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In the present paper a two-scale approach for the description of anisotropies in sheet metals is introduced, which combines
the advantages of a macroscopic and a microscopic modeling. While the elastic law, the flow rule, and the hardening rule
are formulated on the macroscale, the anisotropy is taken into account in terms of a micro-mechanically defined 4th-order
texture coefficient. The texture coefficient specifies the anisotropic part of the elasticity tensor and the quadratic yield
condition. The evolution of the texture coefficients is described by a rigid-viscoplastic Taylor type model. The advantage
of the suggested model compared to the classical v. Mises-Hill model is first that macroscopic anisotropy parameters
can be identified based on a texture measurement, and second that the anisotropy of the elastic and the plastic behavior
is generally path-dependent and that this path-dependence is related to a micro-mechanical deformation mechanism. An
explicit modeling of the plastic spin is circumvented by the aforementioned micro-mechanical approach. The model is
implemented into the FE code ABAQUS and applied to the simulation of the deep drawing process of aluminum.
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1 Introduction

The deep drawing process of metals is often simulated by the application of the finite element method in combination
with a phenomenological anisotropic elastic-plastic material model (see, e.g., Barlat et al., [2, 3]). The main advantage
of phenomenological approaches are the relatively low computational costs. The main disadvantage, however, is that the
evolution of the anisotropy during the deformation process is neglected.

In contrast to phenomenological approaches, polycrystal plasticity models allow for a description of an evolving mi-
crostructure. Since such models are based on constitutive equations on the crystalline level, they take into account micro-
mechanical deformation mechanisms (see, e.g., Bronkhorst et al., [12]; Miehe et al., [23]). Although the models are rela-
tively accurate, they have the disadvantage that large scale simulations are very time consuming.

Several authors have discussed how the numerical effort could be reduced when the stress is computed based on crystal
plasticity models at the integration points. These approaches use an artificial scattering of the crystal orientations from
integration point to integration point (Raabe and Roters, [24]), or the modeling of an isotropic background of the texture
(Böhlke et al., [10]) or the determination of optimal sets of discrete crystal orientations (Schulze, [26]).

In the present paper, a model approach is suggested which combines the advantages of both a macroscopic and a mi-
croscopic approach (Böhlke, [7]; Risy, [25]). While the elastic law, the flow rule, and the hardening rule are formulated
with respect to the macroscale, a 4th-order texture coefficient is used to capture the macroscopic anisotropies. This texture
coefficient is incorporated in the macroscopic elastic law and in the macroscopic flow rule. Its evolution is determined by
the use of a rigid-viscoplastic Taylor model (Taylor, [27]). As a consequence, there is no need for an explicit modeling of
the plastic spin. The rotation of the crystal lattice vectors in relation to the material is taken into account by the micro-
mechanical model. The macroscopic anisotropy results from a specific orientation distribution on the microscale which
changes with large inelastic deformations.

∗ Corresponding author, E-mail: boehlke@itm.uni-karlsruhe.de
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The outline of the paper is as follows. In Sect. 2 the constitutive equations on the macroscale are described. The elastic
law, the flow rule, the hardening rule, and the material parameters are introduced. In Sect. 3 the constitutive equations on
the microscale are discussed. In Sect. 4 the two-scale model is applied to the simulation of a deep drawing process of
aluminum. The numerical results for the earing behavior are compared to experimental data.

Notation. Throughout the text a direct tensor notation is preferred. The scalar product, the dyadic product, and the Frobenius
norm are denoted by A · B = tr(ATB), A ⊗ B, and ‖A‖ = (A · A)1/2, respectively. Symmetric and traceless tensors
are designated by a prime, e.g., A′. The symmetric and the skew part of a 2nd-order tensor A are denoted by sym(A)
and skw(A), respectively. The set of proper orthogonal tensors is specified by SO(3). A tilde, e.g. C̃, indicates that a
quantity is formulated with respect to the undistorted state which is characterized by the fact that corresponding symmetry
transformations are elements of SO(3).

2 Constitutive equations on the macroscale

2.1 Elastic law

For the formulation of the geometrically nonlinear elastic-viscoplastic material model we start with the concept of materials
with isomorphic elastic ranges (Bertram, [4]). This approach is closely related to the multiplicative decomposition of the
deformation gradient F (see, e.g., Lee, [18]; Mandel, [21]). The internal variable is the plastic transformation P , a path-
dependent, invertible, non-symmetric tensor. Based on the plastic transformation, we define

F e = FP (1)

which enters the elastic law. If the material is plastically incompressible then det(P ) = 1 holds. Note, that the isomorphy
concept has been enlarged in order to describe materials with evolving elastic properties due to the crystallographic texture
(Böhlke and Bertram, [5]; Böhlke et al., [6]).

The elastic strains are assumed to be small. Therefore, each linear relation between a conjugate pair of generalized stress
and strain measures is applicable for the description of the elastic behavior. Here, we assume a linear relation between the
2nd-Piola-Kirchhoff stress tensor and Green’s strain tensor with respect to the undistorted state. In an Eulerian setting, this
ansatz implies that the Kirchhoff stress tensor τ is given as a linear function of the Almansi strain tensor EA

e (see, e.g.,
Böhlke and Bertram, [5]; Böhlke et al., [6])

τ = Ce[EA
e ], EA

e =
1
2
(I − B−1

e ), Be = F eF
T
e (2)

with I being the unit tensor. The Kirchhoff stress tensor τ = Jσ is defined by the Cauchy stress tensor σ and the determi-
nant J of F . The Eulerian stiffness operator Ce is given by the Rayleigh product of F e and the reference stiffness tensor C̃

(see, e.g., Bertram, [4])

Ce = F e � C̃ = C̃ijkl(F eei) ⊗ (F eej) ⊗ (F eek) ⊗ (F eel). (3)

ei denotes the fixed sample system. The components C̃ijkl of C̃ refer to the fixed sample system.
For aggregates of cubic crystals, the Voigt bound and the Reuss bound of the strain energy density can be represented

as an additive split of the elasticity tensor into an isotropic and an anisotropic part (Böhlke and Bertram, [5]; Böhlke et
al., [6]). Here, we apply such a split to the effective elasticity tensor

C̃ = C̃
I + C̃

A. (4)

Using the polar decomposition F e = ReU e and considering small elastic strains (V e ≈ U e ≈ I), the following approxi-
mation for the Eulerian stiffness tensor is obtained

Ce ≈ C̃
I + C

A
e . (5)

The isotropic part C̃I has the following representation

C̃
I = 3KP

I
1 + 2GP

I
2. (6)

K is the bulk modulus and G is the shear modulus. The tensors P
I
1 and PI

2 are the isotropic projectors

P
I
1 =

1
3

I ⊗ I, P
I
2 = I

S − P
I
1. (7)
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IS is the identity tensor on symmetric 2nd-order tensors. C̃I is assumed to be constant during the deformation process.
If we neglect the lattice distortions, which is an assumption reasonable for small elastic strains, then the anisotropic part

of the stiffness tensor CA
e can be described in terms of the 4th-order texture coefficient V′ (Böhlke, [8, 9]).

C
A
e = ζV

′. (8)

ζ depends on the eigenvalues of the single crystal stiffness tensor. In Böhlke et al. [6] the evolution of the tensor V
′ during

the deformation process is modeled by a macroscopic constitutive equation. Here, this tensor is calculated based on a
discrete orientation distribution. For a set of N crystal orientations and corresponding volume fractions {Qα, να}, the
tensor V

′ is given by

V
′ =

√
30

30

(
5

N∑
α=1

ναQα �

3∑
i=1

ei ⊗ ei ⊗ ei ⊗ ei − I ⊗ I − 2I
S

)
. (9)

Note that the tensor V
′ is independent of the elastic constants of the single crystals. It only depends on the crystallite

orientation distribution. In contrast to V
′ the factor ζ is a function of the single crystal elasticities. In the case of the

Voigt bound, e.g., it is given by ζ =
√

6/5(λ2 − λ3) (Böhlke, [8, 9]). In Eq. (9), the orthogonal tensor Qα represents the
orientation Q of the α-th crystal. Q is introduced in such a way that it maps a reference basis ei onto the lattice vectors gi

at a time t ≥ 0: gi(t) = Q(t)ei. If gi(t) is known, then the orthogonal tensor Q is given by Q = gi(t) ⊗ ei. The tensor
Q can be parametrized, e.g. by the Euler angles ϕ1, Φ, and ϕ2 (Bunge, [13]). For an isotropic orientation distribution
‖V′‖ = 0 holds, whereas for a single crystal orientation the norm is ‖V′‖ = 1. Hence, in general the norm of this tensor is
bounded by

0 ≤ ‖V
′‖ ≤ 1. (10)

2.2 Flow rule

For elastically anisotropic materials a nine-dimensional flow rule is generally required. The key contribution of this paper
is the separation of the plastic spin and the evolution of the elastic strain. This separation is obtained as follows. Since the
Eulerian tensor V′ is calculated based on a micro-mechanical model, the amount and type of anisotropy and the anisotropy
directions can be determined based on the orientation distribution. Hence for given orientation distribution, the Eulerian
stiffness tensor Ce is known. For the computation of the stress τ beside Ce only Be has to be determined. Therefore, only
a symmetric, i.e., six-dimensional flow rule has to be specified here. The material time derivative of Be is

Ḃe = Ḟ eF
T
e + F eḞ e

T. (11)

The rate of change of the plastic transformation is assumed to depend on the stress state, the hardening state, and the
crystallographic texture by means of the 4th-order texture coefficient

P−1Ṗ = −Ḟ pF
−1
p = −k̃(T ′

e, Ṽ
′, σF ). (12)

σF is the macroscopic flow stress, Ṽ′ = F−1
e � V′ is the texture coefficient pulled back to the undistorted configuration, T ′

e

is the Mandel stress tensor given by T e = CeSe with the 2nd Piola-Kirchhoff stress tensor Se and the right Cauchy-Green
tensor Ce = F T

e F e. Combining (11) and (12) we find

L(Be) = Ḃe − LBe − BeL
T = −2 sym(ke(τ ′, V′, σF )Be) (13)

with

ke(τ ′, V′, σF ) = F ek̃(T ′
e, V

′, σF )F−1
e . (14)

L is the velocity gradient. We assume the existence of an Eulerian flow potential φ(τ ′, V′, σF ) such that

ke(τ ′, V′, σF ) =
∂φ(τ ′, V′, σF )

∂τ ′ (15)

holds. A common form of the flow potential in the context of viscoplasticity is given by

φ =
ε̇0 σF

m + 1

(
σeq

σF

)m+1

. (16)
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m and ε̇0 are material parameters. In order to incorporate the texture coefficient, we formulate the equivalent stress in terms
of an anisotropic norm (Böhlke, [7])

σeq(τ ′, V′) =

√
3
2
‖τ ′‖H =

√
3
2

√
τ ′ · H[τ ′] H = P

I
2 + ηV

′. (17)

The parameter η has to be chosen such that the tensor H is positive definite on the set of traceless and symmetric tensors. It
should be noted that in the rate-independent limit, i.e. m → ∞, the classical quadratic yield condition by v. Mises [28] and
Hill [15] is obtained

√
τ ′ · H[τ ′] −

√
2
3
σF = 0. (18)

Finally, we derive the following form for ke

ke(τ ′, V′, σF ) =
3
2

ε̇0

σeq

(
σeq

σF

)m (
P

I
2 + ηV

′
)

[τ ′]. (19)

It can be seen that the texture coefficient governs the flow direction. In the isotropic case, i.e. V′ = 0, the last equation
reduces to the isotropic v. Mises flow rule.

2.3 Hardening

In the present paper the hardening behavior is described by the Kocks-Mecking model (Kocks and Mecking, [17]). In this
case the evolution equation for the flow stress σF has the form

σ̇F = Θ0

(
1 − σF

σV

)
ε̇. (20)

Θ0 is a hardening modulus. The Voce stress σV is given by the relation

σV = σV 0

(
ε̇

ε̇∗0

) 1
n

. (21)

ε̇ is the equivalent plastic strain-rate. For constant equivalent plastic strain-rates, σV represents the saturation value of the
flow stress. The parameter n governs the strain-rate sensitivity of the saturation value. The initial condition for the hardening
law is σF (0) = σF0.

2.4 Material parameters

The material parameters used to discuss a model problem for aluminum are given in Table 1. The elastic constants are taken
from Brandes and Brook [11]. Aluminum does not show a significant elastic anisotropy such that ζ = 0 can be assumed
in Eq. (8). The material parameters of the flow rule and of the hardening rule have been determined based on experimental
data from Les et al. [20] and Mecking [22].

3 Constitutive equations on the microscale

In Sect. 2 the macroscopic constitutive equations have been formulated. If the texture evolves during deformation, the path-
dependence of V′ has to be taken into account. In the following we estimate the evolution of V′ based on a rigid-viscoplastic
Taylor model. Distortions of viscoplastic single crystals can be modeled by the following set of equations

0 = D′ − Q sym(k̃(QTτ ′Q, τC
α ))QT,

Q̇Q−1 = W − Q skw(k̃(QTτ ′Q, τC
α ))QT

(22)

(see, e.g., Hutchinson, [16]). D′ and W are the traceless symmetric and the skew part of the velocity gradient L. An
orthogonal tensor Q is used in order to specify the single crystal orientation. For a given strain rate tensor D′ and a crystal
orientation Q, Eq. (22)1 is an implicit equation for the stress deviator τ ′. For given τ ′, W , and Q Eq. (22)2 determines the
spin Q̇Q−1 of the crystal lattice.
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Table 1 Macroscopic material parameters for aluminum at room temperature

Elastic law K [GPa] 75.2

G [GPa] 26.2
Flow rule ε̇0 [s−1] 9 · 10−3

m [-] 80
Hardening rule Θ0 [MPa] 351.1

σV 0 [MPa] 157.8

n [-] 22.5

ε̇∗0 [s−1] 107

σF0 [MPa] 45.9

The function k̃ is assumed to be given by

k̃(QTτ ′Q, τC) =
N∑

α=1

γ̇α(τα, τC)M̃α, (23)

with

γ̇α(τα, τC) = γ̇0sgn (τα)
∣∣∣ τα

τC

∣∣∣m , τα = (QTτ ′Q) · M̃α (24)

(see, e.g., Hutchinson, [16]). Since the hardening on the microscale has a limited influence on the texture evolution, it is a
reasonable assumption that only one constant critical resolved shear stress τC is used. The Schmid tensors M̃α = d̃α ⊗ ñα

are rank-one tensors, which are defined in terms of the slip directions d̃α and the slip plane normals ñα. In case of an fcc
single crystal at room temperature, the octahedral slip systems 〈11̄0〉{111} have to be taken into account (N = 12). The
material parameter m quantifies the strain rate sensitivity of the material. It is generally temperature-dependent and can be
estimated by strain rate jump experiments. The material parameters are chosen as follows: m = 80, τC = 15 MPa, and
γ̇0 = 9 · 10−3 s−1.

4 Numerical implementation and applications

4.1 Numerical implementation

The material model has been implemented into the user material subroutine UMAT of the finite element code ABAQUS [1].
On the macroscale the internal variables are updated in time using the Euler backward scheme in an incrementally objective
setting. The corresponding algorithmic linearization has been implemented. The constraint of the plastic incompressibility
is ensured by a projection method. On the microscale, the strain-rate tensor determines the stress in an implicit way. The
equation is solved based on an incrementally objective estimate of the rate of deformation tensor. Having determined this
stress tensor, the lattice rotation is updated by an explicit exponential map. From the lattice rotations the texture coefficient
V′ is determined and used in the macroscopic part of the model. In the sequel the two-scale approach is applied to the
simulation of the deep drawing process in aluminum.

4.2 Applications

4.2.1 Example: Cube texture

In this example we compare the predictions of the two-scale approach for a texture which can be described by a small
number of texture components. Engler and Kalz [14] determined the crystallographic texture of a rolled aluminum sheet
and the corresponding earing profile resulting from a deep drawing process. The initial texture is dominated by a cube
component (ϕ1 = 0◦, Φ = 0◦, ϕ2 = 0◦) but also by a weak Goss component (ϕ1 = 0◦, Φ = 45◦, ϕ2 = 0◦). Fig. 1(a) shows
the experimental codf (crystallite orientation distribution function) in a section of the orientation space (ϕ2 = 0◦).

In Böhlke et al. [10] this codf has been approximated by six v. Mises-Fisher distributions (Fig. 1(b)). Such a central
distribution consists of a center orientation and a half-width b. The half width value allows for the modeling of the scattering
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(a) Experiment (b) Simulation

Fig. 1 Section of the orientation space showing the experimental cube texture with a goss component (a) and an approx-
imation by texture components (b)

Table 2 Half-widths, volume fractions, and Euler angles for the v. Mises-Fisher components approximating the texture
shown in Fig. 1

i bi νi ϕi
1 Φi ϕi

2

1 (cube) 32.5◦ 0.6 0 0 0

2 27.5◦ 0.06 0 15◦ 0

3 27.5◦ 0.08 0 30◦ 0

4 (goss) 27.5◦ 0.12 0 45◦ 0

5 27.5◦ 0.08 0 60◦ 0

6 27.5◦ 0.06 0 75◦ 0

dp

rpp

tb

db

punch

blank

blank holder

die

Fig. 2 Geometry of the deep drawing process.

around the center orientation. The parameters of the v. Mises-Fisher distributions and the corresponding volume fractions
are given in Table 2. The six center orientations and the corresponding volume fractions are used as initial values in the
two-scale model.

The geometrical parameters for the simulation of the deep drawing process are as follows: Blank diameter db = 60 mm,
punch diameter dp = 33.3 mm, thickness tb = 0.5 mm, punch profile radius rpp = 6 mm (see also Fig. 2). Because of
the orthotropic sample symmetry of the codf, it is possible to model only a quarter of the sheet. This has been discretized
by 960 C3D8H and 132 C3D6H elements. The application of shell elements would give more accurate results, but the
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aforementioned elements are used for simplicity in this large strain anisotropic plasticity problem. The friction is modeled
with a Coulomb friction coefficient equal to μ = 0.1. The deformed mesh is shown in Fig. 4.

The predictions of the two-scale model for the earing profile are shown in Fig. 3 together with the experimental data by
Engler and Kalz [14]. In the paper by Engler and Kalz [14] the relative earing heights are documented. Therefore, only the
normalized earing profile is discussed here. The material parameter η governs the amount of anisotropy of the polycrystal.
The type of anisotropy is completely determined by V′. For given texture coefficient V′ the parameter η can be determined
by one yield stress for example in the rolling direction. Alternatively, if the yield stress is unknown it can be estimated
based on the earing profile which is done here. When choosing η = 0.18, there is a good agreement between the two-scale
approach and the experimental results.
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Fig. 3 Comparison of the earing profile calculated by the
two-scale model (η = 0.02) with experimental data (Engler
and Kalz, [14]).

Fig. 4 FE mesh of a quarter of the cup for the two-scale
model (η = 0.02).

4.2.2 Example: Four-component texture

Lege et al. [19] determined the parameters of four pseudo-Gaussian distribution functions (see, e.g., Bunge, [13]), which
reproduce together with an isotropic component the main features of a crystallographic texture in a rolled aluminum sheet.
In Böhlke et al. [10] the parameters of the corresponding v. Mises-Fisher distributions are given (see Table 3).

As in the computation above, the center orientations of the v. Mises-Fisher distributions and the corresponding volume
fractions are used as starting values in the finite element calculation. The geometrical parameters for the simulation of the
deep drawing process are the following: db = 162 mm, dp = 97 mm, tb = 1.24 mm, rpp = 4.95 mm (Lege et al., [19]). A
quarter of the sheet has been discretized by 960 C3D8H and 132 C3D6H elements.

In Fig. 5 the normalized earing profile calculated by the two-scale approach is shown. If a parameter η = 0.27 is chosen,
then there is again a good agreement of the predictions of the model with the experimental results. In Fig. 6 the deformed
mesh calculated by the two-scale approach is presented.

Table 3 Main texture components of a 2008-T4 sheet described by half widths, volume fractions, and Euler angles. Note
that an orthotropic sample symmetry is assumed.

i bi νi ϕi
1 Φi ϕi

2

1 20.2◦ 0.248 89.12◦ 89.12◦ 358.99◦

2 19.2◦ 0.298 14.69◦ 82.20◦ 326.79◦

3 22.1◦ 0.153 26.72◦ 87.86◦ 346.14◦

4 11.7◦ 0.038 89.09◦ 88.94◦ 340.98◦

random 0.263
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Fig. 5 Comparison of the earing profile calculated by the
two-scale model (η = 0.03) with experimental data by Lege
et al. [19].

Fig. 6 FE mesh of a quarter of the cup for the two-scale
model (η = 0.03).
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Fig. 7 Initial and final yield stress in the sheet plane for
a material point positioned on the symmetry line in rolling
direction.
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Fig. 8 Initial and final yield stress in the sheet plane for a
material point positioned 45◦ to the rolling direction.

4.3 Discussion

The advantage of the present approach is that no phenomenological assumptions concerning the evolution of anisotropy
directions are required. Based on the texture development, the evolution of the yield surface can be analyzed. Phenomeno-
logical models usually assume that the anisotropy is fixed to the material. Here, we can analyze this assumption. In the
first example, the orthogonal part of the deformation gradient has been determined for different material points in the sheet
plane. With this orthogonal tensor, the final 4th-order texture coefficient has been rotated back to the initial sheet plane.
Then the flow stress in the sheet plane is computed and compared with the initial flow stress.

Fig. 7 shows the initial and the final yield stress in the sheet plane for a point on the symmetry line containing the rolling
direction (for a calculation without hardening). It can be seen that the yield stresses are almost identical in the sheet plane.
Hence, it can be concluded that the type of anisotropy is approximately fixed and that the anisotropy axes rotate with the
mean rigid body rotation of the material point. This is a common assumption applied in the context of phenomenological
anisotropic plasticity models which has here been confirmed by a texture simulation.

Fig. 8 shows the initial and the final yield surface for a point with 45◦ to the rolling direction. For this point, the
yield surface is not only rotated but also slightly distorted. The numerical results indicate that for this example the texture
evolution is of minor importance for the yield stress. But it should be noted that in general the texture evolution can be more
significant during the deep drawing operation (Schulze, [26]). In such a case the assumption that the anisotropy directions
are only rotated is not valid. Since the model is independent of such an assumption it represents a versatile approach to be
further investigated.
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5 Summary

In the present paper a two-scale approach has been used to simulate the mechanical behavior of polycrystals under large
plastic deformations. This approach is based on constitutive equations which are formulated with respect to the macroscale
containing however, micro-mechanically defined internal variables. The evolution of the macroscopic symmetry has been
taken into account based on a Taylor type model. Generally, both the evolving elastic and plastic anisotropies can be
modeled by the suggested approach. In the examples discussed above, the anisotropy of the elastic behavior is negligible
such that only the plastic behavior is affected by the texture evolution.

The simulated earing profiles reproduce the features of the experimental findings. Compared to classical Taylor type
models, the computation of the macroscopic stress is much simpler and faster. Since the texture evolves slowly compared
to the yield stress, an update of the texture coefficient is not required in each time step. Furthermore, even if only a small
number of crystal orientations is used, the anisotropy is not necessarily overestimated since the discrete orientations enter
the model through the 4th-order texture coefficient specifying the quadratic flow rule.
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