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a b s t r a c t

The statistical volume element (SVE) technique is commonly used for the estimation of the effective
properties of a micro-structured material. Mostly, cubical SVEs with periodic boundary conditions are
employed, which result in a better convergence, compared to the uniform boundary conditions. In this
work, the possibility of using spherical SVEs is discussed, since their use promises a reduction of the influ-
ence of the boundary, and thus a more efficient estimation of the effective material properties. We dis-
cuss the applicability of boundary conditions which are similar to the periodic boundary conditions to
spherical SVEs. Then we assess the convergence (subject 1) of spherical and cubical SVEs to the effective
material behavior for the uniform and periodic boundary conditions, focusing on the elastic and plastic
properties of a macroscopically isotropic matrix-inclusion material. It is shown that the spherical SVEs
perform indeed better than the cubical SVEs. Also, unlike the spherical SVEs, the cubical SVEs with peri-
odic boundary conditions induce a spurious anisotropy (subject 2), which is quantified for the effective
elastic properties. Finally, we examine the effect of the periodicity frame on the localization behavior
(subject 3) of cubical SVE, since cubical SVE with periodic boundary conditions are commonly used to
estimate macroscale material failure. It is demonstrated that the orientation of the periodicity frame
affects the overall SVE response significantly. The latter is not observed for spherical SVE.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The microscale structure of a material can have a considerable
effect on the material properties as perceived on the macroscale.
Common examples are polycrystals, which may exhibit a crystallo-
graphic (crystal orientation) and morphological (grain shape)
texture, fiber or particle reinforced composites, foams and lami-
nates. The process of calculating the effective material properties
from the arrangement and the properties of the constituents on a
smaller scale is termed as homogenization.

For specific material properties, efficient homogenization meth-
ods are at hand, see for example Klusemann and Svendsen [26] for
the elastic properties, or Fritzen et al. [13] for the yield limit of por-
ous materials. However, in many cases the analytical homogeniza-
tion is limited, e.g. for the prediction of the crystallographic texture
evolution [5]. Then, one follows commonly the pragmatic approach
of the RVE or SVE method, which consists of considering a repre-
sentative section of the material, define appropriate boundary con-
ditions, and solve the initial- and boundary-value problem, usually
with the help of numerical methods such as the finite element
method. Then, one is able to extract the volume average of the var-
ll rights reserved.

x: +49 391 67 12863.
iable of interest, or examine the effect of different microstructures
on the overall material behavior. For an account on numerical
homogenization by the SVE/RVE method see, e.g., Zohdi and
Wriggers [49]. In this work, we will not distinguish strictly be-
tween RVE and SVE, which capture the microstructure identically
(RVE) or in an approximate sense (SVE). Here, the two terms are
used like synonyms.

When focusing on macroscale stress–strain relations, in
contrast to analytical techniques, one does not arrive at a closed-
form, but obtains an approximation for a specific deformation path.
For a coupling with a large-scale FE application, one may use the
FE2 method [44,9,30,38]. However, this is computationally very
expensive, and one is interested in a reduction of the numerical
costs. A relatively new approach to this problem is the coupling
of the RVE-method with the nonuniform transformation field anal-
ysis (NTFA [29,12]). Roughly speaking, the RVE method is used to
build a database for different deformation modes, from which
the actual stress–strain-relations needed in the macroscale calcu-
lation are estimated. However, the NTFA is restricted to the small
strain setting.

A more direct reduction of the numerical costs of the FE2 meth-
od is the optimization of the RVE, and to apply it simultaneously to
a large-scale constitutive law. Then, the RVE calculations are
carried out only when and where it is necessary, e.g., when the
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straining is large. Also, the RVE itself should be as representative as
possible, but still require an acceptable numerical effort. The prob-
lem of determining a RVE with a good balance between represen-
tativity and numerical expense, arises. It depends on the material
under consideration, and has been subject of many studies, e.g., Ka-
nit et al. [23], Xu and Chen [47], Pelissou et al. [39], Salahouelhadj
and Haddadi [41]. Another possibility to increase the ratio repre-
sentativity/numerical effort is to optimize the material section un-
der consideration [42].

Here, we examine the influence of the shape of the RVE. Usually,
cubical RVEs are used. We demonstrate that the use of spherical
RVEs is advantageous for two reasons. Firstly, the bias due to spe-
cific boundary conditions is weaker, since the surface-to-volume
ratio is smaller than for cubical RVEs. Secondly, spherical RVEs
do not induce a material-independent anisotropy, unlike cubical
RVEs with periodic boundary conditions. The reduction of the
shape-induced anisotropy has been discussed by Grasset-Bourdel
et al. [16], who considered RVEs with shapes that allow for a com-
plete filling of the space. It was found that a hexagonal arrange-
ment is advantageous, compared to a cubic shape. However, the
restriction to shapes that allow for a complete filling of the space
appears to be unnecessary, since spherical RVE are used routinely
for analytical methods [17,43,8], while in numerical calculations
the cubical RVEs predominate. Only few exceptions can be found,
e.g., Kim et al. [25] and the authors referred to in this work used
non-periodic RVEs.

The outline of this work is as follows: We firstly reproduce the
fundamentals of the RVE method (Section 2), followed by a discus-
sion of the possible boundary conditions (Section 3) that may be
applied to spherical and cubical RVEs (Section 4). In Section 5 the
setup for the numerical experiments is described. In Section 6 we
examine the convergence while increasing the RVE size for the
elastic and plastic properties of a matrix–inclusion-material, and
compare different shapes and boundary conditions. In Section 7
we assess the shape-induced anisotropy of the spherical and cubi-
cal RVE with periodic boundary conditions by applying them to an
effectively isotropic material. Finally we focus on the peculiarities
of the localization behavior of the spherical and cubical RVE
(Section 8).
1.1. Notation

Throughout the work a direct tensor notation is preferred. If an
expression cannot be represented in the direct notation without
introducing new conventions, its components are given with re-
spect to orthonormal base vectors ei, using the summation conven-
tion. Vectors are symbolized by lowercase bold letters v = viei,
second-order tensors by uppercase bold letters T = Tijei � ej or bold
Greek letters. The second-order identity tensor is denoted by I.
Fourth-order tensors are symbolized like C. The dyadic product is
defined as (a � b) � c = (b � c)a. A dot represents a scalar contrac-
tion. If more than one scalar contraction is carried out, the number
of dots corresponds to the number of contractions, thus
(a � b � c) � � (d � e) = (b � d)(c � e)a, a = A � � B and r ¼ C � � e. If only
one scalar contraction is carried out, the scalar dot is frequently
omitted, e.g., v = Fw, A = BC. kxk denotes the Frobenius norm.

The position vector of a material point is denoted by x(x0, t),
where x0 indicates the position vector of the same material point
in the reference placement. At t = 0, x = x0 holds. The partial deriv-
ative of a function with respect to t with x0 kept constant is the
material time derivative, indicated by a superimposed dot. The in-
dex ’’0’’ indicates that a function or derivative is to be evaluated in
the reference placement or with respect to x0. X denotes the do-
main of the RVE under consideration. All unweighted volume aver-
ages over this domain are evaluated in the reference placement,
denoted as h�i :¼ 1
V0

R
X0
� dV . A superimposed bar indicates a macro-

scale-quantity.

1.2. List of symbols
Cijkl
 components of the stiffness tetrad with respect to an
orthonormal basis
J
 detF

q
 mass density

X
 domain of the RVE

r
 nabla operator

b
 mass-specific force density

n
 surface normal vector

t
 traction vector t = r � n

u
 displacement vector, u = x � x0
x
 position vector

r
 Cauchy stress tensor

e
 linear strain tensor, e ¼ 1

2 ðH þHTÞ

s
 Kirchhoff stress tensor, s = Jr

D
 rate of deformation tensor, symmetric part of

L; D ¼ 1
2 ðLþ LTÞ
F
 deformation gradient, F = x �r0
H
 displacement gradient, H = F � I = u �r0
L
 velocity gradient, L ¼ _x�r ¼ _FF�1
T
 first Piola–Kirchhoff stress tensor, T = det (F)rF�T
I
 fourth order identity on symmetric second order
tensors
P1
 first isotropic projector, P1 ¼ 1
3 I � I
P2
 second isotropic projector, P2 ¼ I� P1
Pc2
 second cubic projector

Pc3
 third cubic projector
HTBC
 homogeneous traction boundary conditions

LDBC
 linear displacement boundary conditions

PBC
 periodic boundary conditions
2. Basic considerations

2.1. Scale separation

The scale separation requires that lmicro� lmini� lmacro [18],
where lmicro refers to the characteristic size of the heterogeneities,
lmini to the RVE size and lmacro to the dimensions of the body.
lmicro� lmini ensures the representativity of the RVE, while
lmini� lmacro is necessary if one wants to consider the RVE as a
material point on the macroscale.

2.2. Equilibrium equations

The local balances of linear and angular momentum require

r � r ¼ qð€x� bÞ; r ¼ rT ; ð1Þ

where b is a mass-specific force density. They must hold globally for
an RVE X,Z

X
r � rdV ¼

Z
X
qð€x� bÞ dV ;

Z
X
ðr� rTÞ dV ¼ 0; ð2Þ

where the global balance of linear momentum may be transformed
by Gauss’ theorem and Cauchy’s theorem t = r � n,Z
@X

tdA�
Z

X
qð€x� bÞ dV ¼ 0: ð3Þ
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However, the incorporation of inertia and body forces leads to
material laws which depend on superimposed rigid body motions.1

Thus, we may consider only the static balance of linear momentum
without body forces when using the RVE method.2
2.3. Micro–Macro-coupling

The micro–macro-coupling is obtained by assigning macroscale
quantities to unweighted volume averages of the corresponding
microscale quantities, where the integral is carried out over the do-
main occupied by the material. Thus, porous materials require
either a treatment of pores by some material law, or need to be ex-
cluded from the volume integral. In the latter case, care must be ta-
ken when Gauss’s theorem is applied. Here we exclude this
peculiarities, assuming a space-filling arrangement of micro-
constituents. Following Nemat-Nasser [33], ’’there is an inherent
arbitrariness in the selection of suitable kinematic and dynamical
quantities whose overall measures are defined in terms of unweighted
volume averages of the corresponding micromeasure’’. To avoid ambi-
guities, it must be clarified which quantities are used. For several
reasons it is advantageous to use the deformation gradient and
the first Piola–Kirchhoff stresses,

F :¼ hFi; T :¼ hTi: ð4Þ

Firstly, F and T can be defined in terms of surface integrals in the
reference placement,

hFi ¼ 1
V0

Z
X0

x�r0dV ¼ 1
V0

Z
@X0

x� n0dA; ð5Þ

hTi ¼ 1
V0

Z
@X0

t � x0dA: ð6Þ

Relation (5) involves merely Gauss’ theorem, while the latter rela-
tion is confirmed by reformulating with Cauchy theorem t = T � n0,
Gauss’ theorem, and the static equilibrium condition without body
forces T � r0 = 0 (see Section 2.2),

hTi ¼ 1
V0

Z
@X0

t � x0 dA ¼ 1
V0

Z
@X0

n0 � ðTT � x0Þ dA ð7Þ

¼ 1
V0

Z
X0

r � ðTT � x0Þ dV ¼ 1
V0

Z
X0

ððT � rÞ � x0 þ TÞ dV

¼ 1
V0

Z
X0

T dV : ð8Þ

Secondly, since the reference placement is time-independent,
one can interchange the unweighted volume averaging and the
material time derivative, i.e. _F ¼ h _Fi ¼ hFi� ¼ _F and
_T ¼ h _Ti ¼ hTi� ¼ _T .

Thirdly, T and _F are power-conjugate, which allows for a com-
pact expression of the Hill–Mandel condition (Section 2.4). For
the foregoing reasons, in this work T and F are taken for the
micro–macro-coupling. Then, the macroscopic Cauchy stresses
are obtained from �r ¼ J�1 �T �FT ; J ¼ det F , which is not necessarily
equivalent to hri. However, for the special case of the
micro–macro-coupling in the first Piola–Kirchhoff stresses and
the deformation gradient, it follows that �s ¼ hsi [33].
1 One can easily find examples which give an effective material behavior that
violates the principle of invariance under superimposed rigid body motions [46].
Subject the RVE boundary to an accelerated rigid body motion and take F :¼ hFi and
�r :¼ hri for the micro–macro-coupling to find that F ¼ I holds constantly while T
depends on the motion.

2 At this point, it is often argued that the volume integral O l3mini

� �� �
is small

compared to the surface integral O l2mini

� �� �
due to the small size of the RVE, in order

legitimate the disregard of inertia and body forces. This argument is conflicting with
the idea of a possibly large RVE for a better representativity.
2.4. The Hill–Mandel condition

The Hill–Mandel condition, demands the equivalence of the
stress power as perceived on the macroscale and on the microscale.
For the small strain setting it is sufficient to consider

hr � � _ei ¼ hri � �h _ei: ð9Þ

The latter equation is trivially satisfied if r and _e are homogeneous,
from which the first interpretation of the Hill–Mandel-condition is
derived: The larger the RVE is, the more homogeneous appears the
material, i.e. the smaller are the fluctuations, leading to the conclu-
sion that the Hill–Mandel-condition poses requirements on the RVE
size [20].

However, the RVE is subjected to some boundary conditions. It
was found that the Hill–Mandel-condition is satisfied for specific
boundary data a priori [45], independent of the size of the RVE.
From this, the second interpretation of the Hill–Mandel-condition
arises: The boundary conditions should comply the Hill–Mandel-
condition a priori to assure convergence to the effective material
law with increasing RVE size. The latter interpretation appears to
be widely accepted, since all commonly used boundary conditions
a priori fulfill the Hill–Mandel-condition.

Before examining specific boundary conditions, the derivation
of Suquet [45], which was originally given in the small strain set-
ting, is reproduced here for the finite strain form of the Hill–
Mandel-condition (see also Bertram [2]). The volume average of
the volume-specific stress power of the RVE (left handside) must
be equivalent to the volume-specific stress power on the
macroscale,

hT � �Fi ¼ T � �F: ð10Þ

Taking F and T for the micro–macro-coupling, the latter equation
becomes

hT � � _Fi ¼ hTi � �h _Fi: ð11Þ

The latter equation can be recast with surface integrals, involving
the boundary conditions. Up to Eq. (17), the dependency on x0

and t is written out, since the dependence is of importance for the
argumentation. Firstly, the fluctuation part of _F is defined as

_eF ðx0; tÞ :¼ _Fðx0; tÞ � _FðtÞ; _FðtÞ :¼ h _Fðx0; tÞi: ð12Þ

Note that _Fðx0; tÞ ¼ _Hðx0; tÞ, and consequently _FðtÞ ¼ _HðtÞ and
_eF ðx0; tÞ ¼

_eHðx0; tÞ hold. For the velocity field, one can define the
decomposition

_~uðx0; tÞ :¼ _uðx0; tÞ � _HðtÞ � x0; _uðx0; tÞ � _uðx0; tÞ: ð13Þ

Since x0 is not a function of t, the material time derivative and the
material gradient �r0 may be interchanged. Applying �r0 to
_~uðx0; tÞ yields

_~uðx0; tÞ � r0 ¼ _uðx0; tÞ � r0 � _HðtÞ ¼ _Hðx0; tÞ � _HðtÞ

¼ _eHðx0; tÞ; ð14Þ

i.e. _~uðx0; tÞ and _eF ðx0; tÞ are related by

_eF ðx0; tÞ ¼ _~uðx0; tÞ � r0: ð15Þ

Note that, unlike _FðtÞ, _�uðx0; tÞ does depend on x0. The displacement
�uðx0; tÞ can be viewed as the part of the local displacement that
stems from the homogeneous part H of the displacement gradient.
Although it depends linearly on x0 it is often referred to as the
homogeneous part of the local displacement. Inserting the decom-
position of _Fðx0; tÞ into Eq. (11) yields

hTðx0; tÞ � �FðtÞi þ hTðx0; tÞ � �eF ðx0; tÞi ¼ hTðx0; tÞi � �FðtÞ; ð16Þ
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where _FðtÞ can be pulled out of the volume averaging, since it is
independent on x0. Then one finds

hTðx0; tÞ � �eF ðx0; tÞi ¼ 0: ð17Þ

One proceeds by using Eq. (15), and considering T � �ð _~u�r0Þ as one
summand of a product rule,

T � �~u�r0 þ ðT � r0Þ � _~u ¼ ð _~u � TÞ � r0; ð18Þ

which allows to write

0 ¼ hð _~u � TÞ � r0 � ðT � r0Þ � _~ui: ð19Þ

Here one identifies T � r0 = 0 in the second summand as the local
balance of linear momentum without inertia and body forces in
the reference placement. Therefore, by considering only equilibrium
states, this summand is dropped. The remaining summand is trans-
formed by Gauss’ theorem and Cauchy’s theorem to

0 ¼ 1
V0

Z
@X0

_~u � T � n0 dA ¼ 1
V0

Z
@X0

_~u � t dA: ð20Þ

By this, the Hill–Mandel-condition is expressed as a surface integral
in terms of the traction and displacement, which allows to examine
specific boundary conditions with respect to the Hill–Mandel-
condition.

3. Boundary conditions on the RVE

The boundary value problem is complete when at each surface
point, with respect to a suitable orthogonal basis bi, either ui, ti or a
mixture of both is prescribed. More general, the boundary condi-
tions may be given implicitly in form of constraints, as it is the case
for the periodic boundary conditions.

The boundary conditions to which an RVE may be subjected
have been exhaustively discussed, see e.g. Suquet [45]. There are
no natural or self-evident boundary conditions for the RVE, except
for microstructures with a periodicity, where periodic boundary
conditions are reasonable [31]. The most common boundary condi-
tions are the homogeneous traction, linear displacement and peri-
odic boundary conditions. Recent advances focus on the definition
of boundary conditions which allow for an arbitrary localization of
a RVE [7,36] (percolation path boundary conditions), where the
periodic boundary conditions on a cubic RVE serve as the starting
point. In this regard, a consideration of spherical RVEs with peri-
odic boundary conditions is helpful. This topic is addressed in
Section 8.

3.1. Uniform boundary data

The assumption of homogeneous tractions or linear displace-
ments on the boundary are related to the Sachs/Reuss or Taylor/
Voigt estimates, which assume a homogeneous stress or strain
field not only on the boundary but in the entire volume. Thus,
restricting this extreme assumptions to the RVE boundary gives
estimates between these bounds. However, out of the commonly
applied boundary conditions, homogeneous traction or linear dis-
placement boundary conditions give bounds for the effective mate-
rial law that may be obtained from a specific RVE [27,24]. While
homogeneous traction boundary conditions give a softer effective
material response, the linear displacement boundary conditions
overestimate the stresses. In both cases, the Hill–Mandel-condition
holds a priori, irrespective of the material law and the RVE size. The
uniform boundary conditions have the advantage of an easy
implementation.
3.1.1. Linear displacement boundary conditions
These are also termed as uniform strain boundary conditions

[45], homogeneous displacement boundary conditions [11], kine-
matic uniform boundary conditions [23]. Given the average dis-
placement gradient Himpose at each instant t, the velocity of the
boundary points is given by

_u ¼ _Himposex0 on @X: ð21Þ

One notes that due to the decomposition (13), _~u ¼ 0 at the bound-
ary, which renders the Hill–Mandel-condition (Eq. (20)) satisfied.
The linear displacement boundary conditions correspond to the
extremal Taylor and Voigt assumptions.

3.1.2. Homogeneous traction boundary conditions
Given the average stress tensor T impose, the surface tractions are

prescribed by

t ¼ T imposen0 on @X: ð22Þ

If this is inserted into the Hill–Mandel-condition (Eq. (20)), one
notes that T impose can be pulled out of the integral, which leaves

0 ¼ 1
V0

T impose � �
Z
@X0

_~u� n0dA ¼ 1
V0

T impose � �h
_eF i: ð23Þ

With h _eF i ¼ 0 (Eq. (12)) one notes that the Hill–Mandel-condition is
satisfied. The homogeneous traction boundary conditions corre-
spond to the extremal Sachs and Reuss assumptions.

Commonly, material laws are formulated such that the stresses
are a function of the motion of the body, although an inversion or
even an implicit form is possible [40]. In case of the homogeneous
traction boundary conditions, one prescribes the average stress
state and obtains the average straining, i.e. it is the other way
around. Miehe [31] used Lagrangian multipliers for changing the
independent variable from T to H. One finds that

_Himpose ¼
1

V0

Z
@X0

_u� n0 dA; ð24Þ

needs to be enforced, instead of Eq. (22). The latter is often termed
as kinematic minimal boundary conditions [28], natural boundary
conditions [10], weakly enforced kinematic boundary conditions
[11] or static uniform boundary conditions [23]. The equivalence
of the kinematic minimal boundary conditions to the homogeneous
traction boundary conditions can be seen by considering perturba-
tions of a solution of a boundary value problem with kinematic
minimal boundary conditions. Suppose that we have imposed
_Himpose by Eq. (24), and found a global velocity field _u which we con-

sider the solution. According to the incremental work minimization
principle [37], the stress power attains a minimum state in equilib-
rium, thus any deviation from this solution must result in an in-
crease of the incremental condensed potential. We denote an
infinitesimal deviation from _u by d _u. d _u must be compatible to
the boundary conditions, i.e.,Z
@X0

d _u� n0 dA ¼ 0: ð25Þ

The stress power change due to d _u is denoted as

d _w ¼
Z
@X0

t � d _u dA: ð26Þ

The tractions t can be decomposed into a homogeneous and a fluc-
tuation part,

t ¼ T � n0 þ ~t;
Z
@X0

~t � n0 dA ¼ 0: ð27Þ



R. Glüge et al. / Computational Materials Science 63 (2012) 91–104 95
We insert this decomposition into the variation of the stress power,

d _w ¼
Z
@X0

ðT � n0 þ ~tÞ � d _u dA ð28Þ

¼
Z
@X0

ðT � �d _u� n0 þ ~t � d _uÞ dA: ð29Þ

The first summand is zero by definition: We can pull out T , and the
remaining integral is equal to Eq. (25). It remains

d _w ¼
Z
@X0

~t � du dA: ð30Þ

One can see that ~t ¼ 0 must hold if _u is a minimizer of _w. Otherwise
it is possible to reduce the stress power by choosing d _u ¼ a~t, with
a < 0 (and the corresponding physical unit). This is admissible be-
cause of Eq. (27) being in accordance with Eq. (25). Thus, d _w can
only be zero for all admissible perturbations of _u if ~t ¼ 0, i.e. the
solution in case of kinematic minimal boundary conditions must
correspond to a state of homogeneous tractions, as prescribed by
the homogeneous traction boundary conditions.

3.2. Mixing of homogeneous traction and linear displacement
boundary conditions

Since the linear displacement boundary conditions and homo-
geneous traction boundary conditions pose bounds, these bound-
ary conditions are sometimes mixed on one RVE, in order to get
a better approximation of the real material behavior [25,14]. Two
different approaches are possible.

3.2.1. Globally mixed boundary conditions
One may prescribe on all surface points mixed boundary con-

ditions, where with respect to a suitable orthogonal basis a mix-
ture of the components ui and ti is prescribed, which are obtained
from uniform Himposex0 and T imposex0. For this case the Hill–Man-
del-condition holds a priori [19]. This can be seen by
decomposing

_u ¼ _uimpose þ _ureaction ð31Þ

t ¼ timpose þ treaction; ð32Þ

where the relations

0 ¼ _uimpose � timpose ð33Þ

0 ¼ _ureaction � treaction ð34Þ

0 ¼ _ureaction � _uimpose ð35Þ

0 ¼ treaction � timpose ð36Þ

must hold. With _uimpose ¼ _Himposex0 it is clear that _uimpose does not
contribute to _~u, i.e.,

_~u � _uimpose ¼ 0; ð37Þ

which leads to the conclusion that _~u must be parallel to _ureaction.
Examining the Hill–Mandel-condition leads to

0 ¼ 1
V0

Z
@X0

_~u � t dA ¼ 1
V0

Z
@X0

ð _~u � timpose þ _~u � treactionÞ dA: ð38Þ

Since _~u is parallel to _ureaction and due to Eq. (34) the second sum-
mand vanishes, and the remainder corresponds to Eq. (23), i.e.,
the Hill–Mandel-condition is met a priori.

3.2.2. Locally pure homogeneous tractions and linear displacements
Another possibility is to divide the surface into the parts oXu

and oXt where _u ¼ _Himposex0 and t ¼ T imposen0 are prescribed,
respectively. Then the Hill–Mandel-condition gives (Eq. (20))
0 ¼ 1
V0

Z
@X0u

½ð _Himpose � _HÞx0� � ½Tn0� dA

þ 1
V0

Z
@X0t

½ð _H � _HÞx0� � ½T imposen0� dA: ð39Þ

with _~u ¼ _u� _Hx0. Unfortunately, it appears that no constraints can
be given that ensure the Hill–Mandel-condition a priori.

3.3. Periodic boundary conditions

The periodic boundary conditions are a compromise between
the homogeneous traction boundary conditions and linear dis-
placement boundary conditions in the sense that they distribute
the constraints that are needed to complete the boundary value
problem equally on t and u. The periodic boundary conditions also
result in a better convergence to the effective material behavior as
the RVE size is increased, which is why they are mostly preferred to
the homogeneous traction boundary conditions and the linear dis-
placement boundary conditions. In order to apply the periodic
boundary conditions, one needs to form pairs xþ0 and x�0 of all
boundary points, where

nþ0 ¼ �n�0 ð40Þ

must hold. This can be done in a reasonable fashion if the
RVE-shape allows to fill the space without gaps by a periodic
arrangement of equal RVEs. For 3D problems, mostly cuboid-shaped
RVE are used. Regarding the FE method, this is mostly done by a
similar node arrangement on opposing surfaces of the RVE,
although this restriction can be surmounted [34]. Then, by assign-
ing opposing boundary points to pairs, and enforcing periodic
boundary conditions, the principle of sections holds for the oppos-
ing RVE surfaces. For homogeneous traction boundary conditions
and linear displacement boundary conditions, opposing surfaces
are in force equilibrium or kinematically compatible, respectively.
This renders the periodic boundary conditions most suitable for
periodic microstructures, where it may be sufficient to consider
only the smallest possible repeatable unit cell. Given the pairs x�0
with nþ0 ¼ �n�0 and an imposed average displacement gradient
_Himpose, the periodic boundary conditions are

_uþ � _u� ¼ _Himpose xþ0 � x�0
� �

ð41Þ

tþ � t� ¼ 0; ð42Þ

which are six implicit equations for six degrees of freedom (three on
the two surface points x±), necessary to complete the mixed bound-
ary value problem. Only if nþ0 ¼ �n�0 we find that _Himpose ¼ _H, which
is needed for the verification of the Hill–Mandel-condition. _H is gi-
ven by Eq. (24). Splitting the surface integral into the minus- and
plus-part and using nþ0 ¼ �n�0 gives

_H ¼ 1
V0

Z
@Xþ0

_uþ � nþ0 dAþ 1
V0

Z
@X�0

_u� � n�0 dA ð43Þ

¼ 1
V0

Z
@Xþ0

ð _uþ � _u�Þ � nþ0 dA ð44Þ

¼ 1
V0

Z
@Xþ0

_Himpose xþ0 � x�0
� �

� nþ0 dA ð45Þ

¼ 1
V0

_Himpose

Z
@X0

x0 � n0 dA ¼ _Himpose: ð46Þ

For the periodic boundary conditions, the Hill–Mandel-condition
holds as well a priori: By subtracting Eq. (13) for the minus-side
from the plus-side we obtain

_uþ � _u� ¼ _H � xþ0 � x�0
� �

þ _~uþ � _~u�: ð47Þ
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Given that _Himpose ¼ _H, we can use Eq. (41) to summarize to

_~uþ ¼ _~u�: ð48Þ

Then, together with Eq. (42), the Hill–Mandel-condition (Eq. (20))
must hold, since opposing surface points mutually cancel out their
contribution to the surface integral.
Table 1
Material parameter for the matrix and the inclusion material.

Parameter Matrix Inclusion

Young’s modulus E in MPa 5000 50,000
Poisson’s ratio m 0.4 0.3
Flow stress rf in MPa 10 –
Volume fraction 0.7 0.3

Table 2
Number of configurations for the different combinations of shape, boundary
conditions and size. The volumes of the cubical RVEs differ by a factor of 6/p from
the corresponding spherical RVEs.

VRVE/Vinc PBC LDBC HTBC VRVE/Vinc PBC LDBC HTBC

1.91 10 10 10 1 10 10 10
15.28 10 10 10 8 10 10 10
51.57 10 10 – 27 10 10 10
122.23 10 10 – 64 10 10 –
238.73 10 10 – 125 10 10 –
Cubical RVE Spherical RVE
4. The shape of the RVE

4.1. Non-periodic microstructures

In the case of non-periodic microstructures, the homogenized
material response must be approximated by considering possibly
large RVE. As the size of the RVE increases, the representativity gets
better, and the surface-to-volume ratio tends to zero. Presuming
that there is no softening or fracture or other localization-inducing
material behavior, the influence of the boundary conditions van-
ishes (see Section 8).

Considering that the boundary influence is artificial, and there-
fore preferably small right from the start, spherical RVE appear
advantageous. Compared to a cubical RVE of the same volume,
one has 19.4% less surface. It is therefore to expect that the spher-
ical RVEs perform better than cubical RVEs.

While one might accept the use of spherical RVE with uniform
boundary conditions, the use of periodic boundary conditions on
spherical RVE appears prohibitive at first glance. However, the
application of periodic boundary conditions is advantageous due
to the better convergence. Thus, the periodic boundary conditions
are also applied in case of non-periodic microstructures, mostly
with cuboid-shaped RVE and periodic microstructures, which moti-
vates their name. However, this periodicity is artificial. It is in fact
not necessary to insist on periodically repeatable unit cells. The
periodic boundary conditions require merely that the paired sur-
face points have opposing surface normals in the reference place-
ment. The argument that the RVE must have a shape that allows
for a complete filling of the space does not enter as an equation. It
is merely used to facilitate the assignment of pairs of surface points
with opposing surface normals. It is therefore possible to use the
periodic boundary conditions with non-periodic volume cells like
spheres or ellipsoids, as long as the assignment of pairs of surface
points complies with nþ0 ¼ �n�0 . Of course, the term ’’periodic’’ is
misleading when the periodic boundary conditions are applied to
non-periodic shapes. In that case, it might be better to speak of cou-
pled boundary conditions, although not the boundary conditions it-
self but the shape of the RVE differs. Thus, we continue to refer to
periodic boundary conditions, even if applied to a sphere.

It is worth noting that this assignment of pairs is, in contrast to
cubical RVEs, unique for spherical RVEs. However, in contrast to
the periodically repeatable unit cells, the opposing surface normals
n± of arbitrarily shaped RVEs need not remain parallel during the
deformation. This has, nonetheless, no effect at all for the argu-
mentation, which is based entirely on n0.

4.2. Periodic microstructures

If the microstructure under consideration is periodic, one can
construct arbitrary large material samples from an irreducible unit
cell. For many cases, it is sufficient to consider a periodically
repeatable unit cell with periodic boundary conditions. Only for
some cases this is not sufficient, e.g., if one wants to associate
structural instabilities of the RVE with material instabilities of
the effective material [32]. Then, one takes a larger, periodically
repeatable material section as RVE. In summary, the use of non-
periodic RVE shapes is reasonable only in case of non-periodic
microstructures.
5. Material and simulation setup

5.1. Material behavior of the matrix and inclusions

The material under consideration is a matrix–inclusion mate-
rial. The matrix is an isotropic, linearly elastic, perfect plastic von
Mises material without hardening. The inclusions with a total vol-
ume fraction of 0.3 are spherical, isotropic, linearly elastic particles
of equal diameter, distributed uniformly without preferred align-
ment or pattern. They are considerably stiffer than the matrix
material. The material parameters are collected in Table 1.
5.2. Definition of the RVE

The calculations have been carried out using the FE system
ABAQUS, which has a Python interface. We created a Python script
that reads an input file, from which the FE-model of the RVE is cre-
ated. The input file contains information regarding the desired
shape of the RVE, the material properties, the inclusion volume
fraction, the boundary conditions, the element type and the aver-
age displacement gradient. The mesh has been generated such that
each surface node had an antipode, in order to allow for an easy
application of periodic boundary conditions. The meshing has not
been adapted to the matrix-inclusion interfaces, i.e., the material
assignment is not element-wise, but on the integration point level.
The material assignment has been obtained by generating a large
cubic sample of the material with randomly located spherical
inclusions, with a total volume fraction of 0.3. The inclusions have
been generated without intersections. Out of this material section
we generated many RVE by randomly assigning the RVE mid-point.
Consequently, no periodicity has been introduced by the inclusion
distribution. From these RVE we selected the ones which best
recovered the inclusion volume fraction, with a maximum absolute
deviation of 0.005 from the desired 0.3. The RVE-sizes have been
scaled by setting the RVE diameter (spherical RVE) or edge length
(cubical RVE) to integer multiples (namely 1, 2, 3, 4, 5) of the inclu-
sion diameter, resulting in the RVE sizes given in Table 2. We main-
tained a minimum elements-per-inclusion ratio of �270 for the
purely elastic and of �900 for the elastoplastic simulations, using
8-node hexahedral elements with linear shape functions (C3D8)
(Fig. 1). No special treatment, like the generation of a periodic
microstructure, has been employed for the cubical RVE with peri-
odic boundary conditions.



Fig. 1. Deformed spherical RVE with periodic boundary conditions (left), typical effective stress-strain curve (right).
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5.3. Incorporation of boundary conditions

For the application of the boundary conditions, three nodes that
are not attached to the FE mesh have been created. The nine addi-
tional displacement degrees of freedom have been assigned to the
components of the average displacement gradient. Then, the
boundary conditions have been incorporated by constraint equa-
tions, by which the displacement degrees of freedom of the surface
nodes are coupled by the discrete versions of Eqs. (21), linear dis-
placement boundary conditions), ((24), homogeneous traction
boundary conditions) and ((41) and (42), periodic boundary condi-
tions) to the three additional nodes.

While the linear displacement boundary conditions and the
periodic boundary conditions are incorporated relatively simple,
the homogeneous traction boundary conditions posed some prob-
lems. These have been implemented via the kinematic minimal
boundary conditions by constraining the displacements according
to the discrete version of Eq. (24). The latter equation involves
weight factors that assign an area fraction to the surface nodes,
which needed to be determined. This problem has been solved
by carrying out a FE simulation of the homogeneous, isotropic
elastic RVE, where a small volume change was imposed. The
weight factors have been calculated from the absolute values of
the resulting surface nodal forces. Secondly, the constraint equa-
tions require a careful implementation, due to the appearance of
the same degree of freedom in more than one equation and the
way that ABAQUS handles constraint equations. The first degree
of freedom of an equation cannot appear in a following equation,
i.e. an according ordering is necessary. Finally, the resulting con-
straint equations (involving all surface nodes) are very long,
which results in a drastic decrease of the performance of ABAQUS.
This issue is discussed elsewhere [15]. For these reasons, one
might consider the implementation of homogeneous tractions
via the kinematic minimal boundary conditions as unnecessary
complicated. However, it is problematic to study the effect of dif-
ferent boundary conditions without expressing them with respect
to the same independent variable, in our case H. Otherwise, one
needs to identify iteratively a loading T that yields the desired
average deformation for every single boundary value problem,
which results also in a drastic increase of computational effort.
It should be noted that the troubles with long constraint equa-
tions are ABAQUS-specific, and efficient treatments for such spe-
cial linear systems are at hand.3
3 For example, the conjugate gradients method, in conjunction with a sparse matrix
storage scheme that does not rely on a small bandwidth, or the substructure
technique can be employed. Fritzen and Böhlke (2010), Technische Mechanik 30 (4),
to be found at http://www.uni-magdeburg.de/ifme/zeitschrift_tm/2010_Heft4/
05_Fritzen.html.
5.4. Extraction of the average stresses

Depending on whether one prescribes the displacements or the
forces on the nine additional degrees of freedom, one can prescribe
H; T or a mixture of both, and extract the other one. For the extrac-
tion or prescription of the stresses, the reference volume of the RVE
enters as a factor of proportionality.
6. Rate of convergence for spherical and cubical RVE

6.1. Simulation setup

For the study of convergence, we carried out uniaxial tension
tests, in which the nominal strain e is increased to 10%. The latter
is accomplished by imposing

HðuaxÞij ¼
e 0 0
0 � 0
0 0 �

2
64

3
75: ð49Þ

Not prescribing HðuaxÞ22 and HðuaxÞ33 results in zero stress compo-
nents T22 and T33. As characteristic quantities for the statistical
evaluation, Young’s modulus E ¼ �r11=H11 at the onset of the
deformation and the Cauchy stress �r11 at 10% of nominal strain
have been extracted. Six combinations of RVE shapes and bound-
ary conditions have been considered (cube and sphere with
homogeneous traction boundary conditions, linear displacement
boundary conditions and periodic boundary conditions). For any
of these, at most five different RVE sizes have been taken into
account. Then, 10 realizations with different inclusion distribu-
tions have been carried out for each of these combinations (see
Table 2).

The homogeneous traction boundary conditions did not allow
for large RVE sizes due to the inappropriate way that ABAQUS han-
dles long constraint equations. This problem is mostly overcome
by applying the homogeneous traction boundary conditions di-
rectly in terms of traction vectors, which, however, has the disad-
vantage that only T can be prescribed. Also, the homogeneous
traction boundary conditions allow for needle-like localizations
[22], which renders them improper for simulations involving large
plastic deformations. Thus, for the homogeneous traction bound-
ary conditions, we considered only Young’s modulus for small
RVE sizes.

6.2. Results

In Fig. 1, a typical stress–strain curve of the macroscale material
is depicted, in Fig. 2 the deformed shape with a color map of the
equivalent plastic strain is depicted. One can see the onset of

http://www.uni-magdeburg.de/ifme/zeitschrift_tm/2010_Heft4/05_Fritzen.html
http://www.uni-magdeburg.de/ifme/zeitschrift_tm/2010_Heft4/05_Fritzen.html


Fig. 2. Deformed cubical and spherical RVE with periodic boundary conditions (1
4 cut out). The coloring indicates the equivalent plastic strain from 0 (blue) to 0.2 (red). (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Convergence of Young’s modulus, ensemble min, max and average.

Fig. 4. Convergence of r11 at 10% of nominal strain, ensemble min, max, and
average.
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plastic flow4 at �r11 � 12 MPa, followed by a short stage of effective
hardening, before a value of approximately �r11 ¼ 20 MPa is ap-
proached asymptotically. Unlike the individual microscale materials,
the effective material does not exhibit a sharp, but a rather smooth
transition from the elastic to the plastic behavior. This is due to the
inhomogeneous formation (first deviation from the linear elastic
behavior) and growth (stage of effective hardening) of the plastic
zones displayed in Fig. 2. The qualitative distinct behavior of the
effective material is a result of the microscale-constituents interac-
tion, see e.g. Chawla and Shen [6], who refer to the described behav-
ior as ’’apparent work hardening’’.

The results for Young’s modulus at e = 0 and �r11 at e = 10% for
the different RVE sizes and boundary conditions is depicted in
Figs. 3 and 4. Young’s modulus tends to approximately 10 GPa,
which is well inside the Reuss-Voigt (6849.3 – 18674.4 MPa) and
Hashin–Shtrikman (8484.9 – 13912.1 MPa) bounds.
4 Here, we locate the onset of effective plastic flow at @�r11
@�e11
¼ 0:5E, with E being

Youngs modulus.
As these figures indicate, the convergence behavior is similar
both for the elastic and the plastic properties. In both cases, the re-
sults with periodic boundary conditions converge fastest, while the
linear displacement boundary conditions predict a stiffer and the
homogeneous traction boundary conditions a softer material
behavior. Also, there is a gain in the rate of convergence for the
spherical RVEs over the cubical RVEs, most notable for the linear
displacement boundary conditions: to obtain similar results, one
needs cubical RVEs with a volume approximately two to three
times that of the corresponding spherical RVEs. This tendency is
also observed for the periodic boundary conditions, though less
pronounced. Interestingly, the effective Young’s modulus displays
no systematic difference between spherical and cubical RVE with
homogeneous traction boundary conditions.

The graph given by Kanit et al. [23] (Fig. 7) displays a wider
scattering compared to our findings. This is due to considering only



Fig. 5. Anisotropy measures a (filtering out isotropy) and ac (filtering out cubic
anisotropy) for the cubical (upper figure) and the spherical RVE (lower figure).
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RVEs with inclusion volume fractions close to the macroscopic one
in this work (see Section 5.2). Therefore, we have a reduced scat-
tering in general. From that it became apparent that the homoge-
neous traction boundary conditions display a considerably
weaker scattering for small RVE sizes than the periodic boundary
conditions and linear displacement boundary conditions, indepen-
dently of the shape of the RVE. For the smallest sphere we have a
relative difference (xmax � xmin)/xmin that is approximately three
to four times smaller than for the periodic boundary conditions
and linear displacement boundary conditions (0.101 (HTBC) vs
0.311 (LDBC) and 0.378 (PBC)), while for the smallest cube this dif-
ference is slightly less pronounced (0.106 (HTBC) vs 0.28 (LDBC)
and 0.26 (PBC)), due to the smaller volume of the sphere.

7. Quantification of the shape-induced anisotropy

The shape-induced elastic anisotropy is determined by impos-
ing mutually orthogonal small strains,

Hð1Þij ¼
d 0 0
0 0 0
0 0 0

2
64

3
75; Hð2Þij ¼

0 0 0
0 d 0
0 0 0

2
64

3
75; Hð3Þij ¼

0 0 0
0 0 0
0 0 d

2
64

3
75;
ð50Þ

Hð4Þij ¼
0 d 0
d 0 0
0 0 0

2
64

3
75; Hð5Þij ¼

0 0 d

0 0 0
d 0 0

2
64

3
75; Hð6Þij ¼

0 0 0
0 0 d

0 d 0

2
64

3
75:
ð51Þ

where d is small enough to guarantee a purely elastic material re-
sponse. The components of the stiffness tetrad are then obtained by

Cij11 ¼ �rij=d imposing Hð1Þ; ð52Þ
Cij22 ¼ �rij=d imposing Hð2Þ; ð53Þ
Cij33 ¼ �rij=d imposing Hð3Þ; ð54Þ
Cij12 ¼ Cij21 ¼ �rij=d imposing Hð4Þ; ð55Þ
Cij13 ¼ Cij31 ¼ �rij=d imposing Hð5Þ; ð56Þ
Cij23 ¼ Cij32 ¼ �rij=d imposing Hð6Þ: ð57Þ

Any deviation from elastic isotropy must stem from the RVE itself,
since the effective material under consideration is isotropic. We
examined five RVE sizes (see Table 2), where the periodic boundary
conditions have been used on spherical and cubical RVE. For each
model we examined 100 different configurations of the microstruc-
ture, of which we extracted the average stiffness tetrad. The latter is
weakly anisotropic. The overall anisotropy is quantified by the
anisotropy measure a, given by

a ¼ kD� ðP1 � � � �DÞP1 �
1
5
ðP2 � � � �DÞP2k ð58Þ

D ¼ lnðdetðCÞ�
1
6CÞ

k lnðdetðCÞ�
1
6CÞk

; ð59Þ

with the first and second isotropic projectors P1 ¼ 1
3 I � I and

P2 ¼ I� P1. The factor 1/5 must be introduced to normalize P2. In
the following, we restrict to symmetric fourth order tensors that
map symmetric second order tensors into symmetric second order
tensors. By this, we can extend the eigenvalue problem to this ten-
sor space and define the inverse of C by restricting to positive def-
inite tensors C. The function aðCÞ is constructed such that

aðCÞ ¼ aðaCÞ; a 2 R; a > 0 ð60Þ
aðCÞ ¼ aðC�1Þ ð61Þ

hold, in order to make a independent of whether the anisotropy of
the stiffness C or the compliance C�1 is evaluated, and to make a
independent on the absolute values of the stiffness or compliance.
The properties of aðCÞ are examined in the Appendix. Likewise,
we can filter out the cubic anisotropy by

ac ¼ kD� ðP1 � � � �DÞP1 �
1
2
ðPc2 � � � �DÞPc2 �

1
3
ðPc3 � � � �DÞPc3k; ð62Þ

with the cubic eigenprojectors Pc2 ¼ I� P1 � Pc3 and
Pc3 ¼

P3
i¼1di � di � di � di, where di is an orthonormal basis that

coincides with the cubic anisotropy axes. Here, we presumed that
di coincides with the edges of the cubical RVEs. Note that ac 6 a
holds. Commonly, the cubic anisotropy is quantified by the Zener
ratio [48],

Z ¼ 2Cijij

ðCiiii � CiijjÞ
; ð63Þ

presuming that the components of C are given with respect to di.
Then, the eigenvalues of a cubic stiffness tetrad are given by
k1 = C1111 + 2C1122, k2 = C1111 � C1122 and k3 = 2C1212 [3]. Thus, one
can identify Z = k3/k2.

Comparing a and ac, which differ only by the cubic part of the
anisotropy that has been removed in ac, shows that the anisotropy
of the cubical RVE is indeed mostly cubic (Fig. 5), with a/
ac � 5 � 10. The largest anisotropy is encountered for the smallest
cubical RVE with periodic boundary conditions, with a = 0.198,
ac = 0.019 and Z = 0.765. For the spherical RVE with periodic
boundary conditions, a and ac do not differ significantly. Compar-
ing a and ac between cube and sphere, we find ac in both cases fall-



Fig. 6. Zener ratio for spherical and cubical RVE with periodic boundary conditions.
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ing from approximately 0.02 for the smallest RVE to approximately
0.005 for the largest RVE. For a, we observe basically the same in
case of the sphere, while a starts of at approximately 0.2 for the
cubical RVE.

We assessed the influence of the shape functions on the results
by repeating the largest RVE calculation with a quadratic
hexahedral mesh (Figs. 5 and 6). A slight improvement with re-
spect to the anisotropy has been observed. However, the smallness
of the change indicates that the discretization that has been used is
sufficient, i.e., the main result is unaffected.
8. Localization behavior

In case of non-quasi-convex incremental stress potentials,
structural failure of the RVE may occur. For periodic microstruc-
tures, a framework for relating the structural failure of an RVE to
a material instability on the macroscale is at hand [32]. For non-
periodic microstructures, this issue is still not clear. The reason
therefor is twofold:

	 While linear displacement boundary conditions prevent local-
izations to reach the boundary, homogeneous traction bound-
ary conditions allow for an arbitrary deformation of the
Fig. 7. Von Mises equivalent stress for the shear test in the cubical (left) and spherical
correspond to the shear directions 0� and 45�. In the right figure, the solid and dashed
perpendicular (six curves) to the effective shear direction, respectively. The dotted li
displacement boundary conditions.
boundary of the RVE. The periodic boundary conditions, applied
to periodically repeatable unit cells, allow for a localization pat-
tern that fits the periodicity frame. Thus, the RVE localization
depends on the arbitrary orientation of the periodicity frame.
The apparent material should, however, be attained indepen-
dently on these choices as the size of the RVE is increased.
	 As a RVE-wide localization takes place, the representativity of

the RVE is lost.

Despite this problems, predictions of macroscopic fracture
[1,39], macroscale traction separation laws [35] and forming limit
diagrams [21] are obtained by the RVE method, mostly by using
cubical RVE with periodic boundary conditions. While most
authors demonstrate convergence by considering larger RVE, it is
not shown whether the results are sensitive to changes of the
RVE shape, the boundary conditions and, in case of periodic bound-
ary conditions, the orientation of the periodicity frame. Just re-
cently, the development of numerical homogenization schemes
that overcome the dependence on the orientation of the periodicity
frame is approached by Coenen et al. [7], Nguyen et al. [36], who
adapt the boundary conditions during the simulation to the spe-
cific localization pattern that is encountered. These are termed
by Coenen et al. [7] as percolation path boundary conditions.

Since the periodic boundary conditions enjoy some popularity
for the prediction of macroscale material failure, this section is
dedicated to the study of the localization behavior of spherical
and cubical RVE with periodic boundary conditions.

8.1. Simulation setup and material parameters

We start by considering a simple shear deformation with a
shear number �c ¼ 1,

H ¼ d� n; ð64Þ
d ¼ cos ae1 þ sinae2; ð65Þ
n ¼ � sin ae1 þ cos ae2: ð66Þ

We applied H with �c growing time-proportional from 0 to 1, with a
between 0� and 45�, in steps of 5�, to cubical and spherical RVE with
periodic boundary conditions. The material under consideration
was the ABAQUS internal, elastic isotropic (E = 5000 MPa, m = 0.3),
von Mises plastic material with rflow initially at 10 MPa, decaying
linearly to 5 MPa at 100% of plastic strain. Beyond 100% of plastic
strain, rflow is constant. The mesh resolution was 20 elements along
(right) RVE with periodic boundary conditions. In the left figure, the dashed lines
lines correspond to the cases where the lamination is parallel (eight curves) and

nes correspond to the homogeneous deformation of the RVE, enforced by linear



Fig. 8. Schematic figure of a layer decomposition of a spherical RVE, with
homogeneously deformed layers.
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one edge for the cubical and 20 elements along the diameter for the
spherical RVE. We used hexahedral elements with quadratic shape
functions (element type C3D20), in order to reduce tendency of a
mesh-conform alignment of the shear bands. For a controlled initi-
ation of the localization, in one element the flow stress has been re-
duced 9 MPa, which has been selected randomly from the list of
elements. If the simulations are carried out without perturbing
the homogeneous material, the localization is initiated by unavoid-
able numerical errors.
8.2. Results

The resulting effective equivalent von Mises stress is given in
Fig. 7. While the spherical RVEs display only a slight variation, in
case of the cubical RVEs a wide variation of the stress–strain curve
is observed. The reason therefor is that the localization behavior
differs markedly for cubical and spherical RVE.
8.2.1. Behavior of the spherical RVEs
We observed two distinct deformation patterns. These have in

common that the sphere is divided into an even number of layers
(mostly four layers, at most we observed eight layers). From the
resulting odd number of parallel interfaces, one coincides with
an equatorial plane, dividing the sphere into two hemispheres.
The remaining interfaces are placed symmetrically in the two
hemispheres. The layer decomposition takes place either parallel
or perpendicular to the effective shear plane n. In both cases, the
layers alternate between almost undeformed and strongly
deformed.
(Avg: 75%)
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Fig. 9. Localization of the spherical RVE with lamination parallel to the effective shear dir
0 and 1.5 on the left (surface) and 0 and 6 on the right (cut). (For interpretation of the refe
article.)
8.2.1.1. Lamination parallel to the effective shear plane. In case of a
lamination parallel to the effective shear direction, the deforming
layers display an almost homogeneous shearing near the layer
interface and the RVE surface, with H ¼ 2�cd� n. In the bulk of
the layers, a further layer decomposition is observed, see Fig. 9. A
sketch with four layers is given in Fig. 8, with the layer thicknesses
dþ2 ¼ d�2 and dþ1 ¼ d�1 and the shear deformation in the first layer on
the plus and the second layer on the minus side. One can easily see,
by picking two opposing surface points x�0 and calculating the dis-
placements u±, that this results in the imposed average deforma-
tion and compliance with the periodic boundary conditions,

uþ � u� ¼ fþ2�cd� n � xþ0 � f�2�cd� n � x�0 : ð67Þ

The factors f± give fractions of the projected length (n � x0)n that
passes layers that are subjected to the displacement gradient
2�cd� n. Due to the described arrangement of the layers we have
f� = 1 � f+. Summarizing with x�0 ¼ �xþ0 gives

uþ � u� ¼ fþ2�cd� n � xþ0 þ ð1� fþÞ2�cd� n � xþ0 ð68Þ
¼ 2�cd� n � xþ0 ð69Þ
¼ �cd� n � xþ0 � x�0

� �
¼ �H xþ0 � x�0

� �
: ð70Þ
8.2.1.2. Lamination perpendicular to the effective shear plane. The
overall behavior is quite similar compared to the first case.
However, the deformation near the layer interfaces and the RVE
surface is less homogeneous. Also, the interfaces undergo a more
pronounced bending. Fig. 11 allows for a direct comparison of
the two deformation patterns. We did not observe any localization
that does not fit into one of these schemes. A variation of the
magnitude and the location of the perturbation did not have any
notable effect on the effective material behavior. Also, no regularity
could be found in which of the two described localization schemes
is activated.

8.2.2. Behavior of the cubical RVEs
One can find a large number of cubical RVE with periodic

boundary conditions undergoing localization in the literature,
e.g., Miehe [30], Böhlke et al. [4], Nguyen et al. [35]. At the onset
of localization, we observed the formation of a single shear band
of constant thickness, the deformation of which growing time-pro-
portional. However, the shear band has to fit the periodicity frame,
and is therefore not necessarily parallel to the imposed effective
shear direction. Thus, the effective shear strain is approximated
by a shifting between differently oriented shear bands (Fig. 10).
The change of the active shear band is accompanied by a stiffening
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Fig. 10. Localization of the cubical RVE. The color map indicates the equivalent plastic strain. Left: �c ¼ 1; a ¼ 45
; 0 < ePEEQ < 3. Right: �c ¼ 0:216; a ¼ 25
; 0 < ePEEQ < 0:5.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Cut through localization of the spherical RVE for a = 30� and �c ¼ 1. The color map indicates the equivalent plastic strain, 0 < ePEEQ < 2.3 on the left and 0 < ePEEQ < 1.8
on the right. On the left, the lamination is parallel to the effective shear plane, on the right lamination started perpendicular to the effective shear plane, but during the
deformation the shear direction changes locally. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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effect, which induced the spikes in the stress–strain curves (Fig. 7).
The stiffening due to the successive shearing in two different direc-
tions exceeds even the response of the homogeneous material.
Only in the cases a = 0� and a = 45�, a single shear band persisted.
Accordingly, the stress–strain curves indicate the softest effective
material for this two cases. This is most pronounced for the case
a = 0�, where the shear band alignment parallel to the mesh inter-
face results in a concentration of the shear band in a single element
layer. A variation of the position of the perturbation does not have
any effect in case of the cubical RVE, it corresponds to a mere shift
of the periodicity frame. Likewise, the magnitude of the perturba-
tion has no notable influence.
8.2.3. Discussion of the localization behavior
It is evident that the orientation of the periodicity frame

strongly affects the results in case of the cubical RVE, inducing a
scattering of the effective stress strain curve. This is not observed
in case of spherical RVE. However, the applicability of the periodic
boundary conditions is disputable in both cases. In both cases, even
if the perturbation is left out, localization is observed, triggered by
numerical round off errors, i.e., stability of the effective material
response with respect to small perturbations is not attained. Thus,
with the dictum that an RVE should conduct the microscale mate-
rial behavior ‘‘as is’’ to the macroscale when the material is homo-
geneous, neither the cubic nor the spherical RVE with periodic
boundary conditions give satisfactory results for the softening
material. Only the linear displacement boundary conditions satisfy
the latter requirement. Then, no difference between cubical and
spherical RVE is observed.
9. Summary

We compared the performance of spherical and cubical RVE
with different boundary conditions, applied to a macroscopically
isotropic matrix–inclusion material with hard elastic inclusions
and a soft elastoplastic matrix. It is argued that the periodic bound-
ary conditions are not restricted to periodically repeatable unit
cells, although the denomination ‘‘periodic’’ is misleading when
applied to non-periodic shapes. Then one should speak more gen-
erally of coupled boundary conditions.

We could identify basically two features that distinguish the
spherical and the cubical RVE, namely different surface to volume
ratio and, in case of periodic boundary conditions, the presence or
absence of a periodicity frame. The smaller surface to volume ratio
of the spheres result in a smaller influence of the boundary, leading
to a better convergence to the effective material behavior. The
presence of a periodicity frame in case of the cubical RVE results
in a bias of the material anisotropy, which affects the elastic and
plastic material properties. To study the convergence and RVE in-
duced anisotropy, we considered macroscopically isotropic ma-
trix-inclusion material.

Considering the rate of convergence to the effective material
behavior, for linear displacement boundary conditions, results of
similar quality require the cubical RVE to have a volume approxi-
mately two to three times that the corresponding spherical RVE.
This applies to the elastic and the plastic properties, over the entire
range of sizes that has been considered. This behavior is less pro-
nounced for the periodic boundary conditions. It is a result of the
smaller surface-to-volume ratio of a sphere compared to a cube
of equal volume. For the homogeneous traction boundary condi-
tions, only the elastic properties have been considered, which dis-
play almost no difference between spherical and cubical RVE. A
comprehensive analysis of the scattering in case of spherical and
cubical RVE cannot be delivered, since this requires a much larger
amount of data. It is only noted that no clear tendency in favor or
against one of the RVE shapes is observed, and that the homoge-
neous traction boundary conditions appear to result in a reduced
scattering of the elastic properties.

Examining the elastic properties of the isotropic macroscale
material allows to quantify the spurious cubic anisotropy induced
by cubical RVE with periodic boundary conditions. This artificial
anisotropy vanishes as the size of the RVE tends to infinity. How-
ever, we found that the convergence is quite slow, requiring large
RVE. Thus, the cubical shape affects the smallest RVE size which
one may consider as sufficiently large to perform sample averag-
ing. If the RVE size is to small, a systematic bias of the anisotropy
is induced, which cannot be separated from the effective material
properties. This issue can be avoided a priori by using spherical
RVE. Other strategies to reduce this effect could be the examination
of randomly oriented cubical RVE, where the cubic anisotropy
should cancel out in the average, or the application of uniform
boundary conditions, which converge slower to the effective mate-
rial behavior.

Since cubical RVE with periodic boundary conditions that un-
dergo structural failure are commonly used for the prediction of
effective material failure and softening, we studied the localization
behavior of spherical and cubical RVE with periodic (resp. coupled)
boundary conditions. We employed these on a homogeneous, iso-
tropic, softening, elastoplastic material with a small perturbation.
It is found that the response of the cubical RVEs depends strongly
on the orientation of the periodicity frame. The dependence on the
magnitude and position of the perturbation is rather weak. This
specific bias is not observed for the spherical RVE, due to the miss-
ing periodicity frame. However, the applicability of periodic
boundary conditions appears problematic in both cases, since only
for linear displacement boundary conditions the material behavior
of the quasi homogeneous RVE is conducted ‘‘as is’’ to the
macroscale.

In conclusion, the use of spherical RVE is advantageous in case
of a random microstructure. For regular microstructures, RVEs that
account for the periodicity of the microstructure suit better. In case
of localization, the use of spherical instead of cubical RVEs with
periodic boundary conditions eliminates the periodicity frame that
restricts the localization mode, similarly to the technique proposed
by Coenen et al. [7]. However, the use of RVEs that undergo local-
ization for the prediction of effective material failure remains
doubtful.
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Appendix A

The requirements (60) and (61) are basically taken care of by
mapping C to D (Eq. (59)), where only DðCÞ ¼ �DðC�1Þ prevents
the fulfillment of Eq. (61). However, the minus is taken care of
by aðDÞ ¼ að�DÞ (Eq. (58)).

Specifically, the first mapping to the unimodular part
C
 ¼ detðCÞ�

1
6C ensures the invariance aðCÞ ¼ aðaCÞ. The logarithm

C� ¼ ln C
 ensures that inverting C results merely in a change of
sign of the eigenvalues of C�. Then normalizing C� gives D. Due
to this normalization, the measure a has the nice property of rang-
ing from 0 (isotropy) to 1 (most anisotropic). This can be seen by
noting that

kD� ðP1 � � � �DÞP1 �
1
5
ðP2 � � � �DÞP2k < 1; ð71Þ
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since subtracting a projection of a tensor from the tensor itself must
result in a tensor with equal or lower norm. One can see that the
isotropic part ðP1 � � � �DÞP1 þ 1

5 ðP2 � � � �DÞP2 can indeed be zero:
D ¼

P
diEi is traceless due to the logarithm on the unimodular C
,

i.e. the eigenvalues di sum up to zero. Thus, with the abbreviations

a1 ¼ P1 � � � �D ¼
X

dipi; pi ¼ Ei � � � � P1 ð72Þ

a2 ¼ P2 � � � �D ¼
X

dið1� piÞ ð73Þ

we have a1 þ a2 ¼
P

di ¼ 0, i.e. if a1 vanishes the isotropic part of D

is zero. With the restrictions I � � � � P1 ¼ 1 ¼
P

pi and all pi > 0 one
can find arbitrary many eigenprojectors Ei such that a1 vanishes,
for example all pi = 1/6.

References

[1] H.Y. Agha, F. Hild, R. Billardon, Microscopic and mesoscopic damage
localization, ASTM Special Technical Publication 1315 (1997) 119–130.

[2] A. Bertram, Elasticity and Plasticity of Large Deformations – An Introduction,
third ed., Springer Verlag, Berlin, 2012.

[3] T. Böhlke, Crystallographic Texture Evolution and Elastic Anisotropy –
Simulation, Modeling and Applications, Shaker Verlag, 2001.

[4] T. Böhlke, G. Bondár, Y. Estrin, M. Lebyodkin, Computational Materials Science
44 (2009) 1076–1088.

[5] T. Böhlke, R. Glüge, B. Klöden, W. Skrotzki, A. Bertram, Modelling
and Simulation in Materials Science and Engineering 15 (2007) 619–
637.

[6] N. Chawla, Y.-L. Shen, Advanced Engineering Materials 3 (6) (2001) 357–370.
[7] E.W.C. Coenen, V.G. Kouznetsova, M.G.D. Geers, International Journal for

Numerical Methods in Engineering 90 (2012) 1–21.
[8] D. Durdban, T. Cohen, Y. Hollander, Mechanics Research Communications 37

(2010) 636–641.
[9] F. Feyel, J.-L. Chaboche, Computer Methods in Applied Mechanics and

Engineering 183 (2000) 309–330.
[10] J. Fish, R. Fan, International Journal for Numerical Methods in Engineering 76

(2008) 1044–1064.
[11] F. Fritzen, T. Böhlke, Technische Mechanik 30 (4) (2010) 354–363.
[12] F. Fritzen, T. Böhlke, International Journal for Numerical Methods in

Engineering 84 (2010) 803–829.
[13] F. Fritzen, S. Forest, T. Böhlke, D. Kondo, T. Kanit, International Journal of

Plasticity 29 (0) (2012) 102–119.
[14] M. Galli, J. Botsis, J. Janczak-Rusch, Computational Materials Science 41 (3)

(2008) 312–321.
[15] R. Glüge, Revista chilena de ingeniería 18 (2010) 395–400.
[16] R. Grasset-Bourdel, A. Alzina, N. Tessier-Doyen, N. Schmitt, M. Huger, T.

Chotard, Computational Materials Science 50 (2011) 3136–3144.
[17] A. Gurson, Journal of Engineering Materials and Technology 99 (1977) 2–15.
[18] Z. Hashin, Journal of Applied Mechanics 50 (1983) 481–505.
[19] S. Hazanov, C. Huet, Journal of the Mechanics and Physics of Solids 42 (12)

(1994) 1995–2011.
[20] R. Hill, Proceedings of the Royal Society of London A 65 (1952) 349–354.
[21] M.F. Horstemeyer, V. Revelli, Stress history dependent localization and failure

using continuum damage mechanics concepts, ASTM Special Technical
Publication 1315 (1997) 216–237.

[22] H. Inglis, P. Geubelle, K. Matous, Philosophical Magazine 88 (16) (2008) 2373–
2397.

[23] T. Kanit, S. Forest, I. Galliet, V. Mounoury, D. Jeulin, International Journal of
Solids and Structures 40 (2003) 3647–3679.

[24] Z. Khisaeva, M. Ostoja-Starzewski, Proceedings of the Royal Society of London
A 462 (2006) 1167–1180.

[25] S.-J. Kim, J. Choi, M.K. Kwak, Computational Mechanics 31 (2003) 469–478.
[26] B. Klusemann, B. Svendsen, Technische Mechanik 30 (4) (2010) 374–386.
[27] A. Krawietz, Materialtheorie, Springer Verlag, Berlin, 1986.
[28] S. Mesarovic, J. Padbidri, Philosophical Magazine 85 (2005) 65–78.
[29] J. Michel, P. Suquet, International Journal of Solids and Structures 40 (2003)

6937–6955.
[30] C. Miehe, International Journal for Numerical Methods in Engineering 55

(2002) 1285–1322.
[31] C. Miehe, Computer Methods in Applied Mechanics and Engineering 192

(2003) 559–591.
[32] C. Miehe, J. Schröder, M. Becker, Computer Methods in Applied Mechanics and

Engineering 191 (2002) 4971–5005.
[33] S. Nemat-Nasser, Mechanics of Materials 31 (1999) 493–523.
[34] V.-D. Nguyen, E. Béchet, C. Geuzaine, L. Noels, Computational Materials Science

55 (0) (2012) 390–406.
[35] V.P. Nguyen, O. Lloberas-Valls, M. Stroeven, L. Sluys, Computer Methods in

Applied Mechanics and Engineering 200 (9–12) (2011) 1220–1236.
[36] V.P. Nguyen, M. Stroeven, L.J. Sluys, Engineering Fracture Mechanics 79 (2012)

78–102.
[37] M. Ortiz, E. Repetto, Journal of the Mechanics and Physics of Solids 47 (1999)

397–462.
[38] I. Özdemir, W. Brekelmans, M. Geers, Computer Methods in Applied Mechanics

and Engineering 198 (2008) 602–613.
[39] C. Pelissou, J. Baccou, Y. Monrie, F. Perales, International Journal of Solids and

Structures 46 (2009) 2842–2855.
[40] K. Rajagopal, Zeitschrift für angewandte Mathematik und Physik ZAMP 58 (2)

(2007) 309–317.
[41] A. Salahouelhadj, H. Haddadi, Computational Materials Science 48 (3) (2010)

447–455.
[42] J. Schröder, D. Balzani, D. Brands, Archive of Applied Mechanics 81 (2011) 975–

997.
[43] L. Shen, S. Yi , International Journal of Solids and Structures 37 (2000). 3525–

3534.
[44] R. Smit, W. Brekelmans, H. Meijer, Computer Methods in Applied Mechanics

and Engineering 155 (1998) 181–192.
[45] P. Suquet, Homogenization techniques for composite media, in: Lectures

Delivered at the CISM International Center for Mechanical Sciences Udine,
Italy, July 1–5, 1985, Lecture Notes in Physics, vol. 272, Springer-Verlag, Berlin,
1987, pp. 199–208 (Ch. Averages, Boundary condition).

[46] B. Svendsen, A. Bertram, Acta Mechanica 132 (0) (1999) 195–207.
[47] X. Xu, X. Chen, Mechanics of Materials 41 (2009) 174–186.
[48] C. Zener, Physical Review 71 (12) (1947) 846–851.
[49] T. Zohdi, P. Wriggers, Introduction to Computational Micromechanics, Lecture

Notes in Applied and Computational Mechanics, Springer, 2005.


	Comparison of spherical and cubical statistical volume elements with respect  to convergence, anisotropy, and localization behavior
	1 Introduction
	1.1 Notation
	1.2 List of symbols

	2 Basic considerations
	2.1 Scale separation
	2.2 Equilibrium equations
	2.3 Micro–Macro-coupling
	2.4 The Hill–Mandel condition

	3 Boundary conditions on the RVE
	3.1 Uniform boundary data
	3.1.1 Linear displacement boundary conditions
	3.1.2 Homogeneous traction boundary conditions

	3.2 Mixing of homogeneous traction and linear displacement boundary conditions
	3.2.1 Globally mixed boundary conditions
	3.2.2 Locally pure homogeneous tractions and linear displacements

	3.3 Periodic boundary conditions

	4 The shape of the RVE
	4.1 Non-periodic microstructures
	4.2 Periodic microstructures

	5 Material and simulation setup
	5.1 Material behavior of the matrix and inclusions
	5.2 Definition of the RVE
	5.3 Incorporation of boundary conditions
	5.4 Extraction of the average stresses

	6 Rate of convergence for spherical and cubical RVE
	6.1 Simulation setup
	6.2 Results

	7 Quantification of the shape-induced anisotropy
	8 Localization behavior
	8.1 Simulation setup and material parameters
	8.2 Results
	8.2.1 Behavior of the spherical RVEs
	8.2.1.1 Lamination parallel to the effective shear plane
	8.2.1.2 Lamination perpendicular to the effective shear plane

	8.2.2 Behavior of the cubical RVEs
	8.2.3 Discussion of the localization behavior


	9 Summary
	Acknowledgements
	Appendix A 
	References


