent crystal orientation, and P i, i = 1..n are

given by

P i = P 0P 0i i = 1...n, (1)

with the plastic transformations P 0i

P 0i = S−1

i Rni
(2)

= (I − γ0di ⊗ ni)(−I + 2ni ⊗ ni) (3)

= −I − γ0di ⊗ ni + 2ni ⊗ ni i = 1...n. (4)

Si denotes the shear deformation with respect to the parent crystal, while Rni
ac-

counts for the reorientation of the crystal lattice. di and ni are the normalised shear

directions and the shear plane normals of the {101̄2}〈1̄011〉 twin systems in the parent

lattice, γ0 represents the twinning shear. With the P i, Green’s strains Ei are obtained

by

Ei(C) =
1

2
(P T

i CP i − I). (5)

For clarity, the chain like dependence wi(Ei(C)) is omitted in the following. The

strain energies, based on the St. Venant-Kirchhoff strain energy, are given in terms of
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Greens strain by

wi =
1

2
Ei · · C · · Ei if φi(Ei) ≤ 0 (6)

wi = Ei · · C · · Ei,crit −
1

2
Ei,crit · · C0 · · Ei,crit if φi(Ei) > 0, (7)

with the elasticity tetrad C. The functions φi indicate whether a critical strain state

has been reached. As mentioned before, the wi have to be modified in order to not

over-predict the twinning stresses. This is achieved by a linear continuation of the

quadratic strain energy when a critical strain state is reached. The functions φ(Ei) are

given by

φ0(E0) =
n
∑

i=1

〈γj/γtwin〉m − 1 γj = 2E0 · · M j (8)

φi(Ei) =
γi

γtwin

− 1 γi = 2Ei · · M i i = 1...n, (9)

where M i = di ⊗ ni. In the parent configuration (index 0), there are n possible twin

configurations to be reached, while the twins (index 1...n) are allowed to transform

only back to the parent, i.e. the model does not include higher order twins. The wi

can now be inserted into a regularised version of the Ball and James-approach,

w̃ =
n
∑

i=0

aiwi ai =
gi

∑n
j=0

gj

gi =
h(wi)

1 − h(wi)
hi = exp(−kwi), (10)

with k being a preferably large regularisation parameter. With w̃ on hand by the latter

system of equations, the second Piola Kirchhoff stresses are

T =
∂w̃

∂E
≈

n
∑

i=0

aiT i (11)

T i =
∂wi

∂E
= P i

∂wi

∂Ei

P T
i . (12)

This is, so far, the elastic law. Incorporating the viscous regularisation corresponds

to adding the deviatoric part of Jη
2

C−1ĊC−1 to the second Piola Kirchhoff stresses,

with η being the viscosity. In order to account for basal slip, the collective of basal

slip systems is approximated by the card glide mechanism. nb corresponds to the base

plane normal, while the slip direction db is obtained by projecting the stress vector

into the base plane. The plastic transformation of the parent evolves corresponding to

−P−1

0
Ṗ 0 = γ̇d∗

b ⊗ nb, d∗
b =

db

‖db‖
, (13)

with

d = ((I − nb ⊗ nb)F̃
−1

σF̃
−T

) · nb, F̃ = FP 0. (14)
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γ̇ is determined consistently with the elastic law. I.e., during the plastic flow, the

resolved shear stress in the card glide system is equal to the flow stress.

The material parameters are given with respect to the elastic reference law. e1 is

parallel to a1 while e3 is parallel to the c-axis. The elastic stiffness tetrad of magne-

sium [34], with respect to the basis B1 = e1⊗e1, B2 = e2⊗e2, B3 = e3⊗e3, B4 =√
2/2(e1⊗e2+e2⊗e1), B5 =

√
2/2(e1⊗e3+e3⊗e1), B6 =

√
2/2(e2⊗e3+e3⊗e2)

is

C =

















56.49 23.16 18.10 0 0 0
56.49 18.10 0 0 0

58.73 0 0 0
2 × 16.81 0 0

2 × 16.81 0
56.49 − 23.16

















Bi ⊗ Bj,

(15)

in GPa. Bi is an orthonormal vector basis for symmetric 2nd order tensors, i.e. a

fourth order tensor with both subsymmetries can be denoted as a second order tensor

with respect to Bi. The six structural tensors belonging to the {101̄2}〈1̄011〉 twin

systems are given by

M 1 = d1 ⊗ n1 (16)

d1 = cos(α)e2 + sin(α)e3 (17)

n1 = −sin(α)e2 + cos(α)e3 (18)

M i = Qi−1

π/3e3
∗ M 1, i = 2...6 (19)

i.e. by rotating the twin system M 1 in the sixfold symmetric hexagonal cell, with

α = atan(c/(a
√

3)). (20)

For magnesium and its alloys, c/a ≈ 1.623. The twinning shear for the {101̄2}〈1̄011〉
twin systems is given by

γ0 =

√
3

c/a
− c/a√

3
, (21)

i.e. γ0 ≈ 0.13. The regularisation parameter k and the viscosity are taken as k = 0.25
and η = 10000 MPa s.

The regularisation parameter of the phenomenological model adaption of the strain

energy is taken to be m = 10. The used critical shear strain is γtwin = 0.006γ0.

The critical shear stress for twinning is therefore approximately τcrit = Gγtwin ≈
0.006 × 0.13 × 17000 MPa≈ 13 MPa.

For the basal glide, only the critical shear stress τbasal enters the card glide. It is

observed that the critical {101̄2}〈1̄011〉 twinning stress and the basal slip shear stress

are related by τcrit/τbasal0 ≈ 4. Therefore, τbasal is set to 4 MPa, and strain hardening

is neglected.
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Figure 6: FE Model of the RVE, with schematic pole figure of the c-axes. The

greyscale exemplifies the periodic Voronoi structure of the grains.

5 Simple compression of an RVE

In order to obtain results that are comparable to experimental data, the RVE method

is used to simulate the simple compression of an extruded magnesium alloy along the

extrusion direction. The crystallographic texture of the latter is such that the c-axes are

aligned approximately perpendicular to the extrusion direction, i.e., the compression

along the extrusion direction results in c-axis elongation, which is accommodated by

{101̄2}〈1̄011〉 twinning (see [29, 15]).

5.1 Model setup

The FE model of the RVE consist of a regularly meshed cube with 30×30×30 linear

hexahedron elements. The initial microstructure has been approximated by a periodic

Voronoi tessellation, consisting of 20 grains, Fig. 6. The limited number of grains is

necessary to provide a reasonable discretization of each grain, though the grains are

partitioned by twinning. The crystal orientations are restricted such that the c-axes do

not deviate more than α from the plane of compression, and are uniformly distributed.

No preferred orientation of the remaining degree of freedom (rotating the ai around

the c-axis) has been established. The displacement boundary conditions are periodic

on the entire surface of the cube. The 11-component of the mean displacement gradi-

ent with respect to the orthonormal base system used for the model description have

been constrained,

H =





f(t) 0 0
0 · 0
0 0 ·



 ei ⊗ ej, (22)

while H22 and H33 have not been constrained. Instead, the mean reaction forces along

the e2 and e3 directions have been constrained at the corresponding faces to be equal

to zero, in order to obtain the average uniaxial stress state along the e1 direction.
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Figure 7: Propagation of a twin (black) over a grain boundary. The grey-scaling

represents the grain structure.

Figure 8: Twin spreading on the RVE, at a nominal compression strain of 2.5%, 2.9%

and 4.6%, from left to right.

5.2 General observations

In the simulations, twins nucleate and spread rapidly over the FE model. In Fig. 7,

the propagation of a twin over a grain boundary is illustrated. In Fig. 8, a sequence of

states illustrating the twin spreading in the RVE is given. Both Figures are obtained

from the simulation with a maximum deviation of α = 30◦ of c from the plane of

compression. The incorporation of basal glide does not significantly alter the results,

which is due to the approximately perpendicular alignment of the basal planes to the

principal stress direction.

5.3 Comparison to experimental findings

As a reference, the works of [35] and [29] have been used, where compression tests for

two magnesium alloys and pure magnesium are documented. In Fig. 9, graphs for the

twin volume fraction evolution in the experiments and the simulations are depicted.

12



One notes that the evolution of the twin volume fraction is in good agreement with the

experimental findings. The rapidly increasing twinning rate at 3 to 5% of logarithmic

strain, as well as the saturation to 100% twin volume fraction are captured by the

model. In Figs. 9 and 10, the twin volume fraction and the nominal compression

stress are plotted. Therefore, it is to be expected that the crystallographic texture

evolution are in good accordance, as twinning dominates the texture evolution for this

particular experiment.

However, comparing to the stress strain response given by [29], one finds that the

experimental results display a pronounced hardening behaviour, which is not found in

the simulations. This is due to the fact that the hardening behaviour of the magnesium

alloy under consideration is very complex due to precipitates, which is not captured by

the model. This explanation is furnished by the fact that the stress strain response is in

considerable agreement with the compression experiments with pure magnesium [35],

which displays a less complicated hardening behaviour due to the lack of particles and

precipitates, see Fig. 10. It is found that the zero-hardening-plateau at approximately

60 MPa (≈ 8.7 ksi) corresponds to the twin nucleation phase. At approximately 3% of

logarithmic strain, the nominal stress increases constantly, which coincides with the

point where volume-filling twinning starts seriously. Similar findings are given in [36].

The hardening is explained by the fact that the twins form firstly at stress concentration

points, or expressed differently, at the most favourable twinning sites. For further

twinning, the loading must be increased in order to activate the less favoured twinning

sites. One notes that the hardening rate is overpredicted in the simulations. This is due

to the fact that the material model does not capture secondary twinning and slipping

inside the twins, which renders them stiffer as in reality.

5.3.1 Texture evolution

The RVE-simulations allow to compare the texture evolution with experimental re-

sults. At a material point, the significant orientation is assumed to be given by the

phase with the smallest strain energy. Due to the phenomenological model adaption,

the strain energy invariance is not exactly met by the model, i.e. a definite orientation

can be extracted at each of the 8× 303 integration points of the FE model. The c-axes

of 20 initial orientations deviate at most by 15◦ from the compression plane, see Fig.

11 for pole figures of the initial orientation distribution. The sequence of c and a pole

figures for the compression test is given in Fig. 12. One notes that the texture evolu-

tion corresponds qualitatively well to experimental results of [29], although the rate at

which the texture shifts is overestimated.

6 Conclusions

The presented micro-model is able to predict, in conjunction with the representative

volume element method as the numerical homogenisation scheme, twinning-induced

effects on the macroscale. Simulations of characteristic compression tests on textured
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Figure 9: Comparison of the experimental [29] and the RVE-simulated twin volume

fraction evolution. The simulated curves are obtained with different texture sharp-

nesses, the maximum deviation of the c axis from the compression plane is given.

Figure 10: Comparison of the experimental and the RVE-simulated stress evolution

(Cauchy stress over logarithmic strain). Courtesy of S.N. Monteiro, experimental data

firstly published in [35].
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Figure 11: c and a pole figures of the initial orientation distribution, with Icmax =
9.403 and Iamax = 5.173. The projection plane is parallel to the compression di-

rection. The pole figures are calculated using a Mises-Fisher [37] distribution with a

half-width of 20◦ around the individual orientations.

Experimental c pole figures measured by [29] at a logarithmic strain of -4%, -8%

-11% and -15%.

Imax = 8.233 Imax = 7.916 Imax = 10.591 Imax = 11.204
simulated c pole figures

Imax = 4.391 Imax = 2.801 Imax = 3.581 Imax = 3.749
ε0 = −2.4 ε0 = −4.4 ε0 = −6.6 ε0 = −8.4

simulated a pole figures

Figure 12: c and a pole figures for the compression test. The projection plane is

parallel to the compression direction. The pole figures are calculated using a Mises-

Fisher distribution with a half-width of 20◦ around the individual orientations.
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magnesium polycrystals have been carried out. The following has been found:

• The twin volume fraction evolution shows a qualitatively good agreement to the ex-

perimental findings of [29]. Quantitatively, it is slightly overestimated.

• The impact on twinning on the texture evolution is linked directly to the twin volume

fraction, which allows to obtain a reasonable estimation of the texture evolution.

• The twinning-induced zero-hardening plateau observable in pure magnesium sam-

ples could be reproduced.

• The overall setup (material model and FE model) allows for grain to grain interac-

tion, which manifests in twin propagation across grain boundaries.

However, the model fails to predict the stress-strain curves for magnesium-aluminium

alloys, which has several reasons.

• Firstly, multiple twinning is not included. The reason herefore is that the elas-

tic modelling would allow for, due to its inherent strain-path independence, arbitrary

configuration changes. To exclude this unrealistic behaviour, only first-order twins are

considered.

• Secondly, inside the twins, no further deformation mechanism, like slip or fracture,

is accounted for.

• Thirdly, no twin-particle interaction and no grain-particle has been considered,

which is known to have a considerable influence on the hardening behaviour. This

is a special feature of MgAl-alloys, which owe there relative strength compared to Mg

to precipitate-hardening. At least, this shortcoming is not an artifact of the model, but

of the finite element setup, which allows in principle the inclusion of particles in the

RVE calculation.

Appendix A

For a hexagonal lattice, it is convenient to use the Miller-Bravais basis

a1 = ae1, a2 = a

(

−1

2
e1 +

√
3

2
e2

)

, (23)

a3 = a

(

−1

2
e1 −

√
3

2
e2

)

, c = ce3 (24)

see Fig. 1, [38, 39]. The lattice parameters c and a represent the height of the cell

and the edge length of the base hexagon, respectively, and correspond to the norms of

c and a, c =
√

c · c and a =
√

a · a. Although one usually does not appreciate the

use of linearly dependent base vectors, this basis has the advantage that it reflects the

hexagonal symmetry. Permutations of the components belonging to a1...3, a change of

sign of the c-component or a simultaneous change of sign of all a1...3 yield crystallo-

graphically equivalent directions, which are denoted as 〈a1a2a3c〉. Usually, negative

components are denoted by x̄ instead of −x. Further, due to the linear dependence of

a1...3, the condition a1 + a2 + a3 = 0 is imposed, and therefore sometimes the third
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component a3 is omitted.

To indicate planes, it is advantageous to introduce another basis. This is done by

taking the dual basis (ã1, ã2, c̃) of (a1,a2, c) and defining the base vectors

a∗
1

=
2

3
ã1 −

1

3
ã2 =

2

3a2
a1, a∗

2
= −1

3
ã1 +

2

3
ã2 =

2

3a2
a2, (25)

a∗
3

= −1

3
ã1 −

1

3
ã2 =

2

3a2
a3, c∗ = c̃ =

1

c2
c. (26)

This basis again satisfies a∗
1
+a∗

2
+a∗

3
= 0, but it is not the dual basis of (a1,a2,a3, c).

It also has the advantage that crystallographically equivalent planes are connected by

permutations of the components and changes of sign as stated above. Again, the

components should be restricted to a∗
1
+ a∗

2
+ a∗

3
= 0. If this is done, several practi-

cal simplifications are obtained: If a normal vector is given with respect to the basis

(a∗
1
,a∗

2
,a∗

3
, c∗), the reciprocals of its components correspond to the piercing point dis-

tances of the plane with the base vectors (a1,a2,a3, c). Therefore, the plane {101̄2}
can be visualised by considering the points a1, −a3 and 1/2c (see Fig. 1). Moreover,

one can easily see whether direction and normal vectors are perpendicular to each

other by calculating the scalar product as if (a1,a2,a3, c) and (a∗
1
,a∗

2
,a∗

3
, c∗) were

dual bases.
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