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1 Abstract

Kinematic structures are currently one of the most important prerequisites for robot
technology. Grasping objects, painting cars or performing household tasks are just a
few examples from the manifold space of possible applications. To execute such op-
erations, the structure of an object has to be known a priori. In dynamical changing
environments, however, this prior specification becomes unfeasible. Therefore, an au-
tomated process is required that can reliably extract kinematic structures from visual
sensory input. This work contributes to this effort by acquiring joint types from moving
3d point clouds. A cloud consists hereby of presegmented visual features from object
parts or the environment. The algorithm tries to classify each relationship in the point
cloud according to different categories of joint types. Several real world experiments
with ordinary objects like doors, drawers, tricycles, and laptops were performed, to
test the stability of this approach.

Zusammenfassung

Kinematische Strukturen sind zurzeit eine der wichtigsten Grundlagen der Robotik. Sie
ermöglichen es, unter anderem, Objekte zu greifen, Autos zu lackieren oder einfache
alltägliche Aufgaben zu erledigen. Um solche Tätigkeiten durchzuführen, ist jedoch
Vorwissen über die Struktur der jeweils involvierten Objekte verlangt. In Umgebun-
gen, die sich dynamisch verändern, ist es jedoch nicht möglich solch ein Vorwissen
bereitzustellen. Deshalb wird ein automatischer Prozess benötigt, welcher kinematis-
che Strukturen aus visuellen Informationen extrahieren kann. Diese Arbeit unterstützt
diese Bemühungen durch die Extraktion von kinematischen Strukturen, aus sich be-
wegenden 3d Punktwolken. Eine Punktwolke besteht aus bereits vorsegmentierten
visuellen Features von Objekten oder der Umgebung. Der Algorithmus versucht jede
Beziehung innerhalb der segmentierten Features anhand von verschiedenen Gelenk Kat-
egorien zu klassifizieren. Um die Stabilität des Ansatzes zu überprüfen, wurden mehere
Experimente in der realen Welt durchgeführt. Dabei wurden alltägliche Gegenstände
wie Türen, Schubladen, Dreiräder und Laptops benutzt.
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2 Introduction

2.1 Motivation

In the last decades, robot technology achieved several useful accomplishments to im-
prove, simplify and automate parts of human life. Examples range from automatic
processes in car manufactures and household tasks to repairing duties at the interna-
tional space station. The underlying framework, which enables most of these successes,
is based on so called kinematic structures. Those are models, which describe the mo-
tion of a manipulator or objects to interact with. Before a robot can start its task, a
human operator has to specify those models apriori. However, this can become a very
time consuming task, constrains the autonomy of the machine, and will be unfeasible
in dynamical changing environments.
Therefore, it seems to be necessary to automate this process. The robot should be able
to acquire the structure of an arbitrary object, without prior knowledge or intervention
of a human operator. Once the structure is obtained, further goal directed manipula-
tion will be possible. Especially in human unfriendly environments, like nuclear waste
plants or on other planets, this seems to be a desirable skill.
While there are many attempts to solve this problem, there is no general solution. One
possible reason is the concentration of vision research on still images. While an object
is at rest, the underlying structure can only be guessed. But once the object moves,
the inherent properties can be seen and in principle be analyzed. In this context, this
thesis will contribute to a larger project with the emphasis on learning intelligent in-
teractions in order to reveal structures from moving objects.
To reach this goal, a module has to be designed, which can reason about structures,
given only observations over time. An observation consists hereby of presegmented
3d point clouds of a moving rigid object. Given this input, the developed algorithm
concentrates on explaining the motion in terms of different joint types. This is useful
for further applications, like learning the right interaction to reveal the structure. In
the next section 2.2 a brief explanation of the developed methods is given.

2.2 Contributions

The main purpose of this approach is to extract a simplified kinematic structure from
moving rigid objects, described by presegmented 3d data points. Kinematic structures
can be described in terms of rigid body parts, or links, which are connected through
joints. A complete description involves the knowledge about the relationships between
each two links. Therefore, this thesis concentrates on revealing the type of joint be-
tween all segmented clusters of the 3d data points.
The main problem in this context is to find a way of obtaining the relative motion
between two links. It is a lot easier for example to explain the motion of a door and its
surrounding wall, because one of the objects does not move. But extracting the rela-
tive motion between a car and its wheels is more difficult, because they move together.
How to obtain a solution will be the main focus of chapter 4.4.
After the relative motion is revealed, expert-designed joint types will be used to char-
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acterise the relation. Depending on the used methods to obtain the 3D data points,
the dataset can consist of noise. Therefore, it is essential to design joint types, which
are able handle a suitable amount of noise. The methods will be described in section
5, where also limitations of this approach will be discussed.
Another crucial problem, which arises, if the dataset is obtained from just one camera
or without depth information, is scale ambiguity. Since the size of an object unknown
without prior experience, it can be at an indefinite number of distances relative to
the camera. Therefore, if it is compared to another object with different real depth,
an additional prismatic motion occurs. But at the right scale, this prismatic motion
disappears. This is why the problem can be rewritten as an optimization problem. If
a scale factor can be found, where no prismatic motion occurs, it is likely, that this
motion is introduced by scale. A detailed discourse of this topic can be found in section
5.5. Before discussing the methods, the upcoming section 3 will provide a background
to kinematic structures, introducing related work and briefly summarising a possible
acquisition process of the input data. Additionally, a more technical discourse about
the main scope of this thesis will be provided in section 3.4.
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3 On detecting kinematic structures

3.1 Background

As described in [3], kinematics is the science of motion, which is concerned with the
geometrical and time-based properties of an object. Forces and torques are thereby ne-
glected, which means, that the main focus lies on the pure movement, not the inherent
dynamics. To describe objects, kinematic structures are used consisting of links and
joints. Links are rigid bodies or body parts where the distance of two arbitrary points
is always constant. Each link can be connected to one another or to the environment
through joints. In general, the relation between two links can be described by a total
of six parameters, three positions and three orientations. The number of parameters to
describe the motion is referred to as degrees of freedom. Joints will constrain the motion
between two links by reducing their degrees of freedom. If you take a look for example
on a revolute joint present in a door, the motion can be described by one rotational
component only, which is why the degrees of freedom are reduced to one. The second
single degree of freedom joint is called prismatic. This one can be described by a trans-
lational parameter and can be found for example in a drawer. Those two are the most
common joint types in everyday objects. Examples are bicycles, cars, scissors, laptops
and several others. Objects which exposure this structure are referred to as articulated.

3.2 Related Work

There are already several published works on identifying kinematic chains from mo-
tions and observations. Most of them provide solutions to simplified settings.
Kirk et al.[11] observed the motion of a human to infer a skeletal information. Hereby
he and his colleagues assumed, that each joint can be represented by a revolute joint.
Input data is obtained from a motion capturing device, with several markers attached
to the human body. To identify rigid body parts, they calculated the standard devia-
tion in distance between all marker pairs. The relationships between body parts were
formulated by them as a nonlinear optimization problem, where the revolute joint posi-
tion is located at the line, where the distance between all markers is minimal. Because
a revolute joint can be seen as attached to both bodies, the distance at the axis to
each point on the bodies should remain the same. One weakness of their approach is
the usage of revolute joints only. This constraints the number of objects, which can
be analyzed. If one seeks for autonomous behaviour, attaching artificial marker also
does not seem to provide the right direction. A general framework should also handle
informations, coming from monocular camera perspectives.
A more general approach, but still relying on artificial markers, is proposed by Sturm
et al.[20, 21] They analyzed the kinematic structure in open kinematic chains, that
means objects, where at least one of the parts is not in motion1. Their goal is to fit

1A closed kinematic chain consists of arbitrary moving links, which are not static or connected to
the environment. Open kinematic chains on the other side always have one non-moving part, which
is connected to the environment. One example is a robotic manipulator, which is rigidly connected to
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a set of models to the observed motion between each pair of object parts. Each part
is considered as a node in a graph, where the edges between them represent the type
of connection. A possible arrangement of the object parts is represented by a span-
ning tree. Because there are many such trees, the one, which maximizes the expected
likelihood of a new observation is choosen to represent the kinematic structure. In
every step, when a new observation arrives, the model is updated. For enough training
samples, the algorithm converges to the right structure. This has also applications in
system identification processes [22]. While this sounds promising, it still can only deal
with open kinematic structures. But in a real world setting, there are many objects,
which are moving independently and do not have non moving parts. The simplest
example is a scissor, where both parts are moving in relation to each other.
In terms of input, a more realistic setting is proposed by Dearden and Demiris [4].
They abandon artificial markers, but use image features, which they track over time.
Features, which move together are so called optical flow points and clustered into one
object. Instead of extracting the kinematic relationship, the main goal is to imitate the
observed motion. One example is the movement of a clipper tool, which could imitate
the movement of two hands in front of the camera. Nevertheless, their approach was
only showed in a very simplistic setting and not with a wide variety of objects.
Taycher, Fisher III and Darell [24] operated on orthographically projections of 3d ob-
jects. From this 2d projection, they tried to recover the articulated structure of the
object. In their experiments, they used simulated data with added noise to demon-
strate the robustness. Because they relied on a very small amount of gaussian noise (1
pixel standard deviation), it is arguable, if this can be used with real world data. An-
other critical point is the assumption, that object parts are structured as a kinematic
tree. Every chain-like object would be rejected.
Another related approach to this work is conducted by Pollefeys et al. [27]. They
used image features on objects and tried to infer the kinematic relationship by means
of affine projections. That means, they do not use 3d informations but rely on the
monocular camera image. In their work, they introduce motion subspaces. That are
basically classes of features which move together and belong therefore to one space. If
a joint between two motion subspaces is present, than there is a position, where the
distance to each feature in both motion subspaces is constant. This holds true for revo-
lute joints. A feature, which rotates about the axis of rotation, has a constant distance
to this axis. While their approach is only valid for revolute joints, it can handle non
rigid body parts like a face. Handling non rigid body parts is currently not a part of
this thesis. Therefore, their methods could act as one of further improvements.
Katz et al. [8, 9] tracked features in 2d and constructed a graphical representation
from them. This graph consisted of vertices, representing the features, and an edges
between features, if the distance remained constant. To extract clusters and therefore
the links of the underlying object, they grouped the graph into parts of high connectiv-
ity. Once the links are extracted, their algorithm searches for a transformation between
pairs of links, which can best explain the motion. A transformation is basically a pure
translation, if a prismatic joint is present between two links. On the other side, a

the ground.
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revolute joint consists of a pure rotational component. If the transformation cannot
be described by one of the mentioned transformations, it is declared as disconnected.
Because only 2d planar objects are observed, a huge number of real world objects are
discarded. While scissors on a table can be analyzed, there methods will already fail
for doors.
Ross, Tarlow and Zemel [18] use 2d projections of 3d observations to infer a kinematic
structure. First they group the 2d features into rigid sticks. Each stick represents a
rigid body part. While observing an articulated object, sticks are not independent, but
the ends are more likely connected to each other. Therefore, they use an Expectation-
Maximation (EM) algorithm to learn the correct position of the sticks from newly
observed data. At each new iteration the algorithm will be further improved, till it will
converge to the right structure. While their assumption of connected sticks is valid for
humans, it will likely fail for rigid bodies, which are not connected at the end but in
the middle, like scissors.
All papers discussed so far use either artificial markers, can only deal with 2d informa-
tions or lack the ability to handle closed kinematic chains. In contrary, the proposed
algorithm in this work does not rely on artificial markers only. Only two assumptions
are used for the input data. First, it consists of 3d points on the objects which have
to be identified. Second, the points are already grouped into different clusters accord-
ing to different parts of the analyzed object. Given this information, the proposed
method can handle noisy input and is especially able to identify structures from closed
kinematic chains. One way of acquiring the input information will briefly discussed in
section 3.3.

3.3 3D Image features

Before analysing the structure of the main work, a brief summary about one possibility
to obtain the sources of the input data will be given. To model the kinematic structure
of an object, the first step is to identify interesting points. This can be achieved with
artificial markers, like the motion tracking devices discussed in the last section. But
this would assume, that the environment is already structured. Someone has to add
markers to the object. This raises the question, if in this case, it isn’t easier to model
the whole object by a human operator. If artificial markers are necessary, the robot is
not autonomous anymore and still relies on a helping hand. Especially in environments
like outter space or at nuclear waste factories, this cannot be an option.
Katz et al. [10] on the other side acquire the 3d informations from feature tracking only.
There approach is already robust against different lightning conditions and shows how
the input data can be produced without prior knowledge. While it is a reliably source
of 3d features it still got two problems. First, they acquired the features through
a monocular non-moving camera. This is why it lacks a proper depth information.
Produced features could be produced by the same object but greater and further away
from the camera. To generalize the work, this scaling ambiguity will be handled by
the algorithm. Second, they used a low resolution camera. As one could imagine, the
degree of noise is slightly increased by this setting.
Especially because its non perfect acquisition process, the data set provides a very

7



good testing framework. If the algorithm works under this conditions, it will also work
with more carefully conducted experiments. The results will be discussed in section 6,
after the work is explained in detail. For the upcoming parts of this thesis, the exact
method of obtaining the features will be neglected. The knowledge about the possible
incoming data shows, that a highly generalized method is desired.

3.4 Joint Detection

The formal input to the algorithm are N clusters of image features, which represent
different parts of a body or interesting regions in the surrounding environment. If
the type of joint between different object parts is known, the kinematic structure is
easier inferred. This is why the problem will be simplified, by picking each two pairs of
clusters in the scene, and analyze its motion in terms of joints separately. Additionally
to the type of joint, also a confidence value is necessary to show how sure the algorithm
is about a certain type. Putting everything together results in an structure sketched in
algorithm 1. It states that the goal is to determine the type of joint and a confidence
value from the input cluster. The JointDetection function can be seen as the algorithm
this thesis is about. It will be examined in every detail in the next sections. By taking
just two clusters at a time, the overall problem is divided into

(
N
2

)
smaller problems

which can easier be solved. Moreover, each of the pairs can be calculated in parallel if
more processors or parallel computing architectures are avaiable.

The subdivided problem of determing the joint between two clusters becomes now
more handy. But before the relationship between them can be determined, the relative
motion has to be obtained. What does this mean? Consider two objects like a wall
and a door. To acquire the relative motion between the door and its surroundings
becomes easy, because the wall does not move with respect to the camera. Therefore,
the relative motion is equal to the motion of the door. But if one considers, that the
second object is also floating through space arbitrarily, the former easy appearing task
will become very hard to solve. The complete section 4.2 is dedicated to explain this
problem in more detail and obtain a robust solution.
As already covered in section 3.3, there are many concepts involved in generating the
input. Every step is prone to uncertainty and could in the worst case consist of a huge

Algorithm 1 AnalyseKinematicStructure

Require: ON
i=1

Ensure: J
(N
2 )

i=1 , P
(N
2 )

i=1

1: m← 0
2: for each pair in ON

i=1 do
3: J(m), P (m)← JointDetection(pairm(ON

i=1))
4: m← m+ 1
5: end for
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amount of noise. Methods, which will reliably detect joints, apparently have to deal
with uncertainty. This aspect will also be discussed during the development of the
methods in section 5.
In section 6 the algorithms performance on ordinary objects like doors, drawers, or
tricycles will be shown. Also a brief description of limitations will be discussed.
At the end in section 7, a conclusion about the whole algorithm will be presented.
There, the question is answered, if the overall problem of detecting kinematic structures
from observations is hereby completely solved.
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4 Relative motion

4.1 Terminology

In order to discuss the two core problems of revealing the local motion and determing
the relationship between two bodies, a list of formal definitions is given.

• Point: A coordinate in 3d space represented by x,y,z.

• Body: A set of points representing a rigid body. That means, all points are
located somewhere on this body.

• Feature: A point on a body. If the body moves, the feature still stays the same,
but its x,y,z coordinates change over time.

• Trajectory: The time sequence of one feature. That are all possible x,y,z values,
which are observed for a particular feature.

• Timeframe: The position of a set of features on a body, at a specific sequence
in time.

• (BΛ)M
i=1 : A Body labelled Λ, with information about the position of its points at

M different timeframes. This can be seen as equal to all features, representing
body Λ.

• BΛ(i): The position of all points on a body at a given timeframe i.

• H: A matrix H represents a homogenous 4x4 matrix, associated to a rotation
matrix R and a translation vector T .

• p: A probability. Is used as a score, for example to determine how good a model
has matched the observations. Also used as confidence score for a certain type of
joint.

4.2 Problem description

If two bodies are moving arbitrarily through space, it is hard to determine the rela-
tionship between them.
Take a look at the motion of a tricycle in figure 1. Just using feature trajectories on
the wheel (blue) and the top (black) of a tricycle do not act as good indicators of
its true motion. The knowledge of the real relationship is shadowed to the observer.
A mechanism is necessary, which can hold one of the body parts at rest. If one just
observes the relative motion (red), it becomes obvious, that a revolute joint is present
between wheel and top.

To obtain such a result, the harder problem of revealing the motion between moving
bodies is projected onto the easier problem, where one of the bodies does not move at
all. If one of the bodies is fixed, a prismatic or revolute motion is clearly visible as
a straight line or a circle, respectively. Therefore, to reveal the local motion between

10



Figure 1: Motion of a tricycle: The wheel over time (blue), the top of the tricycle
(black) and the relative motion between wheel and top, obtained from the algorithm
(red)

two bodies, the first step is to fixate one of them. This is basically done, by choosing
one of the two objects as a reference. In each time frame, the transformation of the
reference body is calculated, between its current and its previous timeframe. If this is
known, the body can be projected back and fixed to its previous position.
As it will be shown in the upcoming sections, if the transformations between all time
frames of the reference body are known, the relative motion with respect to another
body can be calculated by use of homogenous transformations only.
In section 4.3 the basics of calculating a homogenous transformation between two
point clouds are discussed. That means, the algorithm tries to obtain a rotation and
translation, which best transforms one point cloud into another one. This problem
is commonly referred to as point cloud to point cloud registration. Several different
methods, mostly iterated solutions, are discussed in [13]. But in the case, where both
clouds have the same amount of points, a robust closed form solution can be obtained
[6, 1].
Once the best transformation between two clouds is found, section 4.4 will propose an
algorithm to obtain the relative motion. To clarify the details, at first, the algorithm
is explained in the 2d-case with just two time frames. By understanding this, it will
become clear, how this method can be applied to the general 3d case. At the end, a
robust and easy to implement solution will be achieved. It is tested on simulated data
and also with real world objects from challenging data sets (see section 6).
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4.3 Point Cloud to Point Cloud Registration

Each input body is represented by a set of points. If a body moves, there is a transfor-
mation, which maps the old point cloud onto the new one. This can be represented by
a homogenous transformation matrix HT , which is basically a 4x4 matrix, consisting
of a rotation R and a translation T . A direct method, which computes the homogenous
transformation in the present of noise is proposed by [1]. It assumes that there are at
least six points and that both point clouds aren’t an exact match.
Let P = p1, ..., pN and Q = q1, ..., qN denote two point clouds where N ≥ 6. To find
the homogenous transformation between them consists of finding R and T , which can
transform one point cloud into another one. To achieve this goal, a least-square error
function is used, which defines the error between the transformed point cloud and the
final cloud. The solution to this problem will therefore lead to a minimization problem.
The error can be defined as the squared sum of distances between the transformed P
and the original Q.

E =
N∑
i=1

‖qi − (Rpi − T )‖2 (1)

The trick to solve this equation is to decouple the translation and rotation. In [7]
it is shown, that the centroid of a point cloud remains the same, if one rotates the
cloud about this point. This becomes clear, if one recalls, that the distance between
each point to its axis of rotation remains constant. Therefore, the centroids of both
point clouds are calculated and aligned to the origin of the current coordinate frame.
Afterwards the task is reduced to find a rotation matrix, which aligns both shifted
point clouds. To be more concrete, if pc is the centroid of P , and qc the equivalent of
Q, the shifted point clouds are calculated by

p′i = pi − pc (2)

q′i = qi − qc (3)

Now, a new error function can be stated, which defines the alignment of both shifted
clouds:

E =
N∑
i=1

‖q′i −Rp′i‖2 (4)

If a rotation R is found, which minimizes this error function, the translation vector of
the original problem can be found via T = qc −Rpc.
To find R, the previous error function from (4) is rewritten as

E =
N∑
i=1

‖q′i −Rp′i‖2 (5)

=
N∑
i=1

(q′i −Rp′i)T (q′i −Rp′i) (6)

=
N∑
i=1

(q′Ti q
′
i + p′Ti p

′
i − 2q′Ti Rpi) (7)
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As can be seen from 7, in order to minimize the error function one has to maximize
the expression 2q′Ti Rpi. This leads to a new error function.

E ′ =
N∑
i=1

q′Ti Rp
′
i (8)

= Trace(R
N∑
i=1

q′ip
′T
i ) (9)

= Trace(RH) (10)

In (10) the covariance matrix H is used, which is defined as H =
∑N

i=1 q
′
ip
′T
i . To

maximize the quantity RH a singular value decomposition (SVD) [16] is introduced.
This decomposes H into H = UΛV T . In [1] it was shown, that if R is set to be
R = V UT , this will lead to

RH = V UTUΛV T = V ΛV T (11)

and maximizes the initial term Trace(RH). This is why the homogenous transforma-
tion matrix can directly be written as(

R T
~0 1

)
=

(
V UT qc − (V UT )pc
~0 1

)
(12)

where qc is the centroid of the point cloud Q, pc the centroid of P , V and UT the results
from the singular value decomposition of the covariance matrix H.
So far there was no discussion about the completeness, that means, if this approach
always finds a rotation matrix R. If the points in P are not coplanar, a unique solution
can be found. The determinant of this rotation matrix is equal to one. But in the case,
where all the points in P are coplanar, one can still find a unique rotation which
maximizes the term RH, but also a a unique reflection which also leads to a valid
solution. In this case, the determinant of R will have a value of minus one. To handle
this case the eigenvalues of the covariance matrix H are evaluated. If one of them is
equal or near to zero, the points are coplanar. This is equivalent to the result, that
one of eigenvalues has zero length. This is why the sign can just be changed in this
column of V to obtain the right rotation matrix. The same holds true, if the points
in P are colinear, with the difference, that there are two zero values. But if there are
huge outliers, this will effect the eigenvalues in a way that no correct R can be found.
Therefore, it is sufficient to evaluate, if one of the eigenvalues is near zero. Otherwise,
no correct solution can be obtained.
Algorithm 2 shows the complete function of this procedure. There are five additional
methods used to calculate the homogenous transformation matrix. First, the centroid
function calculates the mean value of each component of the input point cloud. Second,
the shift method is used, which subtracts the centroid from each point cloud and aligns
them so that the centroid matches the origin. Next, there is the svd function which
performs a singular value decomposition, where the input matrix is decomposed in
M = UΣV T , where U and V are unitary matrices and Σ is a diagonal matrix which
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consists of the singular values [16]. The method zeroValueExist checks if one of the
singular values of the covariance matrix is zero. Finally, findZeroValue returns the
index of the singular value which is zero.
The output from the algorithm is a rotation matrix R and a translation vector T which
can be converted into a homogenous transformation matrix as shown in (12). The
homogenous transformation is a very general concept to explain the relation between
two clouds. In the following section, it will be assumed, that the transformation is
always known. As already seen, this is not the case, if there is too much noise or the
data set consists of huge outliers. But if this is the case, already the clustering of
the points is wrong and the whole method will likely fail. Therefore, it is sufficient to
announce this failing and stop processing.

Algorithm 2 computeHomogenousTransformation

Require: PN
i=1, Q

N
i=1

Ensure: R, T

1: qc ← centroid(P )
2: pc ← centroid(Q)

3: PN
i=1 ← shift(P, pc)// shift the point clouds to the origin

4: QN
i=1 ← shift(Q, qc)

5: H ←
∑N

i=1 qip
T
i

6: UΛV T ← svd(H)

7: R← V UT

8: T ← qc −Rpc
9: if det(R) 6= 1 then

10: if zeroV alueExist(H) then
11: Index← findZeroV alue(H)
12: V (Index, :) = −V (Index, :)
13: R = V UT

14: T = qc −Rpc
15: return R, T
16: else
17: print ‘‘No solution’’

18: end if
19: else
20: return R, T
21: end if
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4.4 Relative Motion

Based on algorithm 2, one can start finding the relative motion between two arbitrary
moving bodies. Algorithm 3 provides an overview in pseudocode about the developed
methods. It will be discussed in detail in this section.
A body is now defined by 3d image features which are moving over M timeframes. The
goal is to acquire informations about the relative motion between each pairs of bodies
in the scene. To start, one of the bodies is choosen as a reference body. Everytime this
body moves, the transformation is calculated and it is aligned back to its first frame.
The same is done for the second body. That means, if both of them are moving in
the same way, this procedure will remove the same motion and will end up with two
non-moving bodies.
The interesting part occurs, if the second body starts moving in addition to the first
one. By removing the motion of the first body from the second one, the local motion
between them will be revealed. If this is done, this motion can be examined with
methods described in the next chapters.
Once the removing procedure of motion of the first body is understood, the algo-
rithm becomes quite simple. For convenience, the motion between two consecutive
timeframes of the first body is called the global motion. Corresponding to this global
motion there is a homogenous transformation matrix HG which relates both timeframes
to each other. Further there is the local body motion, that is the position of the second
body, if global motion is removed. This will be denoted by BLocal. For each consecutive
timeframe of the local body there is again a homogenous transformation matrix HL.
To complete the declarations of the algorithm the last matrix is called Hcomplete, which
relates the current timeframe to timeframe zero. This will be used to remove the global
motion from each time step of the second body.
The first step towards revealing the local motion is to loop over all timeframes. In each
step the relationship between the current timeframe and the following one is examined.
To clarify this step, consider as an example two bodies at timeframes t0 and t1 (figure
2). The homogenous transformation between the first body HG is computed by using
the method described in the last section. This is the global motion, which is after-
wards removed from the second body. Then, a transformation HL between B1 and the
predicted position of body B1 is computed. Together with HG this transfers body B0

to body B1 by considering the global motion. Because HG is known, the inverse will
transfer B1 back into the old time frame t0, but with the additional transformation
HL. That means there is now an additional body BLocal

1 , which is the old body B0

transfered with the previous unknown transformation HL. The homogenous transfor-
mation matrix is not only valid in such a simple 2d setting but is naturally defined for
general 3d coordinates. That means, that this process is valid for 3d features to reveal
the local body motion.
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Figure 2: Revealing the local motion between two bodies A and B

If one conducts this process for all observed time frames, a series of local bodies
can be obtained. At the end, there is a new body, called local body, which consists
of a series of trajectories and represents the local motion between body A and B at
each time frame. This is exactly, what was shown in the beginning in figure 1 (the
red trajectories). From two apparent unrelated motions, the circular motion, which
is an inherent property of a revolute joint, can easily spotted. The next step is to
characterize a motion by attributes like circular or linear and classify them accordingly
into different categories of joints. But before this is done, a brief discussion about the
choice of the reference body follows.
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Algorithm 3 getLocalBodyMotion

Require: (A)Mi=1, (B)Mi=1

Ensure: (BLocal)
M
i=1, HL

1: HG(0)← eye(4)
2: HL(0)← eye(4)
3: BLocal(0)← B2(0)
4: Hcomplete ← eye(4)
5: for i = 0 to M − 1 do
6: HG(i+ 1)← computeHomogenousTransformation(A(i), A(i+ 1))
7: Hcomplete ← HG(i+ 1) ·Hcomplete

8: HG,inv ← inv(Hcomplete)
9: BLocal(i+ 1)← applyTransformation(HG,inv, B(i+ 1))

10: HL(i+ 1)← computeHomogenousTransformation(BLocal(i), BLocal(i+ 1))
11: end for

17



5 Analysing Relationships

5.1 From local motion to joint types

Once the problem of revealing the relative motion is solved, the right type of joint has
to be determined. In the current approach, a distinction is made between four possible
types. One is rigid, that means, both bodies are rigidly connected and are basically
one body. Then there are the two one degree of freedom joints, prismatic and revolute.
They are represented by a translational and a rotational component, respectively. If
no one of the mentioned types is present, the connection is declared as disconnected.
That means, there could be a possible joint with more than one degree of freedom or
there is absolutely no connection between them. The following section discusses, how
to distingush between those four types of connections. As a solution, expert-designed
joints are proposed as an apriori model to match the observations.

A crucial aspect in dealing with real world applications is the amount of noise,
which has to be handled. There are several possible sources of noise depending on
the kind of observation process. First of all, image features in the scene have to be
found. Because input devices are far from being perfect and are contrained by the
physical nature of waves, approximations have to be made. Another source of higher
uncertainty is given by environmental changes like illumination, partly hidden objects
or fast movements. As in detail discussed in section 3.3, acquiring the input from one
camera only, also gives rise to scale ambiguity and also to uncertainty in determing the
right depth value. Finally, almost every camera has a white ground noise, which comes
for example from fluctuations in the number of electrons in a Charge Coupled Device
(CCD) Camera. To handle higher amounts of noise, confidence intervals around the
fitting models are introduced.
Altogether two models are used for determing prismatic joints and revolute ones. The
first is a cylinder, which will represent the motion of a prismatic joint. The mathe-
matical algorithms and their application will be discussed in section 5.2. The second
model is a circle, which represents a revolute joint. How this works is part of section
5.3. At the end, two confidence values are obtained from the models. Each one of
them determines, how sure the algorithm is about a specific type of joint. Together
with both values, a third number will be acquired, which determines the score about
a rigid connection between two bodies. The last part in section 5.4 deals with the
determination of the final joint type, given all three confidence values.

5.2 Cylinder fitting

The problem which will tried to be solved in this section is how one can distingush
a relative prismatic motion from any other motion. As it is known, a prismatic joint
is defined by a translation component only (see figure 3). Common examples from
our environments involve drawers or sliding elevator doors. All points on an object
move into the same direction and with the same length if they represent a prismatic
motion. One intuitive approach would be to measure the length and the direction of
each point trajectory. If the all are nearly the same, it is prismatic, otherwise it is
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Figure 3: Two bodies connected with a prismatic joint. A transformation between
them can be described by a translational component at the axis (green) only.

not. Measuring the direction of a trajectory is easy, if the motion is perfect. But once
there is noise, the direction can differ a lot. Random Sample Consensus (RANSAC)
algorithms [5] are usually used to infer the right model of the points. But because they
are computational expensive, a simpler approach is proposed. Imagine, that all the
trajectories would have the same starting point. Even if there is noise, all the points
should almost stay on a straight line, which represents the translation component. To
deal with small outliers, a confidence interval is introduced around this straight line to
form a cylinder. If all the points, representing the trajectories, are inside this cylinder
and the length is equal, it is likely, that a prismatic motion is present.
Next all these ideas are summarized in mathematical notation and fit into an algo-
rithmic form. In general, each trajectory T1,..,M of a body is represented by a number
of points P1,..,N , where M denotes the features on an object and N is the number
of timeframes. A feature is an interesting region on an object, which is tracked over
time. The summation about all timesteps forms the trajectory. By aligning all the
trajectories to have the same starting point, each trajectory is shifted in a way to be
aligned with a reference feature. Note that this can be an arbitrary feature, because for
a perfect prismatic motion, all trajectories have the same length and same direction.
In the developed algorithm, the feature with the longest trajectory was choosen.
Suppose, all the trajectories should be aligned with respect to trajectory TR, where R
stands for reference. The shifted trajectories can be calculated by T Shifted1,..,M = T1,..,M−TR.

That means for each point on a shifted trajectory T Shiftedi (Pj) it is calculated

T Shiftedi (Pj) = Ti(Pj) + (Ti(Pj)− TR(P0)) (13)

For clarification see figure 5. Once all the trajectories are shifted, the next step is to
compute a cylinder around them. Therefore, the reference point Pstart is taken as the
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(a) (b)

Figure 4: Cylinder fit to two different motions, a prismatic one (a) and a disconnected
one (b)

start value of the line. The end point Pend is defined by the point, which has the greatest
distance to the starting point, on the same trajectory. A line between those points is
naturally defined in parametric form by p = ~Pstart + λ( ~Pend − Pstart). Let the length
of the line be the euclidean distance between the end points l = ‖‖Pend − Pstart‖‖. A
confidence interval is obtained, by calculating a tube with a radius equal to a predefined
percentage of the overall motion. This percentage relies on the real world performance
of the algorithm. In several experiments a value of p = 0.1 was used as a robust design
parameter for prismatic models. A typical outcome can be seen in figure 4, where a
cylinder is fitted to a shifted disconnected motion. The probability of a prismatic joint
is now defined by points in the interval divided by all points avaiable. The location
of a point inside the interval is obtained by calculating the distance from the line. As
described in [25], in 3d space this can be done by calculating

di =
‖(Pi − Pstart)× (Pi − Pend)‖

‖Pend − Pstart‖
(14)

where di denotes the distance of point Pi from the line and × is the cross product
between two vectors. If this value is smaller than the radius of the interval, r = l ∗ p =
‖‖Pend − Pstart‖‖ ∗ 0.1, the point is counted as being inside the tube. The probability
of points in the cylinder is therefore given by

pcylinderfit =
K

N
(15)

where K denotes the number of points in the cylinder and N represents the total num-
ber of points.
But there is still one problem with this approach. If the cylinder is very long and a
disconnected motion is only visible at the end, the confidence level of a prismatic joint
would still be very huge. Therefore, the cylinder is divided into smaller parts. In each
of those parts, the number of points is counted and divided by the total number of
points in this section. If one of the sections has a very small score, the overall confidence
also decreases. To achieve this goal, the cylinder is divided into ten equal parts and

20



Figure 5: Two trajectories of two different features (blue, green) are shifted, to be
aligned with a reference feature (red).

each score is calculated. The overall score is eventually calculated from the particular
scores by choosing the minimum value. That assures that the motion will be detected
as disconnected, if just the end gives a hint about the true motion2.
As already discussed, another indice for a prismatic motion is the equalness of trajec-

tory lengths. Therefore, each trajectory is measured. This is done, by calculating two
points on the trajectory which have the greatest distance between them. This distance
is saved in a list L1,...,M . For a total of M features there are M entries in the list.
To compare these entries to other motions, the list is normed, by dividing each entry
by the highest value. The outcome is therefore a list, where one of the entries is one
(the maximum trajectory length) and all the other entries represent the percentage
of the maximum length. That means, if all the lines are equal, the list consists of
ones only. To distingush between equal lines and unequal lines, a sigmoid function is
used. Therefore, first the mean value of the line length is calculated. This is done by

calculating µL =

∑M
i=1 Li
M

. From this value a confidence score is computed about of

how equal the lines are. A high mean value around one gets a high value of near one,
while a low mean value gets a lower value. For this need, the Q-function [26] is used
which is defined as

Q(x) =
1

2

(
1− erf

( x√
2

))
. (16)

2It seems to be necessary to extend this part, because the number of ten parts cannot be sufficient
under different circumstances. While this has not occurred in experiments, an adaptable number of
parts would lead to a higher degree of robustness
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where erf is the error function [2], which is defined as

erf(x) =
1√
2π

x∫
0

e−t
2

dt (17)

To represent the above mentioned specification, the Q function is shifted to a value
µ and scaled with a variable λ. The resulting equation represents the confidence of
equalness with two parameters.

Q(x, µ, λ) =
1

2

(
1− erf

((x− µ) · λ√
2

))
. (18)

Through experimental testing, values of µ = 0.93 and λ = 40.0 were chosen. For a set
of lines L with mean value µL, the confidence that all the lines are equal is given by

plinesequal = 1.0−Q(µL, µ = 0.93, λ = 40.0) (19)

To obtain a total score, of how strong the confidence of a prismatic joint is, both
indications are combined. The total confidence score is computed by

pprismaticmotion = plinesequal · pcylinderfit (20)

A high score is obtained, if both the values of equal lengths of the trajectories and
the one for the cylinder fit are high. This confidence relies on two parameters, one
the radius of the tube, the second the mean value for the Q function, which denotes
together with the λ value, if all the lines are equal.

5.3 Modeling revolute joints

The essential principle of distingushing revolute motion and any other motion consists
of basically three parts. In the first one, each trajectory is projected onto a unit circle.
If the trajectory exerts a rotational motion only, this should also be visible in the
projected data. To quantify the goodness of the fit, the second part is dedicated to
describe the circle fit in terms of confidence values. The last part tries to find more
indications that there is really a revolute joint present. This is done by determing
the similiarity of the center points of each motion and how much motion is observed,
compared to the unit circle. In the following paragraphs, this fitting process is described
in detail. The core concept is to obtain a fit for one trajectory and repeat the process
for all existing trajectories afterwards.
It begins by first fitting a plane through each observed trajectory. This is achieved, by
calculating the parametric equation of the plane:

Ax+By + Cz +D = 0 (21)

For each point on the trajectory, following equation is evaluated

Aix+Biy + Ciz +D = Ri (22)

22



Figure 6: A revolute joint between two bodies. The motion of one of them can be
described in terms of a rotational component only (green). The rotation is defined
with respect to an axis, where the distance of all points on the rotated body remains
constant (red).

To obtain (21), the goal is to minimize the sum about all squared Ri’s. From the
input data the parameters A,B,C and D have to be determined. Therefore, at least
four input points are necessary in order to specify a solution. If the C value is also
eliminated by dividing the whole equation by it, the number of points can be decreased
to three. This is why at least three points, or time frames, have to be provided, to
obtain a solution. Because input data is prone to noise, more input frames will help
to obtain better results. To minimize the distance of each point to the plane, a least
square distances error function is defined in following way

f(A,B,C,D) =
N∑
i=0

‖Axi +Byi + Czi +D‖2

A2 +B2 + C2
(23)

The following descriptions are loosely based on the notes in [12]. One way of obtaining
a minimum value is by minimizing the function with respect to D. Therefore, the first
derivative is set to zero

df(A,B,C,D)

dD
= 0 (24)

From this equation, D can be obtained as

D = −(A

N∑
i=0

xi

N
+B

N∑
i=0

yi

N
+ C

N∑
i=0

zi

N
) (25)

= −(Ax0 +By0 + Cz0) (26)

where x0 represents the mean value of the x-coordinate of the data set and y0,z0 the
corresponding ones for the y-coordinate and z-coordinate. This leads to a new f
function, which contains three parameters

f(A,B,C) =
N∑
i=0

‖A(xi − x0) +B(yi − y0) + C(zi − z0)‖2

A2 +B2 + C2
(27)
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Equation 27 can be rewritten in matrix form as

f(v) =
(vTMT )(Mv)

vTv
(28)

v =

AB
C

 (29)

M =

x1 − x0 y1 − y0 z1 − z0
...

...
...

xN − x0 yN − y0 zN − z0

 (30)

where f(v) can be rewritten as

f(v) =
(vTMT )(Mv)

vTv
(31)

=
vT (MTM)v

vTv
(32)

=
vTKv

vTv
(33)

where K is equal to MTM . From [15] it is known, that the expression f(v) =
vTKv

vTv
is

also called Rayleigh quotient, which is equal to λi, if the equation Kv = λiv holds true.
That means, that f(v) approaches the eigenvalue of the matrix K. If K is divided by
N , the number of input points, it is equivalent to the covariance matrix of the point
set. Once this is known, the normal vector of the plane, which minimizes the function,
can be obtained from the eigenvector, which corresponds to the smallest eigenvalue of
K. To sum up, the eigenvector v contains the searched parameters A,B,C. From (26),
eventually D can be computed. The resulting plane consists therefore of

A = vλmin
(0) (34)

B = vλmin
(1) (35)

C = vλmin
(2) (36)

D = −(Ax0 +By0 + Cz0) (37)

where vλmin
refers to the eigenvector with the smallest eigenvalue. Once the plane

parameters are calculated, the plane and all the features can be projected onto the x-y
plane. Therefore, the task is to find a transformation matrix which accomplishes this
projection. This can be done in different ways.
The normal vector of the plane is already given by its parameters A,B and C. What
basically has to be done is to align this vector to the z-axis. Then the plane has to be
translated, so that the origin of the vector coexists with the origin of the coordinate
frame. In the implementation, this is done in the following way. First, the angle α
between the z-axis and the vector prjected into the z-y plane is calculated. Second,
between the z-axis and the projected vector in the z-x plane an angle β is calculated.
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Finally, the rotation matrix is build from a rotation about the z-axis with angle α and
another one about the x-axis with angle β. This matrix, which rotates the normal
to be aligned with the z-axis, is now calculated by multiplying the rotation around z
onto the rotation around x. This can be visualized as first rotating the normal onto
the z-y plane by rotating it about the z-axis. Once it is located in the z-y plane, a
rotation about the x-axis will be sufficient to align the vector with the z-axis. After
this is accomplished, all features are multiplied by this rotation matrix. The result is
a planar distribution of features parallel to the x-y-plane with a specific offset. This
offset is nearly similiar for all features. Therefore, the z-value of the first features is
used, to translate the set of features onto the x-y-plane.
With all the features lying on a planar surface, a two dimensional circle fitting process
can eventually be realized. Using a least square circle fit algorithm [23], the radius
rc and center points cx and cy can be estimated. Given those three parameters, the
trajectory of each feature can be projected onto the unit circle in the x-y plane. The
new data points are given by

xpi =
xi − cx
rc

(38)

ypi =
yi − cy
rc

(39)

To estimate a score, of how good the data is fitted by this unit circle, the distance
of each data point to the origin is calculated. This is done by the euclidean distance

di =
√

(ypi )
2 + (xpi )

2 (40)

For a perfect circle fit, all the di values should be one. But because of noise, this is
not true, even for a perfect revolute motion. Therefore, a confidence interval with a
parameter ci is introduced. If the distance of the point di is located in the interval
[1.0 − ci, 1.0 + ci], it is declared as a good circle fit. In experiments, this value was
chosen to be ci = 0.03. A score for each trajectory is obtained by counting the number
of points fin, which are located inside this interval. This value is divided by all points
on the trajectory fall to obtain the score

pcirclefit =
fin
fall

(41)

Examples of fits to a revolute motion can be seen in figure 7(a) and as a comparison
for a disconnected motion in figure 7(c). Note that the difference between disconnected
and revolute can be smaller as in the examples, especially in the case, where only a
small amount of data is collected. But this is exactly what is desired: if not enough
evidence is avaiable, it is a better choice to declare a disconnected motion as revolute,
instead the other way around.
This approach has a weakness. Consider for example a straight line segment. With

the current fitting process, this can be modeled by a very huge circle. As an example,
consider figure 7(b), where a huge circle fits a straight line segment very well. Therefore,
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(a) (b) (c)

Figure 7: Circle fitting to three different motions. All the trajectories are projected
onto the unit circle. Each red dot represents a feature at a specific instance in time.
The images are caused by (a) a revolute motion, (b) a prismatic motion, where a huge
circle is fitted to a straight line segment and (c) a disconnected motion.

the knowledge about the length of the motion with respect to the circle, provides
essential informations about it. As a measurement of length with respect to the circle,
the angle of the motion on the unit circle is calculated. This is done in the following
way. First, the angle between each point of the trajectory and the x-axis is calculated.
This angle is discretized to represent an integer in a 360 degree list. If for example a
value of 271.38 degree is obtained, the entry of 271 is increased. If enough points are
given, the list should consist of two areas. One with zeros only, because no point is
located at this angle position. The other one, the area, where the points are centered.
The occupied angle can afterwards be calculated by computing the greatest area, where
only zeros are present. This value is subtracted from 360 to form the occupied angle.
Each trajectory will therefore have a occupied angle αi. Again, the Q function (see
(18)) is used to assign a score.

poccupiedangle = 1.0−Q(mean(αMi=1), µ = 20.0, λ = 0.5) (42)

Where mean calculates the arithmetic mean value of all the observed αi values for M
trajectories. The values µ = 20.0 and λ = 0.5 are chosen as part of the expert designed
joint types.
So far, only a confidence value, representing the goodness of fit was calculated. But
one also wants to know the axis of rotation for the two bodies. As a byproduct of the
circle fit, the center points cxi and cyi are known for each trajectory. If a revolute joint
is present, there is a line, which can fit the center points.
This line is obtained by computing the Principle Component Analysis (PCA) for the
shifted center points. A good introduction into PCA is provided by [19]. Here, the
PCA will be used, to rotate the original coordinate frame in such way, that the distance
of all points with respect to the x-axis is minimized. To shift the points, the geometric
mass of the set is computed. This is given by the mean value of the data set. Given this
value, all points are shifted in a way that the mean equals the origin. After computing
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the PCA, the obtained x-axis points into the same direction as the axis of rotation3.
This is used to define the well known parametric form of a line l = ~p+ λ~d, where ~p is
the position vector and ~d the direction vector. ~d is given by the x-axis of the PCA and
~p by the translation vector between the mean of the data points and the origin. While
it is possible to use the variance of the points with respect to the x-axis, in this case,
a cylinder around the line is used to define the goodness of the line fit. As in the case
of the prismatic motion, a cylinder is fitted around the line. The number of points in
this cylinder fincyl divided by all points fall leads to the score for the line fit of the axis
of rotation.

paxisfit =
fincyl
fall

(43)

Once this is obtained, the axis of rotation is known and three scores are calculated
to define the confidence score that the revolute models fits the data. The overall
confidence can afterwards be calculated by

Prevolutemotion = Pcircfit · Poccupiedangle · Paxisfit (44)

One final remark considering the revolute fit is about the computation of the PCA.
This algorithm always returns a solution, independent of the distribution of the center
points. One problem, which can arise in the case of a planar object is a point dis-
tribution of the center points. Consider a turntable, where all the center points are
concentrated in the middle of the plate. In this case, there are an infinite number of
lines, which would make perfect sense from the PCA point of view. Therefore, if there
is one plane, which can fit all trajectories, the PCA is not the best choice. The normal
to the plane, located at the center point would be the best approximation of the axis
of rotation. Nevertheless, in the current implementation this is still neglected, but is
obvious an important feature for future improvements.

5.4 Confidence scores

The confidence scores for each joint are computed by taking into account the specific
values from the two model fits. Additionally, another score, representing a rigid motion,
is calculated. Given the motions of the initial bodies and their relative motion, the
travelled distance for each one of them is calculated. This one is simply given by the
sum about the euclidean distances between all time frames. If there are two bodies A
and B, the three scores are given by distA, distB, distR, where R denotes the distance
of the relative motion. In order to calculate the confidence score, first following fraction
is calculated:

f =
distR

min(distA, distB)
(45)

It states if f � 1, the two bodies are not rigidly connected. On the other side, if
the fraction is small f � 1, it is likely, that both bodies belong together, or not
enough evidence is present to declare another type of joint. To describe this behaviour,

3This is only true, if the points a really representing a line. This issue will be discussed at the end
of this section.
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a modified gaussian is used. It should contain the properties, that for f ' 0, the
confidence value is one. For f � 1, the confidence value converges to zero. With a

standard deviation of σ =
1√
2π

, a mean value of µ = 0 and an additional parameter

λ, which defines the shape, following function can be obtained.

prigidmotion =
1√
2πσ

exp

(
−λ · f 2

2 · σ2

)
(46)

= exp
(
−λ · f 2π

)
(47)

where f is the fraction from (45). In figure 8 this function is plotted for fractions
in the interval [0, 1] and different values of λ. The choice of λ in (47) depends on
how conservative one will be about motions. If λ gets bigger than one, only motions,
where almost no relative motion was observed are declared as rigid. On the other
side, for smaller λ values, even big relative motions are declared as rigid. To achieve a
reasonable tradeoff, λ is choosen to be 3. This is the representation of the green line
in figure 8.
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Figure 8: Function used to represent the confidence state of a rigid motion. If the
fraction is small, it is likely that the bodies are rigidly connected. When a motion is
observed, the fraction grows larger and the confidence will eventually converge to zero.
The influence of the parameter λ can be seen for λ = 1 (red), λ = 3 (green) and λ = 5
(blue).

Once the last value of the confidence state of a rigid motion is obtained, the overall
confidence scores can be computed. They represent the final state of the algorithm.
First, the confidence score of a rigid connection can directly be obtained from the one
of the rigid motion. The model fit values are not important any more, because no
motion is present. This is why, the rigid confidence score can be written as

prigid = prigidmotion (48)
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Second, the prismatic confidence score is computed as a simple if-like statement. If
no rigid motion is present and the prismatic motion score is high, also the prismatic
score should be high. From this consideration it follows, that one can compute the
confidence score as

pprismatic = (1− prigid)pprismaticmotion (49)

The next joint type parameter also depends on the other two previous calculated values.
A revolute joint is likely present, if the rigid and the prismatic scores are low.

prevolute = (1− prigid)(1− pprismaticmotion)prevolutemotion (50)

If none of the confidence values got a high score, the joint type is either a higher
dimensional one or completely disconnected (six degrees of freedom to describe the
motion). At the moment, no other joint type can be obtained. This is why, every other
motion is declared as disconnected. This can be written as a score in following manner:

pdisconnected = (1− prigid)(1− pprismaticmotion)(1− prevolutemotion) (51)

Those four parameters represent the final confidence state of the algorithm. The de-
tected joint type is choosen as the one, which contains the highest score.
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5.5 The scaling problem

A problem which arises, if all the features are obtained by a monocular camera is
the scaling problem. Without depth information, the same image can for example be
caused by a huge object far away or by a very small object, near to the camera plane.
Consider the moving of one object from a time frame t0 to another one t1 (figure 9).
The distance between the two points A and B in time frame t0 and between A′ and B′

in time frame t1 remains constant. For an observer, tracking those two points, there
would be an additional translational component visible. This is why the scaling has
to be considered, if one seeks to determine the relationship between those two points.
Even if this sounds rather theoretical, it occurs already in the situation, where two
drawers are pulled from a drawers cabinet. Take a look at figure 10, which represent
the relative motion of one of the drawers at different scales. In red, the trajectory of
the relative motion of one single feature at the correct scale (0.96) can be seen. As
one would expect, if the scale differs a translational component is added to the relative
motion. Note, that a special case occurs when depth information is known. The scale
is then already known to be one. That means, no one of two bodies has to be scaled,
to find the truth relationship. Any 3d information is already scaled in the right way.
The scaling problem is visible, if a body moves without rotation into a certain direction.
If another body moves exactly into the same direction, but not with the same distance,
there could be two reasons for this behaviour. One is, that there is a prismatic joint
between them which causes the additional translational component. The other reason
would be, that this component is caused by scale ambiguity. To understand this,
consider again figure 9. The green line describes a transformation Tg and is introduced
by scale. Therefore, it can be computed from the transformation Tr by multiplying it
with a scaling factor k. The resulting equation gets

Tg = k · Tr (52)

k = T Tr · Tg (53)

Given a longer sequence of different motions, it becomes highly unlikely, that this
additional translational component is caused by a prismatic motion. It would mean,
that the motion is always observed in the camera plane. But in this case it is better
to be conservative. If no direct evidence for a prismatic joint is present, stay with the
assumption, that there is no prismatic motion.
Instead of calculating the transformation, one of the two bodies could be scaled. If the
scaling factor k is known, multiplying each feature on a body, would reveal the truth
relationship between two bodies. But unfortunately, this scaling factor is not known a
priori.
To infer the scale, different possible k’s are tried. For each one of them, the score
for a rigid, prismatic or revolute connection is tested. In theory, only for the right
scale, there should be a high score for the right relationship. If the scaling factor is
increased or decreased from there on, the additional translational component grows
larger. The correlation between scale and scores is not linear, but almost a monotonic
increasing function. Therefore it is possible to search for the right scale by means of an
optimization method. While the field of mathematical optimization is huge, especially
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Camera Plane

B B'

A A'

t0 t1

Figure 9: An object is moving from time
t0 to t1. While the actual distance between
two points A and B on the object stays con-
stant, the observed motion differs. The ob-
server could conclude from this observation,
that there is a translational component be-
tween both of them.

for non linear optimizations, in [17] different basic algorithms can be found, which are
a good fit for this problem. In the experiments this whole approach was simplified by
testing all scales in the interval [0.5, 1.5] with a step size of ks = 0.01. At each step,
the scores for each relationship were calculated. The best scaling factors are usually
centered around 1.0. For example, in the laptop experiment, the keyboard has to be
scaled by k = 0.94 to obtain the revolute motion with respect to its screen. This is
shown in figure 11, where the trajectory of one feature at different scales is plotted. As
can be seen, only the right scale shows the revolute motion. Another example is the
drawers experiment, where a scaling factor of k = 0.96 is used for one of the drawers.
Figure 10 shows again the motion of one single feature from the relative motion. The
results of both experiments can be found in the appendix. Isn practical settings like
this, the scale can be constrained in an interval around the special case of k = 1.0.
This approach lacks the elegance of the optimization method, but could be very useful
together with the computational power of mass parallelization on a graphical processor
unit (GPU).
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Figure 10: The relative motion between two drawers (just one feature). While the
prismatic motion is present as a straight line at the right scale (red), an additional
translational component is added for two wrong scale factors (blue and green). Adapted
from [10].

Figure 11: The relative motion between a laptop screen and its keyboard (just one
feature). At the true scale of 0.94, the revolute motion can easily be seen (red). At
other scales, an additional translational component distorts the result (blue and green).
Adapted from [10].
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6 Experimental Results

6.1 Real World Experiments

To verify the robustness and correctness of the algorithm one cannot rely on simulated
data only. First of all, the degree of noise which is exerted by the input data is not
known apriori. Secondly, simulated data always bears the possibility of cheating in a
way which is not perceived by the experimenter. Therefore, real world experiments are
a great opportunity to test the strength and flexibility of the algorithm.
Altogether ten experiments were conducted. Each experiment was carried out in the
following way. A camera observed the scene, while an object is pushed by a robotic
manipulator. From the video, features are tracked over time. Given the motion of
the features, a clustering is being produced, depending on different predictors, like
the distance or features which moved together (see [10] for further predictors to cluster
features). The motion also gives information about the depth value. If the distance be-
tween features on one cluster changes, the depth of this cluster has most likely changed.
This is one way of providing the input for the developed algorithm, but not exclusively
the only one. If the input was generated by a motion capturing device, as discussed
in the related work section, the output would become clearer. The confidence values,
which are shown for each experiment, would be near one.

Once the clustering and 3d reconstruction is done, the 3d features are used as
input for the joint detection algorithm. As it will be seen, this data also shows some
surprising side effects, which wouldn’t be visible if one had relied on simulated data
only. The experiments contained doors, tricycles, drawers, moving tables, a laptop,
elevator doors, a fridge and a toy train, as can be seen in figure 12.

In each experiment, the feature trajectories and the number of clusters were already
provided. For each pair of clusters in the scene, the joint detection algorithm was
carried out as described in the last sections. Figure 13 shows the relative motion
between two different clusters of a tricycle (wheel and top part). A background cluster
was added to show the relationship of each cluster compared to the static environment
(not shown in the figure).
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(a) (b) (c)

(d)

(e) (f)

(g) (h)

(i) (j)

Figure 12: All experimental results: The opening doors of an elevator (a), a diaper box
moving on a table (b), an opening door (c), a moving drawers cabinet (d), a fridge door
(f), a laptop with moving screen (g), a sliding door of a book shelf (h), a rolling table
(i), a pushed tricyle (j) and a pushed train toy (e). Each one of those experiments can
be seen in more detail in the appendix section. Adapted from [10].
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(a) (b)

(c) (d) (e)

Figure 13: Tricycle Experiment with features on the wheel and top of the bike (a).
The tracked 3d data is shown in (b). Given those trajectories, the relative motions are
shown in (c) between background and the top part of the tricycle, (d) background and
wheel and (e) wheel and top part.

Once the relative motion is revealed, a cylinder and a circle fitting is conducted.
Figure 14 shows each relative motion in the train experiment and their cylinder and
circle fit results.
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Figure 14: Row (1): Relative motion of the left train compared to the background
(left), between background and right train (middle) and between left train and right
train (right). Row (2): Cylinder fit to each of the motions. Row (3): Cylinder fit to
each motion.

Results for Train Experiment

Parts
Confidence scores for Relationships

Rigid Prismatic Revolute Disc
Background-Left Train 0.000 0.000 0.025 0.975

Background-Right Train 0.000 0.000 0.250 0.750
Left Train-Right Train 0.000 0.004 0.996 0.000

Table 1: Results for Train experiment

The complete result of the algorithm on the train data set is shown in table 1. It
can be seen, that both trains are seen as disconnected with respect to the background.
Between them, a revolute joint is detected with a confidence score of 0.996. To verify
the correctness of this experiment, the resulting axis of the revolute joint is plotted
onto the dataset. In figure 15 the axis is shown throughout the motion. Note, that all
images in this figure show 3d points over time except the last one. Here the points are
projected back onto the camera plane.

36



Each of the other experiments was conducted in the same manner. A complete overview
of them is shown in figure 12, where the resulting axis is plotted in the last frame of
the motion. For a more detailed treatise of the experiments, the reader is referred
to Appendix A-J. All together 31 relationships were analyzed. The correct type of
joint was found in 30 cases. The only error occurred in the fridge experiment, where a
revolute joint between the door of a fridge and the environment should be found, but
was declared disconnected. This case will be discussed in section 6.2.
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Figure 15: After calculating the axis of rotation, it is overlayed to each frame of the
original input data. For frames (a)1, (b)100, (c) 200 and (d) 350 you can see the results.
Frame (e) 437 also shows the score of each relationship in the data.
The process of drawing the axis is automated, because the relative motion algorithm
already provides the necessary transformations. (f) shows the last frame of the original
video, with the features and the axis overlayed. Note that images (a)-(e) show the
points after 3d reconstruction, while (f) is a 2d projection of the points back to the
camera plane.
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Standard Deviation Mean Prismatic Probability (N = 20)
θ = 10 0.992
θ = 25 0.961
θ = 50 0.769
θ = 100 0.236

Table 2: Performance of prismatic detection with added gaussian noise. At each stan-
dard deviation, N = 20 experiments were conducted.

6.2 Limitations

To test the limitations of this approach, a gaussian noise is added to a simulated
prismatic motion. This is done, by calculating the overall motion, that is the distance
between the first and the last frame of the first feature. Each feature in each time frame
gets an additional sample from a gaussian distribution with variance θ and mean zero.
To scale this distribution to be consistent with the motion, the sample is divided by
the overall motion. To verify the correctness, for a set of variances (10,25,50,100) a
constant number of 20 runs is performed. The results are the mean probability of a
prismatic motion for each variance. The outcome is listed in table 2. As one would
expect, the probability gets worse, if the variance of the gaussian noise is increased.
What does this mean practical for the use of the algorithm? This question can answered
best by looking at Appendix 7. This shows the fridge experiment, where its door is
opened. Because the input data is very noisy, the right type of joint for one cluster
is not correctly detected. The reason can be found in the motion of this cluster.
Rather than exerting the circular motion, which is searched for, the motion is elliptical.
The algorithm behaves as intended: Because no circular motion is found, the joint is
declared as disconnected. If one wants to include joints, which are characterized by
elliptical motions, the circle fit can be augmented by an elliptical fit. Again, the paper
from Taubin [23] provides the essentials for the computation of this type of fit.
To sum up, the algorithm performs as expected. Model fitting techniques always assert,
that one knows what has to be found in the data. Therefore, it is important to specify
the constraints of a model in order to achieve the right results.
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7 Conclusion

This work presented an approach to identify joint types in 3d point clouds. As dis-
cussed in section 3.3, the input cloud is already presegmented and represents an moving
articulated object.
To address this problem, the relationship between each pair of clusters in the scene is
calculated separately. The proposed algorithm then starts by extracting the relative
motion between the different input clusters. Once the individual motion is known, the
right joint type is determined by means of different fitting methods. At the end, the
position and orientation of a joint is returned together with a confidence score. The
knowledge about the joint types can be used further to build a simplified model of a
kinematic structure.
As shown in the experimental results, the proposed joint detection algorithm can be
used with real world objects. It is robust against noise up to a limit, which was shown
in section 6.2. Nevertheless, for 30 out of 31 relationships that were analyzed in the
experiments, the algorithm could detect the right type of joint. Still, the proposed
approach cannot be seen as a general solution to the problem of analyzing 3d point
clouds of rigid objects.
First of all, only prismatic and revolute joints were analyzed. More complex forms of
objects cannot be identified with the current approach. Therefore, the work could be
extended to handle different types of joints with more than one degree of freedom. This
includes for example the analyzis of lower-pair joints like spherical, planar, cylindrical
or screw ones. If all lower level joint pairs can reliably be found, almost all articulated
objects could be analyzed.
The second shortcome of the algorithm is the growing computational complexity of the
solution. Given n clusters in the point cloud,

(
n
2

)
relationships have to be analyzed,

which causes an additional complexity of O(n2). To handle this complexity, a paral-
lelization of the code is another starting point for further improvements.
Finally, a further important topic for future research is the automatic acquisiton of
dynamical properties. System identification tasks would greatly benefit from an ex-
tracted kinematic and dynamical model of a manipulator.
To sum up, acquiring object structures without previous knowledge is still a hard task
to master. As shown, this thesis contributes to the effort of solving this problem by
proposing an approach to analyze presegmented 3d point clouds. With respect to the
grand scheme, this work is another small building block in order to build robots, which
can improve and make our lives easier. The sheer complexity of ordinary tasks still
bears ambitious goals for researchers worldwide. If the level of abstractness is con-
tinually increased, it could eventually lead to machines, which can do our everyday
work.
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Appendix A: Train Toy

(a) Train Cluster

Results for Train Toy Experiment

Parts
Confidence scores

Rigid Prismatic Revolute Disc
Background-Left Train 0.000 0.000 0.025 0.975

Background-Right Train 0.000 0.000 0.250 0.750
Left Train-Right Train 0.000 0.004 0.996 0.000

(b) Results

Figure 16: Experimental Results for the Train Toy experiment. As discussed in the
experimental section 6, a train toy is pushed by the robot arm over the table. The
relationship between the left train (blue) and the right one (red) is correctly detected
as revolute. The axis of rotation resembles what would be expected from the analysis.
Adapted from [10].
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Appendix B: Drawers

(a) Drawers Cluster

Results for Drawers Experiment

Parts
Confidence scores

Rigid Prismatic Revolute Disc
Frame-Top Drawer 0.000 0.996 0.002 0.002

Frame-Bottom Drawer 0.000 0.975 0.014 0.011
Top Drawer-Bottom Drawer 0.000 0.969 0.022 0.009

(b) Results

Figure 17: Experimental Results for the drawers experiment. Three clusters are used
to determine the relationship. The top of the drawers cabinet (yellow), the top drawer
(blue) and the bottom drawer (red). Overlayed, the three axes can be seen. Because
it is hard to spot them in the image on the left, the features are plotted in 3d space
on the right. The point of view is approximately 45 degrees rotated in comparison
to the camera plane. The threedimensional structure of the axes can easier be seen.
Note, that both axes point slightly downwards. This is exactly what can be seen in
the image on the left. From the viewpoint of the camera, it seems, that especially the
bottom drawer is pulled downwards. The position and orientation represents what is
seen with respect to the camera plane. Adapted from [10].
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Appendix C: Tricyle

(a) Tricyle Cluster

Results for Tricycle Experiment

Parts
Confidence scores

Rigid Prismatic Revolute Disc
Background-Top 0.000 0.000 0.125 0.875

Background-Wheel 0.000 0.000 0.008 0.992
Top-Wheel 0.001 0.000 0.999 0.000

(b) Results

Figure 18: Experimental Results for the tricyle experiment. A cluster on top of a
tricycle (red) and one on the wheel (blue) were analyzed with respect to each other
and the background (a non moving static cluster which is not shown here). The table
indicates the confidence scores of a specific joint between each pair of clusters. The
resulting axis from the revolute case between wheel and top was plotted onto the image
(pink). Adapted from [10].
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Appendix D: Table

(a) Table Cluster

Results for Table Experiment

Parts
Confidence scores

Rigid Prismatic Revolute Disc
Background-Top Table 0.000 0.917 0.000 0.083

Background-Bottom Table 0.000 0.995 0.000 0.005
Top Table-Bottom Table 0.690 0.013 0.135 0.162

(b) Results

Figure 19: Experimental Results for the Table experiment. The table is moved from
the left to the right, so that it looks like a prismatic motion. Two cluster on the moving
table (red and blue) are compared to the background (not visible) and to each other.
The algorithms finds the right results: The two clusters on the table are declared as
rigidly connected. Also between each table cluster and the background two prismatic
joints are found. Adapted from [10].
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Appendix E: Diaper Box

(a) Diaper Box Cluster

Results for Diaper Box Experiment

Parts
Confidence scores

Rigid Prismatic Revolute Disc
Background-Side 0.000 0.000 0.205 0.794
Background-Top 0.000 0.000 0.070 0.930

Side-Top 0.000 0.000 0.968 0.032

(b) Results

Figure 20: Experimental Results for the diaper box experiment. A background cluster
on the photo cube (black), features on the side (blue) and the top (red) of the box
can be seen. From the analysis, a revolute joint between the Side and the Top was
detected. The position and orientation of the joint is given back from the algorithm.
As also seen in the Laptop Experiment, features near to the axis of rotation do not
exert much motion. Therefore they influence the position and orientation of the joint.
Adapted from [10].
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Appendix F: Elevator

(a) Elevator Cluster

Results for Elevator Experiment

Parts
Confidence scores

Rigid Prismatic Revolute Disc
Left Door-Right Door 0.000 0.995 0.005 0.001
Left Door-Background 0.000 0.994 0.000 0.006

Background-Right Door 0.000 0.955 0.000 0.045

(b) Results

Figure 21: Experimental Results for the Elevator experiment. In the video, the doors
are opening after the robot pushed the button on the door. Shown in the first figure is
the last frame of the motion, with one static background cluster (red) and two clusters,
one on each door (yellow and blue). The resulting axes between each cluster is plotted
into the figure (violet). Note that the two axes between red-blue and yellow-blue are
overlapping. Adapted from [10].
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Appendix G: Fridge

(a) Fridge Cluster

Results for Fridge Experiment

Parts
Confidence scores

Rigid Prismatic Revolute Disc
Background-Door1 0.000 0.000 0.278 0.722
Background-Door2 0.000 0.000 0.893 0.107

Door1-Door2 0.000 0.919 0.081 0.000

(b) Results

Figure 22: Experimental Results for the fridge experiment. Clusters on the background
(black) and two on the door of the fridge (blue,red) can be seen. The algorithm fails
to detect the right joint type between the red cluster and the background. As can
be seen on the unit circle projection (see section 5.3 for details), the motion is not
circular, but rather elliptical. Even if this is wrong, it shows that the algorithms works
as intended. Only real circular motions are declared as revolute. While anything else
will be discarded. The other joint is found by the algorithm, even if the position is not
correct. Both cases indicate that the input data is very noisy and does not contain the
exact 3d position of the features. Adapted from [10].
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Appendix H: Sliding Door

(a) Sliding Door Cluster

Results for Sliding Door Experiment

Parts
Confidence scores

Rigid Prismatic Revolute Disc
Top Part-Door 0.000 0.997 0.000 0.003

Top Part-Left Part 1.000 0.000 0.000 0.000
Door-Left Part 0.000 0.997 0.000 0.003

(b) Results

Figure 23: Experimental Results for the Sliding Door experiment. The door of the
cabinet is opened during the interaction. One cluster on it (blue) is compared to the
photo cube on the top (red) and one cluster on the other door (black). A rigid connec-
tion is detected between the two non moving clusters. The moving one is declared as
prismatic to each of the static clusters. Both translation axes are shown in the figure.
As one would expect, both are overlapping. Adapted from [10].
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Appendix I: Laptop

(a) Laptop Cluster

Results for Laptop Experiment

Parts
Confidence scores

Rigid Prismatic Revolute Disc
Power Supply-Keyboard 0.000 0.000 0.703 0.297

Power Supply-Screen 0.000 0.000 0.204 0.796
Keyboard-Screen 0.000 0.000 0.946 0.054

(b) Results

Figure 24: Experimental Results for the Laptop experiment. There are three clusters:
the screen (red), the keyboard (blue) and a static background cluster, represented
by features on the power supply (black). The resulting axes between keyboard and
screen is shown in pink. Note that there are many features on the bottom part of
the screen, which do not exert much motion. This is why the resulting axis got an
orientation offset. Another axis between keyboard and power supply was detected by
the algorithm. This is no flaw, but the laptop was moved in a circular motion over the
table. Therefore, the algorithm believes that there is a revolute joint present. Further
movement is obviously required to let the algorithm determine the true joint type
between keyboard and power supply. To avoid confusion, this axis was not plotted into
the image. Adapted from [10].
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Appendix J: Door

(a) Door Cluster

Results for Door Experiment

Parts
Confidence scores

Rigid Prismatic Revolute Disc
Poster-Door 0.000 0.000 1.000 0.000

(b) Results

Figure 25: Experimental Results for the Door experiment. One cluster on a door (red)
and one at the wall (blue) are compared to each other. The resulting axis of rotation
has a small offset due to the noise of the motion. Adapted from [10].
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