
Identifying near-native

multi-fragment sequence

alignments in protein structure

prediction

ROBOTICS AND BIOLOGY
LABORATORY

ROBOTICS AND BIOLOGY
LABORATORY

Fabian Salomon

Robotics and Biology Laboratory

Technische Universität Berlin

A thesis submitted for the degree of

Diplom-Ingenieur für technische Informatik

2012/05

mailto:tub@salo.mailrange.com
http://www.robotics.tu-berlin.de/
http://www.tu-berlin.de/

ii

Die selbstständige und eigenhändige Ausfertigung versichert an Eides statt

Berlin, den 24.05.2012

1. Reviewer: Prof. Dr. Oliver Brock

2. Reviewer: Prof. Dr. Manfred Opper

iii

Abstract

The introduction of protein fragment libraries in the mid-1990s meant a

huge leap forward for protein structure prediction. With them, one was able

to combine the best matching parts from a “scrapyard” of protein parts

instead of focusing on just one template protein.

Up until today, commonly used fragment libraries only contain relatively

small, independent fragments. Consequently, these libraries can only model

the (sequentially) local context, but can’t model structurally conserved

regions that are sequentially discontiguous. We therefore developed a library

of so called ”building blocks”. A building block is a set of structurally

contiguous, sequentially discontiguous fragments found in two or more

proteins.

Existing methods of scoring a sequence alignment can only score each

fragment independently or as a contiguous sequence (including the inbetween

parts). They are therefore not optimally suited for scoring building block

alignments. This thesis examines how the knowledge about the dependency

between building block fragments can be exploited for a more specific scoring.

In order to achieve this, a number of different features is calculated for each

building block that aligns sequentially to a certain target. The goal is to be

able to combine these features in a way that one can distinguish alignments

that are similar to the native structure of the target from those which are

not.

Judging from the performance on CASP9 targets, the proposed setup appears

to work well for template based modeling targets. Using the setup, I was

able to cover 61 targets (15 more than the control) with 100 % near-native

building block matches. Both the proposed setup and the control achieved

roughly the same number of residues that were covered with near-native

matches.

Abstract

Normalerweise enthalten Protein-Fragment Bibliotheken relativ kleine, un-

abhängige Fragmente, die zusammengesetzt werden können um die Vorher-

sage einer Proteinstruktur in die richtige Richtung zu leiten. Wir haben

eine Bibliothek von sogenannten “Building Blocks” entwickelt. Ein Build-

ing Block ist eine Menge von strukturell zusammenhängenden, sequentiell

unzusammenhängenden Fragmenten. Bestehende Methoden um ein Sequenz-

Alignment zu bewerten können Fragmente nur unabhängig voneinander

oder als zusammenhängende Sequenz (inklusive der dazwischenliegenden

Abschnitte) bewerten. Diese Diplomarbeit untersucht, wie das Wissen über

die Abhängigkeiten zwischen Building Block Fragmenten genutzt werden

kann, um eine spezifischere Bewertung zu erhalten. Dazu wird eine Anzahl

unterschiedlichster Features für jeden Building Block, der sequentiell an

einem bestimmten Zielprotein aligned, berechnet. Das Ziel ist es, diese

Features so zu kombinieren, dass man Alignments, die ähnlich der nativen

Stuktur eines Zielproteins sind, erkennen kann. Ausgehend von den Ergeb-

nissen auf CASP9-Zielproteinen scheint der vorgeschlagene Ansatz gut für

die Vorsage von Proteinen aus der TBM-Kategorie geeignet.

vi

Contents

List of Figures iii

Glossary v

1 Introduction 1

1.1 Protein structure prediction . 1

1.2 Building block definition . 3

1.3 Building blocks rationale . 4

1.4 Project context . 6

1.5 Goals . 7

1.6 Related work . 9

2 A database of building blocks 15

2.1 Storage format . 15

2.2 Data source and quality . 16

2.3 Eliminating redundancy . 17

3 Excursus: Sequential clustering 21

3.1 Connected component analysis . 22

3.2 Conventional clustering algorithms . 22

3.3 Dense subgraph mining . 22

3.4 Spectral clustering . 24

3.5 Graph preprocessing . 25

4 Building block alignments 27

4.1 Nomenclature . 27

4.1.1 Formal definitions . 29

i

CONTENTS

4.2 What makes a good feature? . 30

4.3 Fragment co-evolution . 33

4.4 Statistical significance of RMSD . 35

5 Features 39

5.1 Sequence similarity based features . 39

5.2 Sequence profile alignment feature . 41

5.3 Miscellaneous features . 43

5.4 Witness density based features . 49

5.5 Sequence separation based features . 49

5.6 Hydrophobicity based features . 52

5.7 SCOP based features . 56

5.8 Spatial features . 57

5.9 Statistical coupling based features . 60

5.10 Structural compatibility features . 63

5.11 Sequence clustering based features . 67

6 Classification 71

6.1 Training set . 71

6.1.1 Leave-one(-target)-out validation 72

6.1.2 K-fold cross-validation . 72

6.2 Feature selection . 73

6.3 Choosing a classifier . 74

7 Results 79

7.1 Classification performance . 79

7.2 Best performing features . 82

7.3 Conclusions . 85

7.4 Future work . 87

References 89

ii

List of Figures

1.1 Residues 187–251 of 3be7A (rendered with PyMOL) 4

1.2 Residues 296–371 of 1vemA (rendered with PyMOL) 4

1.3 Feature seq score min . 9

2.1 Illustration of a building block with three instances 18

2.2 Entity relationship diagram of the building block database 19

4.1 Diagram showing the diversity of building block matches 28

4.2 Histogram of fragments per building block 32

4.3 Histogram of fragments per building block match 33

4.4 Definition of various events (and their dependencies) that can occur for

a building block/target combination . 34

4.5 Histogram of RMSDs (compared to native) of orphan fragments vs.

non-orphan fragments. 35

4.6 RMSD needed for a statistical significance of 99.9% 37

5.1 Feature seq probab min . 41

5.2 Feature seq probab max . 41

5.3 Feature seq is5030 . 42

5.4 Feature seq evalues min . 42

5.5 Feature seq evalues max . 42

5.6 Feature profile alignment score . 44

5.7 Illustration of reverse sequential order alignments 46

5.8 Feature length match ratio . 47

5.9 Feature no of witnesses . 47

5.10 Feature equivgroups pdbs . 47

iii

LIST OF FIGURES

5.11 Feature hbonds max . 48

5.12 Feature is largest local . 48

5.13 Feature frags reverse . 48

5.14 Feature witness same instance . 50

5.15 Feature witness exists combination . 50

5.16 Feature witness density . 50

5.17 Feature seq separation avg . 52

5.18 Feature seq separation diff . 53

5.19 Feature seq separation 12 align . 53

5.20 Feature seq separation 12 ratio align . 53

5.21 Example HydroMCalc plot at 100 ◦ . 54

5.22 Example HydroMCalc plot at 160 ◦ . 54

5.23 Feature alpha helix max . 56

5.24 Feature acc sum . 56

5.25 Feature num scop superfamilies . 58

5.26 Feature top scop superfamilies . 58

5.27 Feature distance min:avg . 61

5.28 Feature distance max:avg . 61

5.29 Feature sca msa size . 64

5.30 Feature sca over stddev1 . 64

5.31 Feature number of sca contacts5.5:avg 64

5.32 Feature struct compat rmsd . 66

5.33 Feature struct compat compatibility . 66

5.34 Feature bayesian2 numerator I14 . 69

5.35 Feature bayesian2 numerator T5 . 70

5.36 Feature bayesian2 I16 . 70

6.1 Classification accuracy across different RMSD thresholds 76

6.2 Classification sensitivity across different RMSD thresholds 77

6.3 Classification specificity across different RMSD thresholds 78

iv

Glossary

CASP “Critical Assessment of Techniques

for Protein Structure Prediction”:

Biannual competition/benchmark

starting in May 2012 for the 10th time

(CASP10). Data from the previous

run (CASP9) is used to benchmark

the features presented in chapter 5.

correct match a match that is superimposable

to the corresponding regions of the

target structure with an RMSD (or

statistical significance) below a cer-

tain threshold

FM “Free modeling”: Targets that do not

have a protein with detectable homol-

ogy have to be predicted “de novo”

and are therefore more challanging

than TBM targets.

match a sequential (building block) match

as found by our retrieval module; not

necessarily a “correct match”

PDB “Protein Data Bank”: A database

of experimentally determined protein

3D-structures. Freely accesible at

http://www.pdb.org/

PDBSS The subset of the PDB that we

used to generate the building block

database on. See section 2.2

RMSD “Root mean squared distance” calcu-

lated between the atoms of two struc-

tures given an optimal superimposi-

tion. Usually only calculated for the

backbone atoms. Specifically, in this

thesis, the RMSD is calculated be-

tween a building block match and the

corresponding residues of the target

protein; see section 4.4

SCOP “Structural Classification of Pro-

teins”: a humanly curated hierarchi-

cal classification of protein structural

domains. See also section 5.7

TBM “Template based modeling”: If the

PDB contains a homolog for a par-

ticular target, the homolog can be

used as a template. Such targets are

relatively easy to predict with high

accuracy.

v

GLOSSARY

vi

1

Introduction

1.1 Protein structure prediction

Anfinsen’s dogma [Anfinsen, 1973] states that generally the three-dimensional shape

of a protein in its native conformation is defined by its amino acid sequence. Once a

protein is synthesized (for example from DNA in a cell) it folds into this native state

which has the lowest kinetically accessible Gibbs free energy. Since the postulation

of this strong relationship between sequence and structure, it has been the dream of

researchers to be able to predict the atom positions of a protein’s native state without

knowing anything except its sequence. Protein structure prediction is nowadays one of

the most important topics in bioinformatics, largely due to the potential impact that a

“solution” to that problem would have on drug design and other biological use cases.

Unfortunately, while we have a good understanding of inter-atom forces, it is not

viable to search the lowest energy state by enumerating all possible atom configurations.

The number of possible conformations and thus computation time grows unimaginably

high even for simplified models and relatively small proteins; this problem is commonly

referred to as “Levinthal’s paradox”: even though a protein finds its energy minimum

within negligible time, all of the world’s computing power is not sufficient to replicate

this. In order to still be able to predict the native conformation of a protein, one

has to significantly reduce the search space. To achieve this, knowledge about the

problem domain has to be employed. In most cases, this means that researchers

use structural information that has been determined through experimental methods

like x-ray diffraction, nuclear magnetic resonance spectroscopy (NMR) and electron

1

1. INTRODUCTION

microscopy. This information is publicly available through the Protein Database (PDB).

Up until today, the problem of protein structure prediction has not been sufficiently

solved and it is questionable if it ever will be. However, methods have emerged that can

– in many cases – predict a structure that is reasonably close to the native structure.

Most of these methods are based on finding proteins with matching sequence and then

using their structural information as a starting point for searching a nearby local energy

minimum. The reasoning behind this is that similar amino acid sequences are probably

evolutionary related (homologous) and thus will probably result in similar 3-dimensional

arrangements. This is backed up by the finding that structure is more evolutionary

conserved than sequence, i.e. sequence mutations happen more often than structure

mutations and sequence mutations do not necessarily result in significant structural

changes [Chothia and Lesk, 1986]. One of the reasons for this is that a protein’s

function depends on its structural properties; therefore mutations that significantly

change a protein’s structure are – on average – less likely to be evolutionary successful.

Combinatorially, a protein of length n can have one of 20n different sequences; thus a

high sequence identity is a strong indication for evolutionary relatedness. This means

that a protein might have mutated over time and even though a couple of amino acids

might have been exchanged, inserted or deleted, the structure has remained relatively

unaffected.

For target sequences that have close homologs (“templates”) in the PDB, prediction

quality is usually quite high. In other situations, called “(template) free modeling” or

“de novo modeling” such close homologs do not exist; which makes good predictions

much more challenging. Recent advances in the field of de novo modeling are based

on the observation that proteins in the PDB can be assembled from a limited part list

taken from multiple proteins that are unrelated amongst each other [Kolodny et al.,

2002]. In comparison to homology modeling, fragment sizes are much smaller (typically

3 to 15 residues) and misleading information is much more common.

In the biannual CASP (Critical Assessment of Protein Structure Prediction) compe-

tition, research teams across the world are testing their prediction algorithms against

each other. During the competition, protein sequences whose experimentally determined

structure is soon to be published are broadcast to all contestants. Within limited time,

contestants have to return their best-bet structure prediction; making it impractical to

use a lot of human intervention during the process. The target structures are selected

2

1.2 Building block definition

to cover proteins where homology modeling can provide useful information, as well as

proteins where there are no close homologs available.

In the context of this thesis a new approach is developed to participate in the 10th

CASP competition starting in May 2012. The outline of this approach is to extract a

large number of “building blocks” from a set of known protein structures. For a query

protein with unknown structure, a couple of sequentially matching building blocks are

selected and used to constraint a energy minimization with a commonly used process

known as “Monte Carlo simulated annealing” [Kirkpatrick et al., 1983]. The following

sections describe the building blocks approach in more detail and specify the goals and

contribution of this thesis.

1.2 Building block definition

The protein building block definition as described here was originally formulated by

former research team member Nasir Mahmood. Syntactically, a building block instance

is a set of sequentially disjunct protein fragments that originate from the same protein

chain; it can be fully described by naming the PDB accession code, the chain ID and the

residue number ranges. On the semantic level, the primary condition is that there exists

another building block instance from a different protein whose backbone atoms can be

superimposed with an RMSD lower than a certain threshold (currently around 5 Å).

The fragments have to be spatially contiguous, i.e. there shall be atom-level contacts

between the fragments.

This semantic implies that a pair of building block instances always has the same

amount of fragments and the same number of residues per fragment, because only such

fragments can be superimposed with each other. The discovery of building blocks is

done with a structural aligner that is based on calculating the mutual distances between

CA atoms within each protein chain, resulting in a symmetric distance matrix. The

aligner then tries to find similar sub-matrices for each pair of proteins which act as seeds

for superimposition attempts. Our implementation is based the textual description in

Lessel and Schomburg [1994].

There are additional conditions, for example a pair of building blocks has to have

similar secondary structure and similar solvent accessibility values as calculated by

DSSP [Kabsch and Sander, 1983]. Other filters and post-processing steps are applied as

3

1. INTRODUCTION

well. As these are subject to frequent adjustments, their exact definitions are omitted

here. Their common purpose it to weed out “chance alignments” and generally gear the

selection to be in sync with the rationale described below.

An example of a three-fragment building block can be seen in fig. 1.1 and fig. 1.2.

Figure 1.1: Residues 187–251 of 3be7A

(rendered with PyMOL)

Figure 1.2: Residues 296–371 of 1vemA

(rendered with PyMOL)

1.3 Building blocks rationale

Statistics of the PDB1 show that even though the database is growing rapidly, the

growth of “unique folds” seems to go down. According to Kinch et al. [2011], the 2010

CASP run (CASP9) only contained 4 entirely new folds (out of ≈ 120 targets). Zhang

and Skolnick [2005] even go as far as to say that their “results are highly suggestive

that the protein-folding problem can in principle be solved based on the current PDB

library”. So, one could hypothesize that the data to solve protein structure prediction

is already there, it just has to be utilized properly.

To understand how the building block approach tries to unearth new potential,

one has to point out the differences to existing fragment libraries. Most of them –

see [Bujnicki, 2006] for a review of current fragment assembly methods and libraries –

contain only relatively small, independent fragments. So the only context they have

is from residues that are sequentially nearby (local context). Most protein folds are

packed; thus, amino acids from different regions of the sequence can end up quite near in

three-dimensional space. The atoms from such regions are close enough to significantly

influence each others’ force field. Such atoms are said to be “in contact”. The basic idea

of the building block approach is that these sequence-wise “long-range” or “non-local”

interactions not only have a significant influence on the structures of the individual

1http://www.rcsb.org/pdb/statistics/contentGrowthChart.do?content=fold-scop

4

1.3 Building blocks rationale

fragments; also, if two sequentially distant fragments and their non-local interactions

are structurally conserved, they restrict the overall topology of the protein. If one would

be able to retrieve such fragment pairs by sequence, one could use them to guide the

energy minimization towards the global minimum more effectively than single-fragment

approaches.

As mentioned before, protein structure is more conserved than sequence. It is

believed that this is due to the fact that a protein’s function, ligand binding abilities

etc. depend on the protein structure. A sequence mutation that preserves the protein’s

function is therefore more likely to survive natural selection than one that doesn’t.

Protein function is often achieved through complex motion; such motion might in

many cases be facilitated by contacts. This theory is most intuitively accessible for

so called allosteric proteins: these proteins have two distinct sites, an active and a

regulatory site. The binding of a ligand at the regulatory site changes the protein’s

behavior at the active site. Suel et al. [2002] stated that in these proteins, “a small

subset of residues forms physically connected networks that link distant functional sites

in the tertiary structure”. Those residues were found to be evolutionary conserved

across functionally related proteins and are therefore though to be responsible for

stabilizing or even facilitating the proteins’ function. Therefore we hypothesize that

substructures that fulfill the building block criteria are more evolutionary conserved

than other substructures. Based on this assumption, we hope that we can improve

existing protein structure prediction approaches by creating and using a library of

building blocks.

Other researchers are trying to model these interactions as well including Kifer

et al. [2011] who are acknowledging the role of non-local interactions in the process of

protein folding and are trying to model these by allowing relatively long, contiguous

fragments. Daniluk and Lesyng [2011] are building “local descriptors” that allow

sequence discontinuity “by identifying all residues in contact with [a] central residue”

and expanding from there. They say that this “reflects approximately the range of local,

most significant physico-chemical interactions between [a] central residue and other

amino-acids.”, thereby adding “a three-dimensional context to the local properties of

proteins”. Hvidsten et al. [2009] are even going as far as to say that the “lack of good

long-range distance constraints is the main challenge in template-free modeling” and

5

1. INTRODUCTION

local descriptors could play a significant role in upcoming protein structure prediction

methods.

1.4 Project context

In the context of this thesis there are three research team members working on the

building block database generation and utilization. There are also two other theses

focusing on different aspects of the project. Before I describe the contribution of this

thesis, I will describe the other works and their interaction in the CASP pipeline:

Retrieval After a new target sequence is received, matching building blocks have to

be retrieved from the database through a sequence alignment. This module is

developed by fellow student Stefan Dörr. The ground truth for his retrieval is the

subset of building blocks that match correctly on the target’s native structure

within a certain threshold. For testing purposes, one can use proteins with known

structure (for example from the last CASP run) and benchmark against their

ground truth. The goal is of course to retrieve most of the building blocks in the

ground truth without allowing too much noise.

Assembly The assembly modules predict the target’s structure using a (sub-)set of the

retrieved building block matches. Independent strategies are developed by fellow

student Mahmoud Mabrouk and by research team member Michael Schneider.

The basic concept is to turn the building block matches into constraints for the

energy minimization. One mayor challenge here is to adapt to different situations:

for some targets a huge number of building blocks can be retrieved, for some only

a few. Some of these are redundant, some are complementary and some are even

contradictory.

A constraint can be interpreted as a harmonic energy potential between two residues

added to the energy function. The rigidity/slope of this energy potential is configurable.

As by now we have very little experience using these constraints; in particular, it

is unclear what a reasonable number of constraints would be and how tolerant the

structure prediction is towards incorrect and/or mutually incompatible constraints. I

hypothesize that a low number of correct (i.e. native-like), mutually compatible, very

rigid constraints is to be preferred. This is because I suspect that many lax constraints

6

1.5 Goals

would just add noise to the energy landscape. Many rigid constraints on the other hand

would take far too much precedence over the established energy minimization process.

Non-mutually-compatible constraints would likely either cancel each other out or cause

the prediction not to converge.

1.5 Goals

If using a small number of highly rigid constraints, it is vitally important that all of

them are correct. For example, a building block with two fragments, one of them

sequentially matching in the first third of the sequence and one of them in the last

third of the sequence with a small spatial distance between them, would cause the rest

of the prediction to accommodate the assumption that these two parts are very close

to each other. This would severely influence the overall structure (unless the energy

minimization “overrides” the constraints). One can easily imagine how it would cause

the whole prediction to be far different from the native structure if that building block

match were incorrect i.e. sequentially similar but structurally different from the target’s

native structure. So, for most of this thesis I will assume that the goal is to find a

relatively small number of 100 % correct building block matches. It is acceptable if

the necessary filtering comes at the cost of leaving a couple of residues uncovered (i.e.

specificity is more important than sensitivity). Due to our CASP participation being

more like a proof of concept than a dead-serious effort to win, I further assume that it is

always preferable to have some constraints (even if they are all incorrect) than running

a “vanilla” prediction without any constraints.

The retrieval module will probably always return a certain amount of matches that

are not actually close to native. While the retrieval module focuses on optimizing

sensitivity while keeping a reasonable specificity, this thesis takes the retrieval result

and optimizes specificity while keeping reasonable sensitivity. So, the focus of this thesis

is right between the retrieval and the assembly module(s).

On a higher level, the challenge here – and for protein structure prediction in general

– is that retrieval is done on the target sequence, but the fragments are expected to

match the target’s structure. However, a good sequence alignment does not always

translate to a fragment with correct local structure. One could say that between finding

7

1. INTRODUCTION

a good sequence alignment and finding and correct structural match, there is a “black

box” that is not yet sufficiently understood.

similar
sequence ? similar

structure

Existing efforts like HHSearch focus on making the sequence retrieval ever more sophis-

ticated but each fragment is scored independently. I hypothesize that the information

about the relationship between the fragments of a building block match can be used

to get one step closer of modeling the “black box” between sequential and structural

similarity. The building block criteria, namely the spatial constraints between fragments

and the sheer co-occurrence of those fragments offer an opportunity to create more

specific scoring features.

A first attempt of distinguishing correct from incorrect matches would be to use the

fragment-wise metrics returned by the sequence aligner and somehow accumulate them

to be applicable to two-fragment building block matches. The way that the retrieval

module currently works is that it uses HHsearch to align building block fragments

independently. Only if at least two fragments of the same building block match on the

target sequence, the building block is considered a match. Because all of a building

block’s matched fragments are required to be similar to the native structure individually

as a prerequisite for the building block being correct as a whole, it seems reasonable

to choose the lowest of the fragment alignment scores as a (conservative) score for the

whole building block. To test the performance of this feature (“seq score min”), we

determined the RMSD of a building block compared to the target’s native structure (for

details see section 4.4). We consider a building block to be correct if its RMSD is smaller

than 2.7 Å. Figure 1.3 shows that this feature alone cannot reliably predict whether

or not a building block is correct, i.e. it is not possible to find a horizontal cut that

separates correct from incorrect matches with reasonable accuracy. Even though there

is some correlation for high values of seq score min, such values are relatively rare and

it has to be anticipated that most target sequences do not yield even a single building

block with such a high score. Other combinations of the various scores produced by

HHsearch do not work much better either (see section 5.1).

8

1.6 Related work

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

10

20

30

RMSD

se
q
sc
or
e
m
in

Figure 1.3: Feature seq score min: given the alignment scores for a pair of fragments,

take the smaller of the two scores; for a detailed description of both axes, see section 4.4

and section 5.1

I do not think that I can improve on the way HHsearch calculates its scores, because

these techniques (substitution matrices, sequence profile generation, e-values, secondary

structure prediction) have been around for a long time and they have already been

fine-tuned extensively. Thus, the goal of this thesis is to come up with different features

that can augment HHsearch’s scores to classify correct vs. incorrect building block

matches more reliably. It has to be anticipated that no single biological aspect can be

exploited to do so. Instead, one probably needs to combine a lot of different aspects

to deal with the ubiquitous noise found in the biological domain. The nature of this

thesis is therefore highly empirical; instead of focusing on a few very specific hypotheses

and either proving or disproving them, I developed a setup that enabled me to “play”

with the data, come up with new ideas for features, test them quickly and reiterate

often. Sometimes I came up with a well formulated hypothesis and derived a feature

that models it, sometimes I acted more opportunistically and tried to exploit a potential

data source with any idea that came to mind.

1.6 Related work

Much of the biological motivation and related work differs from feature to feature, so I

will explain most of it together with the features in chapter 5. Some related work for

sequential clustering will be mentioned in chapter 3. This leaves us with related work

9

1. INTRODUCTION

about the overall idea of identifying near-native alignments through various scores.

The simplest way of scoring a given sequence alignment is to calculate the sequence

identity. It is the percentage of amino acids that are exactly the same in the target

sequence and in the template’s sequence. Unfortunately, this way of scoring is only

suitable for very closely related sequences.

To conquer this, scientists developed amino acid substitution matrices like PAM

[Dayhoff et al., 1978] and BLOSUM [Henikoff and Henikoff, 1992]. They are both based

on the observation that certain amino acid pairs are more likely to be switched by

point mutation than others and that some amino acids occur more often than others in

nature. For example, a hydrophobic amino acid is relatively unlikely to be replaced by

a hydrophilic amino acid and vice versa. Both matrices are derived from experimental

data and have different versions for different expected mutation rates. Substitution

matrices in their common form contain so called “log-odds” values, so that positive

values indicate a likely evolutionary replacement and negative values a less-than-likely

evolutionary replacement. To calculate the likelihood for a whole sequence, one just

has to sum up the individual values. This sum/score can be interpreted as a “chance

alignment” for negative and small positive values.

Most sequence alignment algorithms also have a way of allowing gaps in the align-

ments. Penalties for opening a new gap or expanding an existing gap are usually

added to the log-odds sum. This approach however is not well suited for building block

alignments because gaps are highly unfavorable inside a building block fragment, but

the gap size is relatively irrelevant between building block fragments (c.f. section 5.5).

Another problem is that with a growing number of total fragments in a library, the

number of chance alignments goes up. “To assess whether a given alignment constitutes

evidence for homology, it helps to know how strong an alignment can be expected from

chance alone.” [Altschul, 1999]. E-value or expected value is a familiar concept in

statistics and popularized in terms of sequence alignments by the BLAST algorithm: The

idea is to not only take into account the cumulated log-odds of the substitution matrix,

but also the size of the fragment database and the length of the sequence alignment.

This is because big databases statistically have a higher likelihood of returning high

scoring templates than small databases; especially for short query sequences, because

they likely have many near-exact matches in the database. The E-value of a sequence

alignment is therefore defined as the probability of observing its log-odds sum (or better)

10

1.6 Related work

in the database by chance, so low E-values are better than high ones. For example an

E-value of 5 means that on average one would expect 5 distinct same length matches

with similar or better log-odds in a random database of the same size.

For single-template homology modeling Sadowski and Jones [2007] assembled “a set

of 732 targets for which a choice of ten or more templates exist with 30 – 80 % sequence

identity”. They then tested which sequence (profile) alignment algorithm (BLAST,

PSI-BLAST, HHpred) ranked the templates most accurately. They also tested a couple

of other algorithms and hypotheses that were suggested in various publications:

• a sequence conservation score (Cvaldar),

• whether focusing on structurally-determined subsets improves the score’s per-

formance. Such subsets were determined by “secondary-structure state, solvent

accessibility or proximity to atoms in HETATM records”.

• “whether differing pH, temperature, quaternary state, resolution, and space group

might have an effect on the choice of template”

• a model quality assessment program (MODCHECK) using pair-potentials,

• a linear combination of a total of 30 features amending MODCHECK by including

hydrogen bonding, solvation, torsion angles, van der Waals interactions and

stereochemical quality. Feature weights were optimized systematically.

They mentioned that “the question of how to select the best template from a set of

alternatives has not previously received much attention” and that their study was

“the first full study of template selection per se”. Their findings were that BLAST

could identify a template with an RMSD of 0.5 Å or better from the best possible

template in 75 % of the cases. PSI-BLAST and HHpred performed only slightly better

due to the high sequence identity. PH, resolution etc. did not improve the sequence

alignment scores. The structurally-determined subsets did not perform better than the

full sequences, but still produced acceptable results. Interestingly, coil regions performed

nearly as good as the full sequences; the building block definition currently does not

allow coil regions, though. MODCHECK was tested independently from the sequence

alignment scores, but performed poorly. The amended version (MODCHECK-HD)

however performed only 1 % worse than BLAST. A combination of MODCHECK-HD

11

1. INTRODUCTION

and BLAST resulted in a 7 % improvement over BLAST alone. This research shows that

template selection is a relatively untapped field that can improve sequence based scores.

It also shows that some features could work well for a certain set of proteins (after all

they were mentioned in other publications), but do not add any value across-the-board.

Sadly, the findings can not directly be applied to the building block library because

building block fragments are much shorter, can come from many relatively unrelated

proteins and typically have much less sequence identity.

Simons et al. [1999] wanted to model the fact that local amino acid sequences bias

“towards a small number of alternative local structures”. Looking at single fragments,

they have applied the Bayes theorem to calculate “the probability of a structure given

the amino acid sequence”:

P (structure | sequence) = P (structure) · P (sequence | structure)
P (sequence)

This means that if a certain sequence fragment aligns very frequently, but relatively

seldomly matches a target’s structure, this can be seen as a negative factor if one

has other options (c.f. section 5.11). The same group also developed the well known

“I-sites” library [Bystroff and Baker, 1998]. The library consists of clusters of small

sequence fragments and a representative structure for each of them. For each cluster

they generated “a confidence curve [that] maps similarity score to the probability of

correct local structure”. That way, clusters that are often false-positives need higher

similarity scores in order to achieve the same level of confidence as other clusters.

Bartlett and Taylor [2008] used a combination of sequence and physico-chemical

scores to distinguish correct from incorrect folds. They used Statistical Coupling

Analysis (see section 5.9) to find residue pairs in multiple sequence alignments (MSAs)

that likely have co-evolved. They used the MSAs to predict a protein fold and found

that decoys that had a small distance between the supposedly co-evolving residues were

more likely to be correct than those with high distances.

An important difference between this and the approach in this thesis is that they

tested their scores on actual predictions vs. the native structure. This is known as

“fold selection”, “fold discrimination” or “decoy discrimination”, i.e. the use case is to

generate a library of protein-like folds and identify the fold(s) that are probably close

to the native structure. Fold selection techniques play an important role in protein

structure prediction because many tactics do some kind of sampling (e.g. multiple runs

12

1.6 Related work

of simulated annealing) and need to choose the best sample as the final result. In

contrast, this thesis tries to filter out incorrect matches before they are even used for

the structure prediction. One could argue that fold selection is more tailored to the

ultimate goal of making a good prediction. The problem is however that predictions are

computationally expensive. Because there are relatively many building block matches

per target sequence, the time complexity of creating a model for each possible subset of

the matched building blocks would be impractical (O(2n) for n matches). Therefore it

is very beneficial to have a way of prioritizing matches.

Another fold selection paper, this time dealing with ab initio predictions, is Huang

et al. [1999]. The authors combined three scores (“RAPDF”, “HCF” and “shell”) to

select the most promising structure from “a library of 500 possible structures for each

of 11 small helical proteins”. HCF (Hydrophobic compactness function) is based on the

observation that real proteins are packed or “globular” in order to bury hydrophobic

residues (see section 5.6). This measure is simply “the square of the radius of gyration

of the carbon atoms” c.f. Simons et al. [1997]. RAPDF (Residue-specific all-atom

probability discriminatory function) and shell are both scores that use a database of

known structures to score inter-atom and inter-residue distances, respectively. Shell

[Park et al., 1997] sums up a residue-type dependent score for all non-adjoining residues

that are in contact. A contact is assumed if both their “interaction centers” are within

7 Å. A residue contact score is used in section 5.8 as well.

Gao et al. [2009] tested different scores to predict the local quality of decoy fragments.

Therefore they extracted all gaplessly aligned fragments and calculated the RMSD to

the corresponding native structure fragment. Their goal was to predict this RMSD

using sequence and template structure alone. They tested 8 types of features and did a

feature selection to determine how leaving one type of feature out influences sensitivity

and specificity of the predictions. According to the authors, their method is “the first

method to directly predict the quality of fragments that are automatically determined by

the sequence-structure alignments rather than fragments with fixed length”. They found

that even though “local sequence evolutionary information (i.e. sequence similarity) is

the mayor factor in predicting local quality [...] structural information such as solvent

accessibility and secondary structure helps to improve the prediction performance”. One

of their best performing features was the length of the fragment, so they decided to cancel

this aspect out through a statistical significance score, see section 4.4 for an adaption

13

1. INTRODUCTION

of this concept. Notable features were based on sequence profiles, secondary structure,

solvent accessibility (c.f. section 5.6) and quality of the overall model (Z-Score). In

terms of this thesis, sequence profiles and secondary structure are handled by HHsearch,

but Z-Score is not applicable. Unfortunately, the relative importance of their features

is not very relevant to building block matches because their single-fragment matches

come from global alignments while this thesis is about multiple fragment matches that

are locally aligned. Also, they were predicting the RMSD of the the decoy regions vs.

native and this thesis tries to predict the RMSD of fragments vs. native.

14

2

A database of building blocks

Before we can dive into building block clustering and features, lets define what a building

is on a lower level. This is necessary in order to understand what properties a building

block has and what kind of data sources are available to calculate features from.

2.1 Storage format

The original output format as used by Nasir Mahmood’s aligner (and initial post-

processing) is an ASCII format spread over multiple folders (one folder for each pair of

aligned chains). The format looks like this:

195lA:1b2sE

#1(2,23,2.4,EH) = 52-61:50-59 | 68-80:71-83

#2(3,24,3.1,HHH) = 4-14:20-30 | 22-27:79-84 | 31-37:101-107

In Extended Backus-Naur Form that is:

BblockFile = Header <EOL> { BBlock <EOL> }
Header = PdbId , ’:’ , PdbId

BBlock = ’#’ , BblockId , ’(’ , MetaData , ’) = ’ , Fragment ,

{ | Fragment }
MetaData = NumberOfFragments , ’,’ , NumberOfResidues , ’,’ ,

Rmsd , ’,’ , SecondaryStructure

Fragment = Witness1StartResidue , ’-’ , Witness1EndResidue , ’:’ ,

Witness2StartResidue , ’-’ , Witness2EndResidue

15

2. A DATABASE OF BUILDING BLOCKS

i.e. the header lists the two protein chains that were superimposed and then one building

block per line. This format makes sense as an interchange/archive format because

it does not require anything else than a file system and each parallel building block

generation process can write to a different file.

However, this file format is not well suited for ongoing work and experiments: When

brainstorming new ideas it is important to be able to get a quick impression about

statistical properties of the dataset; for example one could be interested in a histogram

of fragment counts per building block (see fig. 4.2). These statistics could help to

identify mistakes or provide early pointers regarding the viability of ideas. If one would

like to extract these statistics from the before-mentioned flat file format, one would have

to write a new piece of code for every such query. Each time the query is run, the entire

building block database would have to be parsed. Even more importantly, every time

that someone wants to store another bit of meta information, existing parser code could

stop working. This would be particularly cumbersome because several researchers are

working on this dataset and everyone is using his/her favorite programming language

for prototyping.

Therefore it was an obvious decision to use a relational database for storage. Nearly

every programming language can access such a database via SQL with only a few lines

of code. Existing SQL queries keep working when new columns are inserted into a table

or new tables are added to the database. The storage format is relatively efficient and

frequently accessed data can be indexed for better performance. Different incarnations

of the dataset can be addressed through different SQL database names.

2.2 Data source and quality

When talking about biological data it is important to know that almost all data is

flawed to some degree. This is because data is mostly determined experimentally and

because in nature it’s hard to find simple and across-the-board applicable rules. I like to

think of nature as a million years old software suite that nobody ever cared to refactor.

Another thing that has a huge impact on the database and how suitable it is to

predict new proteins is the selection of the proteins that are used to generate the

building block database. Due to the all vs. all nature of the building block generation it

is impractical to extract building blocks from the whole PDB. Therefore one needs to

16

2.3 Eliminating redundancy

choose a suitable PDB subset (PDBSS) which should satisfy the following criteria as

good as possible:

• as much as possible of the structural diversity of known proteins should be covered.

• to ensure that the conserved portions of each fold can be identified, for each

structure it should contain a couple of other structures with a common ancestor.

• sequences should not be highly redundant i.e. have a certain maximum sequence

identity.

The current version of the PDBSS contains around 5200 proteins and covers all SCOP

superfamilies. The number of proteins per superfamily is limited to 25. The resulting

database contains 166 million building block instances, which is sadly too much for

some of our algorithms to handle. Thus, the post-processing radically throws away

building blocks to reduce the database to a manageable size of 3.34 million building

block instances.

2.3 Eliminating redundancy

A lot of the initial effort of this thesis went into reducing redundancy in the dataset.

As the focus shifted later on, I will skip most of it here. One concept that remained

important is the merger of “building blocks instances” into “building blocks”.

So far we only talked about building blocks in terms of an alignment of two structures

(i.e. PDB chains). These structures will be called “witnesses” from now on. A building

block is defined as a substructure that occurs (with slight differences) in both witnesses.

These two occurrences are called “instances”. As it turns out, it happens quite a lot

that the exact same portions of a structure are alignable with more that one other

structure. For example, let’s look at the following six building block instances in three

different structures:

195lA:1b2sE

#1(2,23,2.4,EH) = 52-61:50-59 | 68-80:71-83

1b2sE:1b2uD

#2(2,23,2.1,EH) = 50-59:11-20 | 71-83:33-45

195lA:1b2uD

#3(2,23,2.6,EH) = 52-61:11-20 | 68-80:33-45

17

2. A DATABASE OF BUILDING BLOCKS

Again, each line defines two building block instances and one relationship between them.

These relationships are visualized in fig. 2.1.

195lA

1b2uD 1b2sE

#1

#2

#3

Figure 2.1: Illustration of a building block with three instances

As you can see, these six building block instances are indeed only three distinct instances

because they have the same residue ranges. Only unique instances are stored to the DB.

The alignment of two unique instances is called a “combination”.

From a naive point of view, the three combinations would make up three building

blocks. But because these three combinations share the same instances it would make

more sense to define them as one building block. More formally:

∀a, b ∈ instances : (a, b) ∈ combinations ⇒ bblock(a) = bblock(b)

You might wonder why the above is not an equivalence relation: Intuitively, every

building block instance is interconnected with every other instance via a combination as

in fig. 2.1. However, this is not always the case due to RMSD cut-offs and post-processing.

In other words, the instances belonging to the same building block do not necessarily

form a clique i.e. there is not necessarily a combination between any two instances.

These “sparsely connected building blocks” can arguably be a problem if they contain so

many instances that there exist instance-pairs that are only connected through multiple

other instances; because then one can’t really assume a structural similarity for such

instance-pairs any more. However the advantage of this definition is that it is simple

and it partitions the building block instances so that each instance belongs to exactly

one building block. In section 5.4 I developed a couple of features whose plots can

be interpreted as follows: For a database of 1.6 million building blocks, there is no

18

2.3 Eliminating redundancy

evidence that sparsely connected building blocks produce inferior matches. For a very

large database of 160 million building blocks, the above definition produces building

blocks with hundreds of thousands of instances that are very sparsely connected. So

without further analysis it can be said that for such a big database, the above definition

would have to be revised; but for the databases we are currently working with, we can

ignore these concerns, because the number of instances per building block is usually

reasonably small.

One mayor difference between instances and building blocks can be easily seen from

fig. 2.2: Each instance has exactly one witness and therefore a well-defined sequence. A

building block instead has a sequence profile, thus at each site (= residue offset/position)

there are multiple possible amino acids; all of them occurring with a certain probability,

as calculated from the constituent instances.

Building Block Instance
Fragment

startOffset
endOffset
secondaryStructure

Witness

pdbAccession
chainId

Unique Sequence

fastaString

Cluster

SCOP Superfamily

Combination

2

Figure 2.2: Entity relationship diagram of the building block database

19

2. A DATABASE OF BUILDING BLOCKS

20

3

Excursus: Sequential clustering

Later on – in section 5.11 – a sequential clustering of all building block fragments is

needed. This excursus will shed some light on how such a clustering can be obtained

and what obstacles have to be overcome.

The choice of algorithms is much restricted by the huge size of the database. In

total there are 10 million fragments with 1.3 million distinct sequences. This makes it

expensive to even obtain a similarity graph, left alone an optimal clustering.

The sequence similarity graph is an undirected graph with weighted edges, where

the mutual similarity is used as the edge weight. After one has obtained the similarity

graph, the nodes have to be clustered. A graph G = (V,E,w) is seen as a set of n

nodes V , edges E and a weight function w : E → R; an edge is a tuple of nodes. Graph

mining algorithms can be categorized whether or not they can honor edge weights; For

those that don’t, an edge cutoff c must be applied so that ∀e ∈ E : w(e) ≥ c. Even for

algorithms that can work with edge weights, it makes sense to apply an edge cutoff,

because firstly it saves storage space and computation time and secondly log-odds

similarities can be negative and most algorithms can’t handle negative weights. A

negative similarity score means that two fragments are less than likely to be evolutionary

related.

When comparing fragments one has to decide whether one wants to allow gaps, i.e. if

the modeled sequence mutations should include insertions or deletions. Due to the fact

that the retrieval module doesn’t allow gaps, it seems acceptable if the clustering doesn’t

allow gaps as well. This makes sequence alignments less complex and the naturally

results in disjunct similarity graphs for each fragment length.

21

3. EXCURSUS: SEQUENTIAL CLUSTERING

3.1 Connected component analysis

To get an impression about the graph, it makes sense to start with a very simple graph

mining method called “Connected Component Analysis”. A path p(v1, vn) between two

nodes v1, vn is defined as a set of edges so that

(v1, v2), (v2, v3), (v3, v4), . . . , (vn−1, vn) ∈ E

A connected component C ⊆ V is defined as a subgraph where ∀ vi, vj ∈ C ∃ p(vi, vj).
An algorithm that extracts all connected components from a graph is fairly easy to

implement and can also be used as a preprocessing step for other algorithms because

most graph mining algorithms allow connected components to be processed in parallel.

Due to the way the similarity graph is generated, fragments with different lengths

always are in different connected components. Most of these fragment length induced

connected components cannot be divided any further. However, a clustering for the

intended use case would need a number of clusters that is approximately between |V |
5

and |V |
100 and cluster sizes should be relatively uniform (i.e. no extremely big clusters,

few singletons). Even if one considerably increases the weight cutoff or sparsifies the

graph with one of the methods in section 3.5, the resulting connected components tend

to be one huge chunk and a few very small chunks; as such they remain unusable as a

clustering.

3.2 Conventional clustering algorithms

Most unsupervised learning algorithms employ some kind of distance function that

calculates a distance for each pair of nodes. The distance is usually derived from the

nodes’ features, but for graph mining purposes the distance is given explicitly as the edge

weight. I tried different algorithms like hierarchical clustering and k-means, but all of

them either returned unusable clusterings or had unacceptable runtime characteristics.

3.3 Dense subgraph mining

The density γS of a subgraph S ⊆ V is defined as

γS =
2|ES |

|V |(|V | − 1)

22

3.3 Dense subgraph mining

ES = {(vi, vj) ∈ E | vi, vj ∈ S}

i.e. the actual number of edges within the subgraph in relation to the maximum possible

number of edges with the subgraph. A subgraph with γS = 1 is called a complete

subgraph a.k.a. a “clique”. This definition is for unweighted graphs only, but one can

easily extend it for weighted graphs. For example, one could require a cluster to be

a clique and have a minimum average edge weight. One way to find a meaningful

clustering could be to find a so called “minimum clique cover” i.e. partitioning the graph

into cliques so that every node is part of exactly one clique and that the total number of

cliques is minimal. As a first step to find the minimum clique cover, one would have to

enumerate all maximal cliques, i.e. all – not necessarily disjunct – cliques that cannot be

extended. The Bron-Kerbosch algorithm is widely used to solve this sub-problem with

a worst-case time complexity of O(3n/3). The problem with minimum clique cover is

that one is quite inflexible about the properties of the resulting clustering. For example,

a sparse graph would yield too many singleton clusters.

To allow for more flexibility, I experimented with γS < 1. Doing that, I became

concerned that this would allow clusters that contain quite unrelated fragments. To

counter this problem, I tried to employ a concept called “feature vector network” where

the graph is augmented with a feature vector for each node. An algorithm called

“CoPaM” [Moser et al., 2009] searches for all maximal subgraphs that not only satisfy

density criteria but also have similar feature vectors (“cohesive patterns”). For the

feature vectors I used easy to obtain biological properties like secondary structure,

solvent accessibility and hydrogen bonds. That way, a maximally extended cohesive

pattern would not only have a certain minimum density but its nodes would also share

(some of) the biological features. I heavily extended the above mentioned algorithm to

make better use of the available resources on the RBO group’s computer cluster.

As it turned out, even for a small PDBSS and using 600 CPUs in parallel, the

algorithm had worrying runtime and memory requirements. My efforts came to a halt

when the current program state exceeded the 64 gigabytes of RAM on the cluster’s

frontend node. Apart from the size of the dataset in general, the main reason for this

problem was apparently a lot of redundant cohesive patterns. An analysis of intermediary

results showed that a small clique produced a lot of cohesive patterns that all contained

this clique together with another node. These kind of redundancy problems were also

the reason for the development of another algorithm called “GAMer” [Günnemann

23

3. EXCURSUS: SEQUENTIAL CLUSTERING

et al., 2010]. Unfortunately, this algorithm has even worse average runtime and is harder

to parallelize. Both algorithms search for an ideal solution, i.e. an enumeration of all

maximal cohesive patterns. However, a heuristic solution is sufficient for the intended

use case. It might have been possible to develop a heuristic algorithm with acceptable

runtime characteristics, but I abandoned further development because of a shift in focus

of this thesis in December 2011.

3.4 Spectral clustering

Another way of looking at the graph is to interpret the edge weights as probabilities of

a “random walk”. The random walk metaphor works like this: an imaginary token is

initially placed on any of the nodes. At each iteration, the token is moved to another

node that is connected via an edge to the current node. Which node is chosen is

determined randomly with probabilities relative to the edge weights. Clusters are then

characterized by the token residing significantly more often within a cluster than in

other subgraphs of the same size.

So called spectral clustering algorithms try to extract such clusters analytically by

finding the eigenvectors of the adjacency matrix A. This (symmetric) matrix can be

obtained from the edge weights:

Aij =

{
w(e) if e = (vi, vj) ∈ E

0 else

To represent these types of algorithms, I picked an open source implementation called

“SCPS” [Nepusz et al., 2010]. SCPS has been specifically developed for clustering

homologous protein sequences. The algorithm first finds the eigenvectors corresponding

to the k largest eigenvalues of the adjacency matrix. Then these k n-dimensional

vectors are transposed into n k-dimensional vectors. The vectors are then normalized

and clustered into k clusters using k-means. The authors have tested their algorithm

on a similarity graph of 14,183 protein sequences and benchmarked their clustering

against SCOP superfamilies. They have seen improved results compared to Connected

Component Analysis, hierarchical clustering and “TribeMCL” (see below).

Applied to the building block fragment database, SCPS had two issues: For one thing

the eigenvector calculation takes unacceptably long and for another thing the algorithm

24

3.5 Graph preprocessing

produced a relatively small quantity of huge clusters and the rest were singleton clusters.

As k is essentially the only parameter that the algorithm takes, its results were unusable.

The (Tribe-)MCL algorithm uses the same random walk metaphor, but has an

entirely different approach. Instead of dealing with eigenvectors, the algorithm simulates

the random walk on the adjacency matrix explicitly. Each iteration consist of three

steps: (re-)scaling, expansion and inflation. The scaling step turns the matrix into a

stochastic matrix, i.e. each column sum up to 1. The expansion step multiplies the

matrix with itself and the inflation step sets each entry to the i-th power of itself. i is a

parameter that affects the clustering granularity. The algorithm terminates when an

equilibrium state is reached. The clusters are then extracted from the resulting matrix

by identifying all its connected components.

3.5 Graph preprocessing

As mentioned before, the graph contains regions that are highly connected with large

parts of the graph, i.e. degree(S) is O(n2); an ideal cluster would have a degree O(|S|2).
Depending on the algorithm, the impact these regions have on the clustering qualtity

differs, but it generally is noticeably negative. Accoring to the MCL manual “the

network should not have nodes of very high degree, that is, with exorbitantly many

neighbours. Such nodes tend to obscure cluster structure and contribute to coarse

clusters” [van Dongen, 2010a]. One way of sparsifing the graph is to find the edges with

the t highest weights for each node (equivalent to finding the t nearest neighbours);

then, one only keeps edges that are within this threshold for both adjoining nodes. “A

good heuristic is to choose a value [for t] that does not significantly change the number

of singletons in the input graph” [van Dongen, 2010b]. For the building block fragments

I used t = 10.

25

3. EXCURSUS: SEQUENTIAL CLUSTERING

26

4

Building block alignments

This chapter covers how building blocks alignments on a target sequence can look like

and generally lays out the ground work for chapter 5.

4.1 Nomenclature

Before we dive into the specifics of building block alignments, let’s be totally clear

about how these alignments shall be classified. To be precise, the building block project

contains two separate classification experiments: The first is done by the retrieval

module and the second is the subject of this thesis. Both share the same class definition:

The positive class contains building blocks whose structure matches the structure of

the target protein (within a certain RMSD threshold) and the negative class contains

building blocks that don’t. However, the two experiments do not share the same

ground truth: For the retrieval experiment the ground truth is the whole building

block database correctly classified into the two classes. For this thesis the ground truth

is only the retrieved subset correctly classified. Therefore the meaning of the terms

“true positive”, “false positive”, “true negative” and “false negative” is different for

both experiments. This thesis works only on the building blocks that were labeled as

positives by the retrieval module, called “matches”. In the following, true positives

from the retrieval perspective are called “correct matches” and the false positives from

the retrieval perspective are called “incorrect matches”. The goal here is to label the

matches as “correct” or “incorrect” with a high accuracy; therefore the terms true

positive etc. will from now on only refer to the classification experiment from this thesis’

27

4. BUILDING BLOCK ALIGNMENTS

perspective. Figure 4.1 shows a few examples of what building block matches can

look like (one match per row). Each feature has to be calculated once per building

ID To
ta

l
n

o
.

o
f

fr
a
g

m
e
n

ts

N
o
.

o
f

w
it

n
e
ss

e
s

1

2

3a

4

5

6

2

5

4

7

2

3

20

9

5

2

61

10

4 5

in
 b

b
lo

ck

3b

6a

6b

6c

3 14

4

3

11

12

#1 #2

#1 #5

#2

#2

#5

#3 #1

#3

#4

#6

#1 #2 #3

#2 #3

#1 #3

#1 #2

Target Sequence

12asA 1bs0A

3cjsB3cjsB

Figure 4.1: Diagram showing the diversity of building block matches. Target sequence on

top (not to scale).

block match. Then, using these features, the matches have to be classified as correct or

incorrect. The diagram is supposed to help in understanding what exactly a building

block match is and what kind of variety with respect to building blocks, witnesses and

sequence clusters has to be taken into account. Understanding this is a prerequisite to

understanding the features discussed later. Please compare the following statements

with the diagram:

• A building block match consists of two or more fragment matches. For example,

ID5 has two fragments aligned and ID6 has three fragments aligned. Accordingly,

matches are called “two-fragment matches”, “three-fragment matches” etc.

• Individual fragment alignments are not necessarily compatible with each other.

For example, ID3 has #3 and #4 align at overlapping portions of the target

sequence. In this case, #2, #3 and #4 cannot be called a three-fragment match,

28

4.1 Nomenclature

but rather two separate two-fragment matches. Similarly if a particular fragment

aligns at more than one spot of the target sequence (not shown in diagram).

• More-than-two fragment matches can be combinatorially disassembled into two-

fragment matches, see ID6.

• Fragments of a match do not necessarily come from the same witness, for example

fragment ID1 #1 and #2 both originate from “3cjsB”, but ID2 #1 and #5 come

from two different witnesses.

• Fragments that align at the exact same residue range of the target sequence (e.g.

ID3 #2, ID4 #5, ID5 #2) are ideally in the same sequence cluster (see ID3 #2

and ID4 #5). But due to aliasing in the sequence clustering and the much more

sophisticated way that HHsearch aligns the fragments, this is not always the case

(see ID5 #2).

• Some fragments of a building block can remain unaligned, i.e. the fragments in a

building block match can be a subset of the fragments in the originating building

block. For example, ID1 has 2 of 2 total fragments aligned; ID2 has 2 of 5 total

fragments aligned.

• Even though each building block is unique, a subset of its fragments can often

be found in multiple other building blocks. E.g. building block B1 consists of

fragments {F1, F2, F3} and building block B2 consists of fragments {F2, F3, F4}.
In consequence, if fragments F2 and F3 were to align (compatibly) on a target

sequence, this would produce two matches. In practice, only one of these matches is

flagged “unique” and all the corresponding building blocks are called “equivalent”.

The “total no. of fragments in bblock” and “no. of witnesses” is then defined

as the maximum across all equivalent building blocks. See how ID6a/b/c have

different values for these properties.

4.1.1 Formal definitions

In order to hopefully be able to define features more clearly in the next chapter, I use

the following formal definitions (see also fig. 2.2):

29

4. BUILDING BLOCK ALIGNMENTS

• A building block BB is as set of building block instances BBI and a set of fragment

indexes F = 1, . . . , f (each BBI has the same number of fragments f).

• A building block instance BBI is defined by its witness w and two functions ob

and oe mapping the fragment indexes to their begin and end residue numbers on

the witness’ sequence respectively.

• A two-fragment building block match BBM is defined by the building block BB,

the building block instance of the first fragment BBI1, the building block instance

of the second fragment BBI2, the fragment indexes of the two matched fragments

M = {i1, i2} ⊆ F and two functions mb and me mapping the fragment indexes

to their begin and end residue numbers on the target’s sequence respectively.

Note that HHsearch is able to align sub-fragments. Therefore me(i)−mb(i) isn’t

necessarily the same as oe(i)− ob(i). In order to be able to determine the actual

start and end residues of the sub-fragment in the witness sequence, the function s

maps the fragment index to the internal offset in the fragment; a fully matched

fragment has s(i) = 0. The actual begin offset in the witness sequence is then

ob(i) + s(i) and the end index is ob(i) + s(i) +me(i)−mb(i).

• eq is a relation that takes a BB and an M as an argument and returns tuples

of BB ’s and M ’s that are equivalent (including the arguments). Note the many

features employ this relation but sometimes it will be omitted in feature definitions

for the sake of readability.

4.2 What makes a good feature?

A posteriori, a good feature is a feature the results in a good prediction/classification

performance on a representative test set, see section 6.2. But a priori this information

is not available. Because there are sheer endless possibilities for features, it makes sense

to talk a little bit about what kind of features we are looking for.

In general, we are either looking for features that turn HHsearch’s scoring output into

features that are applicable for two-fragment building block matches (see section 5.1) or

features that model an aspect that is neglected by HHsearch. Here are some thoughts

about which features might be preferable to others:

30

4.2 What makes a good feature?

building block rationale Features that are somehow related to the building block

rationale (see section 1.3) are preferable to those that are not. For example

features that could indicate fragment co-evolution or inter-fragment contacts.

target-dependence As we will later see, some features are only dependent on the

building block (or its subset of matched fragments), but not on the target protein.

While such features can make sense as a general ability of a building block to be a

correct match, features that depend on both the building block and the target

protein are probably superior because they are more specific. As a matter of fact,

during the CASP experiments, only the sequence of the target protein is known,

so features ideally employ the target’s sequence somehow.

resolution In general, features that may have lots of different values are preferred to

features that have only a few possible values (provided they have similar levels of

noise). This is because one can always discretize/classify a value, but increasing

the resolution is impossible. Features that rely on counting certain occurrences

usually have finite positive integer values. Because the size of the PDBSS is only a

four-figure number and the amino acids per chain are usually a small three-figure

number, features often have coarse resolutions. That is, they often revolve around

small one-figures.

missing values A related problem is that some features cannot be calculated for all

building block matches. This makes them less useful for classification.

redundancy Features that are correlated with each other contain redundant informa-

tion when used together. Apart from the fact that such features add a lot less value

than non-correlated features, model quality could be negatively influenced by such

features [Hall [1999]; c.f. section 6.2]. Unfortunately, because many features rely

on the same biological aspects, many of them are correlated. Also, the fragment

lengths are a common influence on most features; some are correlated to the length

of the smaller fragment, some to the size of the bigger fragment and some to the

added length.

Due to the fact that building blocks can contain an arbitrary number of fragments

(see fig. 4.2) and each target structure could match a subset of these, there is a great

level of complexity when defining features for every possible kind of match. If you

31

4. BUILDING BLOCK ALIGNMENTS

3 4 5
0

1

2

3

·106

number of fragments per building block

n
u
m
b
er

o
f
o
cc
u
rr
en

ce
s

Figure 4.2: Histogram of fragments per building block, i.e. viewing a building block as

a set of fragments, this graph shows the sizes of these sets for all building blocks in the

database. Note that building blocks with a fragment count of 2 are currently filtered from

the building block database (c.f. section 2.2).

look at fig. 4.3, you can see that most building block matches contain two fragments.

There are multiple reasons why two-fragment alignments are most common: For once,

the number of matched fragments per building block is limited by the total number of

fragments that this building block has. Also, the higher the number of total fragments,

the lower the probability of a building block being retrieved as a whole; this could be

due to some fragments actually not being part of any evolutionary conserved region

(i.e. noise in the database) or the fragments not having co-evolved for the particular

target. Even if the complete building block is in the retrieval module’s ground truth,

the fragments’ sequences could vary in retrievability so that some can’t be retrieved

with the chosen threshold. Then finally, for relatively short targets, the number of

non-mutually-exclusive matching fragments is upper bounded. The problem here is

that features that are calculated for matches with differing fragment counts can’t be

offhandedly compared. Even for two-fragment building blocks it is hard enough to obtain

a sufficiently diverse training set; and it’s even harder to do this for building blocks

with more that two fragments. Furthermore, defining features gets quite difficult if one

has to take into account an arbitrary fragment count and some of the features described

later can’t even possibly be calculated for other than two fragments. However, any

match with more than two fragments can be decomposed combinatorically into multiple

32

4.3 Fragment co-evolution

2 3 4
0

1000

2000

3000

number of fragments per building block match

n
u
m
b
er

of
o
cc
u
rr
en

ce
s total matches

correct matches

Figure 4.3: Histogram of fragments per building block match, i.e. viewing a building block

as a set of fragments, this graph shows the sizes of the building block subsets that matched

on one of the CASP9 target proteins; sizes 0 and 1 omitted

two-fragment matches (see fig. 4.1 ID6a/b/c). After classifying all of these two-fragment

combinations independently into correct and false matches, one can reassemble the ones

that were classified as correct. Due to these considerations I will define and evaluate

the features below only for two-fragment matches; matches with more fragments will be

decomposed and analyzed independently.

When examining features visually, one usually looks for an obvious linear relation,

i.e. values scattered around a diagonal line with the x-axis being the RMSD from native

in this case. In lieu of such a relation, one searches for a cutoff that separates both

classes with reasonable accuracy. Either of these kinds of relations are quite rare for

biological problems, though. Often one encounters features where most samples are

situated in one region of the plot. Thus, the fact that an example is placed in that

region carries almost no information gain. But there are some outliers that are mostly

part of one class (usually the negative class), so by applying a rigid cutoff one can at

least classify a small number of examples with relatively high confidence.

For non-visual ways of examining a feature’s usefulness see section 6.2.

4.3 Fragment co-evolution

Many of the following thoughts are based on the hypothesis that – in terms of probability

theory – the correctness of one building block fragment is not independent from the

33

4. BUILDING BLOCK ALIGNMENTS

correctness of another fragment from the same building block. Figure 4.4 shows the five

events that are necessary for a two-fragment building block to be correct. Of course, for

fragment 1's
sequence matches

with score s1

A1

fragment 2's
sequence matches

with score s2

A2

fragment 1's
structure matches

B1

fragment 2's
structure matches

B2

spatial constraints
between the two

fragments are
correct

C

Figure 4.4: Definition of various events (and their dependencies) that can occur for a

building block/target combination. Co-evolution shown in red

this thesis, we only have to deal with cases where A1 and A2 are given. Note that Ai

and Bi are required to occur at the same position.

What we are interested in is the probability P (B1 ∩B2 ∩ C | A1 ∩A2). Now, let’s

say that A1, A2 and B1 are true, then we know that there is very likely a homology

between the target and the building block’s witnesses. Knowing that these proteins are

evolutionary related increases the probability of more homologous fragments existing

between these proteins. Therefore one could say that:

Lemma 4.1

P (B1 ∩B2 | A1 ∩A2) > P (B1 | A1) · P (B2 | A2)

I tested this hypothesis using individual fragment alignments on CASP9 targets. Therefor

I divided fragment alignments into two classes: The first class were matches where there

existed another fragment alignment from the same building block on the same target.

The second class was made up of the remaining “orphan” matches. Each class had more

than 5000 samples and I made sure that the E-value distribution for each target was

very similar in both classes. The orphan class had an average RMSD (each fragment was

compared individually to the matching region of the target protein’s native structure)

of 3.15 Å while the non-orphan class had an average of 2.88 Å. Figure 4.5 shows that

34

4.4 Statistical significance of RMSD

non-orphans perform better across the whole RMSD value range, i.e. for low RMSDs

there are more non-orphan fragments than orphan fragments; at the same time, matches

0 1 2 3 4 5 6 7

single fragment RMSD to native

n
u
m
b
er

of
o
cc
u
rr
en

ce
s orphan fragments

non-orphan fragments

≥ 7

Figure 4.5: Histogram of RMSDs (compared to native) of orphan fragments vs. non-orphan

fragments.

with an RMSD of 4 or more are consistently occurring more often for the orphan class.

This supports the claim made in lemma 4.1.

4.4 Statistical significance of RMSD

For testing purposes we use sequences where the native structure has already been

experimentally determined. Of course this usually only makes sense if the target

structure was not part of the PDBSS. In terms of this thesis I mostly tested with

the ≈ 120 targets of the previous CASP run (CASP9). While these targets have the

disadvantage of having no aspiration to be representative for the protein fold space,

they have the advantage of being closest to a realistic trial run for the upcoming CASP.

Because the native structures from previous CASP runs are available, we asses the

quality of a building block match by comparing it to the target’s native structure. Using

HHsearch’s alignment output, one can create a bijection between the backbone atoms

(N , Cα, C, O) of the relevant protein regions of both the target and the witness. Using

this bijection, an optimal superimposition is calculated by PyMOL (“pair fit”). The

superposition algorithm ignores all non-mapped residues but keeps the intra-protein

distances between fragments rigid.

35

4. BUILDING BLOCK ALIGNMENTS

There are cases where the matched fragments come from different witnesses. Unfortu-

nately one cannot reasonably use a combination of both witnesses to extract constraints

from because the resulting constraints would not necessarily be native-like. Therefore,

one has to decide to use only one of the building block’s witnesses as a “representative”.

The rest of this section did not have an impact on the final classifier (see section 7.3),

but it is still mentioned here because it is an interesting piece of information about

the characteristics of building blocks: As mentioned in section 1.6, Gao et al. [2009]

found that the length of a fragment correlates with the RMSD of a single-fragment

superposition. This correlation might cause a classifier/predictor to bias towards short

fragments. However, a long fragment with an RMSD of 2.5 Å might be more valuable

for protein structure prediction than a very short fragment with an RMSD of 1.5 Å. To

counter this, Gao et al. [2009] introduced a measure of statistical significance. First,

they superimposed 10000 random (gapless) pairs of fragments for each fragment length.

The statistical significance of an RMSD is then defined as the probability of observing a

worse RMSD for a random pair of fragments of the same length. This concept can be

easily adapted to two-fragment building blocks by extracting appropriate building block

subsets for each combination of lengths l1 and l2; then superimposing these 10000 times

to random regions of another protein.

StatSig(l1, l2, r) =
random superimpositions of length l1, l2 with RMSD ≥ r

10000

The average combined length of a two-fragment building block match is around 19.5

residues; the random superimposition data suggests that a StatSig of 99.9% corresponds

roughly to an RMSD of 2.7 Å for such matches. Figure 4.6 shows that for two 6-residue

long fragments, the RMSD needs to be about 1.9 Å to reach the same level of statistical

significance. However, as we will see in section 7.2, none of the fragment length based

features (see section 5.3) were among the top features. The reason for this might be

that even though there is are relationship between fragment length and RMSD, the

prevailing factor that determines whether a building block match superimposes with a

low or a high RMSD is whether or not the spatial constraints between the two fragments

are correct. Due to the bad performance of fragment length based features, I did not

investigate whether it might be better to classify by statistical significance instead of

RMSD.

36

4.4 Statistical significance of RMSD

12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

2

3

4

5

total number of residues

R
M
S
D

fo
r
99

.9
%

Figure 4.6: RMSD needed for a statistical significance of 99.9%. The abscissa shows the

combined number of residues of two fragments. Each point represents the RMSD necessary

given a pair of two fragment lengths. For each abscissa, there can be multiple ordinates

because there are multiple ways that two fragment lengths can result in the same total

length.

37

4. BUILDING BLOCK ALIGNMENTS

38

5

Features

This chapter describes the various features that were calculated for each two-fragment

building block match. In total, I calculated ≈ 140 different feature variations. Only the

most interesting and representative variations are described here and only a fraction

of these features are plotted. Which of the features are plotted depends on whether

or not they are selected by the feature selection (see section 6.2) or I consider them

to be otherwise interesting. Each feature has a unique identifier e.g. seq evalues min

which is used throughout this thesis (feature descriptions, plot axes, results) and the

implementing code as well. This way, this chapter also functions as a documentation

for part of the code.

All feature plots have the RMSD between the building block matches and the target’s

native structure (see section 4.4) as their x-axis. Due to the large number of plots, the

individual plots are not interpreted unless they show counter-intuitive data (namely

fig. 5.6 and fig. 5.33). Using the thoughts in section 4.2, it is often apparent whether

one particular feature is useful or not; section 7.2 will list the best performing features

according to objective criteria.

5.1 Sequence similarity based features

As already mentioned in section 1.5, HHsearch provides a score together with every

alignment it finds. It appears that this score is quite noisy – especially for values below

a certain threshold, see fig. 1.3.

39

5. FEATURES

Apart from the “(raw) score”, the HHsearch output also contains a “Probability”

and an “E-value” (see section 1.6) for each match. According to the documentation, the

“Probability” also takes into account how well the secondary structure of the template

and the predicted secondary structure of the target match; making it supposedly more

sensitive than the E-value. In terms of fig. 4.4 one could say that “E-value” tries to

be proportional to P (Ai) and “Probability” tries to model P (Bi | Ai). When ordering

all aligned fragments by “E-value”, the “Rank” of an alignment is the position of the

alignment in the ordered list. Considering only building block matches from one target,

the discriminative power of “Rank” and “E-value” is essentially the same. But when

looking at building block matches from different targets, “Rank” states how good an

alignment is relative to other alignments on the same target.

In order to turn these fragment-wise features into features for two-fragment building

block matches, I generated the following features.

seq score min mini∈M score(i) → fig. 1.3

seq score max maxi∈M score(i)

seq score sum sumi∈M score(i), i.e. the score that a concatenation of both fragments

would theoretically achieve (provided that the matched target regions were con-

catenated as well).

seq probab min mini∈Mprobability(i) → fig. 5.1

seq probab max maxi∈Mprobability(i) → fig. 5.2

seq probab prod prodi∈Mprobability(i), i.e. joint probability of independent events.

is 50 30 Söding [2006] recommend that fragments with a “Probability” greater than

50 % (or greater than 30 % if they are ranked among the best three matches) can

quite confidently considered to be correct. It also states that a 95 % alignment

can almost certainly be considered to be correct. This feature models whether

one or both of the fragments fulfills these criteria. → fig. 5.3

seq evalues min mini∈Mevalue(i) → fig. 5.4

seq evalues max maxi∈Mevalue(i) → fig. 5.5

40

5.2 Sequence profile alignment feature

seq rank min mini∈M rank(i)

seq rank max maxi∈M rank(i)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

0.5

1

RMSD

se
q
p
ro
b
a
b
m
in

Figure 5.1: Feature seq probab min; see section 5.1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

0.5

1

RMSD

se
q
p
ro
b
ab

m
ax

Figure 5.2: Feature seq probab max; see section 5.1

5.2 Sequence profile alignment feature

One of HHsearch’s main “selling points” is its possibility of profile-profile alignments.

That means that both the target and the templates can be sequence profiles instead

of sequences. A sequence profile is a n × 20 stochastic matrix, i.e. for each of the n

positions in the sequence, it contains probabilities that represent how likely a particular

amino acid occurs at this position. HHsearch has an elaborate way of bootstrapping

41

5. FEATURES

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

2

4

6

RMSD

se
q
is
50

30

Figure 5.3: Feature seq is5030 (ordinal feature); see section 5.1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

10−4

10−1

102

105

RMSD

se
q
ev
al
u
es

m
in

Figure 5.4: Feature seq evalues min; see section 5.1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
10−2

101

104

107

RMSD

se
q
ev
al
u
es

m
ax

Figure 5.5: Feature seq evalues max; see section 5.1

42

5.3 Miscellaneous features

these profiles: Simply put, given a sequence(-profile) it iteratively finds homologs and

merges these homologs with the profile until the profile converges. As a result, the

profile should reflect the sequence variability of all known homologs.

A building block can have a different sequence for each witnessing protein. For

homologous building block instances, these sequences are expected to be similar. How-

ever, building block instances are not necessarily homologous; they can also just be

analogous due to convergent evolution. Under the assumption that most building blocks

consist of homologous instances only, it seems reasonable to start the above-mentioned

bootstrapping process with a sequence profile defined by the instances. However, it

turned out that retrieval performed better using profiles obtained for each witness

sequence independently. As I was told, the reason seems to be that many building

blocks have such unrelated sequences that the profiles become too unspecific to match

anywhere. Apparently, the amount of analogy (i.e. convergent evolution) in the building

block database is quite high. Details can be found in Stefan Dörrs’ thesis.

While I do not doubt these results and their consequences, I think there is still a

chance to employ sequence profile alignments for scoring. This way, a diverse sequence

profile will not hinder a fragment from being retrieved, but those with a conclusive

sequence profile might get a slight advantage.

Implementation is straightforward: given all instances of a building block, the

sequence profile matrix Pi for each fragment can be built. Each row corresponds to

one of the 20 amino acids and each column corresponds to one amino acid position.

Let A be the set of all 20 amino acids. Let p(i, j, k) : M × A × N → R be a function

that returns the jth row and kth column of Pi, i.e. the probability of amino acid j

occurring at the kth position of fragment i. Let s(a, b) : A×A → Z be the log-odds that

amino acid a gets replaced by b through mutation (according to the PAM30 substitution

matrix). Let t(k) : N → A be the amino acid of the target sequence at position k. Then,

profile alignment score is
∑

i∈M
∑me(i)

k=mb(i)

∑
j∈A p(i, j, k + s(i) − mb(i)) · s(j, t(k)).

All these products are summed up to the final score which is plotted in fig. 5.6.

5.3 Miscellaneous features

There are a number of miscellaneous, simple features that do not qualify for a whole

section dedicated to them.

43

5. FEATURES

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

50

RMSD

p
ro
fi
le

al
ig
n
m
en
t
sc
o
re

Figure 5.6: Feature profile alignment score. Interestingly, this plot shows that both high

and low scores are correlated with low RMSDs. As discussed in section 5.2, low scores can

reasonably occur even for low RMSDs. However, it is unclear why they seem to occur less

often for high RMSDs.

frags hit As explained in section 4.2, more-than-two-fragment matches can be dis-

assembled into multiple two-fragment matches. This results in a child-parent

relationship for such matches. This feature is defined as the maximum number of

fragments across all parents. If the match has no parents, the value is set to 2. The

idea behind this feature is that an x-fragment match is probably a stronger pointer

towards co-evolution than an x − 1-fragment match (c.f. lemma 4.1 for x = 2).

In consequence, a two-fragment match that is a child of a three-fragment match

might be superior to a two-fragment match that has no parent. On the other hand,

with each additional fragment, there comes the possibility of a chance-alignment.

If one of these aspects outweighs the other, this feature could work.

frags total The maximum number of fragments across all equivalent database building

blocks, i.e. max{eqBB,eqM}∈eq(BBM) f(eqBB)

length match ratio As already mentioned, matches can consist of fragments that are

only part of the original building blocks’ fragment. The boundaries of a building

block are defined through what is considered to be the conserved part of a structure;

if only a small part of a fragment is aligned, this would mean that either the match

is incorrect or the conserved core of the concerned structures is much smaller than

expected. This feature is defined as mini∈M
ai
li

with ai = me(i)−ma(i) + 1 being

44

5.3 Miscellaneous features

the length of the aligned part of the fragment and li = oe(i)− oa(i) + 1 the length

of the of the full fragment as stored in the building block database. → fig. 5.8

length min mini∈M ai (this can be seen as a limiting factor for the number of contacts

between the fragments c.f. section 5.8)

length max maxi∈M ai

length total
∑

i∈M ai (see section 4.4.)

no of witnesses The number of distinct witnesses where a building block match (or its

equivalents) can be found, i.e. given a relation w that returns the set of witnesses

for a building block, this feature is
∣∣∣⋃{eqBB,eqM}∈eq(BB,M)w(eqBB)

∣∣∣. → fig. 5.9

equivgroups pdbs Similar to no of witnesses, but instead of counting distinct building

blocks, summing them up, i.e.
∑

{eqBB, eqM}∈eq(BB,M) |w(eqBB)|. → fig. 5.10

hbonds min DSSP [Kabsch and Sander, 1983] can calculate the electrostatic hydrogen

bond energy for each residue of a known protein structure. This feature is

mini∈M
∑oe(i)

r=ob(i)
h(r) with h(r) being the hydrogen bond energy at residue r1.

hbonds max maxi∈M
∑oe(i)

r=ob(i)
h(r) → fig. 5.11

hbonds sum
∑

i∈M
∑oe(i)

r=ob(i)
h(r)

hbonds avg hbonds sum divided by length total. High (absolute) hbonds values can

mean a highly conserved secondary structure.

is largest local This feature counts the number of fragments that belong to a building

block instance that is the largest instance for any pair of witnesses. Our most

radically filtered version of the building block database only contains building

blocks where this feature is “1”. It’s not clear why, but building blocks retrieved

from this database had quite high precision (but low coverage). Maybe such

building blocks have a lower probability of being chance alignments. → fig. 5.12

frags reverse Fragments are aligned along the target sequence in a certain order,

i.e. if mb(i1) < mb(i2) one can say that fragment i1 is aligned before fragment

1DSSP actually calculates four separate values; h(r) is the sum of all of them.

45

5. FEATURES

i2. Fragments also occur in a certain order in the witness’ sequence, i.e. if

ob(i1) < ob(i2) one can say that fragment i1 is originally before fragment i2. Due

to what has to be considered a bug in the current building block database, the

fragment order is the same across all witnesses and is conveniently given by

the fragment indexes, i.e. i1 < i2 ⇔ ob(i1) < ob(i2) This feature compares the

fragment order of the alignment with the original fragment order; it is “1” if

i1 < i2 ⇒ mb(i1) < mb(i2), “0” otherwise. For example, the feature would be “1”

for ID2 and “0” for ID5 in fig. 4.1. Figure 5.7 shows that a reverse sequential

ordering can easily be accommodated in structure. However, this feature is

Witness Decoy 1 Decoy 2

N
C

C

N

N

C

N

C

C

N N

C

C

N

N

C
C

N

Figure 5.7: Illustration of reverse sequential order alignments. The structure of “Decoy

2” is probably incompatible with the building block match because the fragments lie next

to each other in reverse structural direction. Note that such a match can also occur for

non-reverse sequential order alignments.

based on the assumption that a reverse sequential ordering is unlikely to happen

through evolution because it can’t happen through point mutations. Instead, the

sequence must be cut somewhere between the two fragments and the two snippets

must be re-joined in reverse order. It has been found that such mutations do

in fact happen in nature; they are called “circular permutations” [Cunningham

et al., 1979; Bliven and Prlić, 2012]. However they are relatively rare and it is

questionable if building-block-style local sequence-structure relationships would be

preserved between portions of the sequence that are split up by such permutations.

→ fig. 5.13

frags adjoining This feature is “1” if |i1 − i2| = 1, otherwise “0”. That is, if the two

aligned fragments had no other fragments between them in the witness sequence.

46

5.3 Miscellaneous features

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0.4

0.6

0.8

1

RMSD

le
n
gt
h
m
at
ch

ra
ti
o

Figure 5.8: Feature length match ratio; see section 5.3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

1,000

2,000

3,000

RMSD

n
o
of

w
it
n
es
se
s

Figure 5.9: Feature no of witnesses; see section 5.3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

1,000

2,000

3,000

RMSD

eq
u
iv
gr
o
u
p
s
p
d
b
s

Figure 5.10: Feature equivgroups pdbs; see section 5.3

47

5. FEATURES

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
−40

−30

−20

−10

0

RMSD

h
b
on

d
s
m
ax

Figure 5.11: Feature hbonds max; see section 5.3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

1

2

RMSD

is
la
rg
es
t
lo
ca
l

Figure 5.12: Feature is largest local; see section 5.3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

1

RMSD

fr
ag

s
re
v
er
se

Figure 5.13: Feature frags reverse; see section 5.3

48

5.4 Witness density based features

5.4 Witness density based features

As mentioned before, the fragments of a building block match do not necessarily have to

come from the same witness/instance (see ID2 in fig. 4.1). In cases where the fragments

come from different witnesses, it might be interesting to see whether the RMSD between

the building block instances can be used to predict the RMSD to the target structure.

Using the nomenclature introduced in chapter 3, the relationship between the

instances of one building block can be interpreted as a weighted graph G = (V,E, d)

where there exists an edge between two building block instances if the two instances

are superimposable with an RMSD below the threshold that was used to generate the

building block database (c.f. section 2.3). The graph is a connected component, but not

necessarily a clique. That means the fragments of a building block match do not even

necessarily have an edge between their instances. This might cause concerns whether

matches like these are inferior to matches where both fragments come from the same

instance or where both instances are connected via an edge. So, using the information

about instance relationships might not only yield valuable features but also (in-)validate

decisions that were made earlier in section 2.3.

witness same instance This feature is “1” if both fragments come from the same

building block instance, “0” otherwise. → fig. 5.14

witness exists combination This feature is “1” if both fragments come from the

same building block instance or (BBI1, BBI2) ∈ E, “0” otherwise. → fig. 5.15

witness combinations This feature is the total number of edges |E| in G.

witness density This feature is the number of actual edges divided by the maximum

possible number of edges for the given number of instances: 2|E|
|V |(|V |−1) . → fig. 5.16

witness rmsd min mine∈E d(e).

5.5 Sequence separation based features

Each two-fragment match has a “gap” in between, i.e. a number of residues that are not

part of the match. For the target sequence, this is a single non-negative integer value

and for the building block instances it is a distribution of positive integer values.

49

5. FEATURES

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

1

RMSD

w
it
n
es
s
sa
m
e
in
st
an

ce

Figure 5.14: Feature witness same instance; see section 5.4

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

1

RMSD

w
it
n
es
s
ex
is
ts

co
m
b
in
at
io
n

Figure 5.15: Feature witness exists combination; see section 5.4

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
10−5

10−4

10−3

10−2

10−1

100

RMSD

w
it
n
es
s
d
en

si
ty

Figure 5.16: Feature witness density; see section 5.4

50

5.5 Sequence separation based features

The ideas is that there might be a dependency between these gap sizes: Let’s say

that all witnesses and the target have roughly the same gap size. Maybe such a match is

preferable to a match where the witnesses are less consistent and/or the target structure

has a completely different gap size. I suspect this because such big insertions are less

likely for homologous proteins and therefore the probability of a chance alignment is

higher for such matches. Even if big sequence insertions/deletions between the two

fragments were to happen evolutionary, they could affect the overall topology of the

protein and thereby even overcome the conservedness of the building block.

Very small gap sizes are particularly interesting: The smaller the gap size, the higher

the impact that local interactions have. Also, the probability that the region between

the bracing fragments is conserved (but not part of the building block because it has no

well-defined secondary structure), increases with smaller gap sizes. If the region between

the fragments is conserved, that makes the structure of the fragments (especially the

spatial relation between them) likely to be more conserved. I used a threshold of twelve

residues to distinguish “local” matches from non-local matches. This choice is backed

up by Fernandez-Fuentes et al. [2010], who developed a library of so called “smotifs”

which shares some of the same motivations as our building block library. With some

slight modifications, the building block library can be considered a superset of the smotif

library. A smotif consists of two fragments that are either alpha helices or beta sheets.

They are connected by a region of random loop structure that has a maximum length

of twelve residues. They justify this choice because they have shown that “Smotifs

with loop fragments having lengths up to twelve residues, together with their bracing

secondary structure elements are exhaustively sampled in the Protein Data Bank”.

So, the resulting features are:

seq separation align The gap size in the target sequence, i.e. mb(i2)−me(i1)− 1 for

mb(i1) < mb(i2).

seq separation avg The average gap size across all instances, i.e. avgBBI∈BBob(BBI, i2)−
oe(BBI, i1)− 1 for oe(BBI, i1) < ob(BBI, i2). → fig. 5.17

seq separation stddev The gap size standard deviation across all instances. A low

standard deviation together with a high sequence similarity between the instances

might be a bad sign because witnesses are closely related and the building block

might therefore not be generalizable.

51

5. FEATURES

seq separation diff This feature tries to measure how similar the sequence sep-

aration of the match is to the sequence separation of the instances, i.e.

|seq separation avg− seq separation align|. → fig. 5.18

seq separation similar With a similar motivation as seq separation diff, this features

is “1” if seq separation align is within [avg− stddev, avg + stddev], “0” otherwise.

seq separation 12 align “1” if seq separation align ≤ 12, “0” otherwise. → fig. 5.19

seq separation 12 ratio The fraction of instances that have a gap size ≤ 12. A high

fraction indicates a building block that might have significant local interaction

and a conserved region between the fragments.

seq separation 12 ratio align seq separation 12 align · seq separation 12 ratio

→ fig. 5.20

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

200

400

RMSD

se
q
se
p
ar
at
io
n
av

g

Figure 5.17: Feature seq separation avg; see section 5.5

5.6 Hydrophobicity based features

Even though the solution (e.g. surrounding water) is not explicitly modeled in most

protein structure prediction approaches, real world proteins are typically submerged in

some kind of aquatic solution. Since water molecules are polar, they prefer bonding

with other polar molecules. Non-polar molecules disrupt these bonds and thus it is

energetically unfavorable if such molecules are in direct contact with water. It has been

found that protein folding avoids these contacts by burying non-polar side-chains on the

52

5.6 Hydrophobicity based features

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

200

400

600

RMSD

se
q
se
p
a
ra
ti
on

d
iff

Figure 5.18: Feature seq separation diff; see section 5.5

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

1

RMSD

se
q
se
p
ar
at
io
n
12

al
ig
n

Figure 5.19: Feature seq separation 12 align; see section 5.5

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

0.5

1

RMSD

se
q
se
p
a
ra
ti
on

12
ra
ti
o
a
li
g
n

Figure 5.20: Feature seq separation 12 ratio align; see section 5.5

f

53

5. FEATURES

inside of a protein fold. In consequence, an alpha helix or beta sheet that is located on

the surface of a globular protein tends to have a pattern regarding the hydrophobicity

of its amino acids. For example, a regular alpha helix has 3.6 amino acids per full 360

degree turn; this means that for an alpha helix on the protein surface one would expect

a hydrophobic amino acid roughly every fourth residue. Such patterns can be visualized

in so-called Edmundson wheel projections “which are projections of the amino acid

side-chains onto planes perpendicular to the long axes of the helices.” [Schiffer and

Edmundson, 1967]. So-called “hydrophobicity scales” assign each of the 20 amino acids a

positive (hydrophobic) or negative (hydrophilic) value. These values can be represented

as vector lengths in an Edmundson projection. Figure 5.21 shows a projection that is

very likely a surface alpha helix because hydrophobic vectors are grouped together in

the north-east and hydrophilic vectors are grouped together on the opposite side when

using a 100 ◦ angle between residues. If a different projection angle is chosen, say 160 ◦,

the angle of a twisted beta strand, the pattern disappears even though the sequence

is the same (see fig. 5.22). In fig. 5.21 you can also see a green vector pointing in the

north-east direction, which is the mean hydrophobic moment, “the vectorial sum of all

the hydrophobicity indices, divided by the number of residues” [Tossi and Sandri, 2001].

The vector is actually also there in fig. 5.22, but has near-zero length.

Figure 5.21: Example HydroMCalc plot

at 100 ◦
Figure 5.22: Example HydroMCalc plot

at 160 ◦

As you can see, the hydrophobicity can be used to validate secondary structure

hypotheses, but this is not the goal here because secondary structure is already part

of HHsearch’s “Probability”. HHsearch in turn uses PSIPRED which is a widely used

secondary structure prediction software, so I do not expect to be able to improve on

that. Also, amino acid replacements with similar hydropathy are already favored by

54

5.6 Hydrophobicity based features

amino acid substitution matrices and thereby already somewhat part of the alignment

score.

I still think it is worth to model this effect explicitly, because such structures have

been shown by Bowie et al. [1990] and others to be highly conserved. That makes

a matching hydropathy pattern an even stronger indicator for homology than a high

scoring sequence alignment alone and thus increases the likelihood of co-evolution (c.f.

lemma 4.1) because a fragment might not only match in local structure but also in

placement (i.e. surface facing residues in the witness are surface facing residues in the

target as well). Further one could argue that if one of the fragments is on the protein

surface, the other fragment is relatively likely to be in the interior of the protein. This

makes the other fragment more likely to be evolutionary conserved as well, because

“virtually all types of amino acid residues are found to have higher mutabilities on the

exterior than in the interior.” according to Go and Miyazawa [1980]. This intuitively

makes sense because interior/hydrophobic residues have more chances for inter-residue

contacts than surface residues.

alpha helix min The hydrophobic moment of a sequence is a vector that can be

written in polar coordinates with an angle θ and a length l. Let wi (i ∈ M) be the

hydrophobic moment of fragment i’s sequence. Let ti (i ∈ M) be the hydrophobic

moment of the corresponding target sequence portion. The similarity between the

vectors can be calculated as sim(ti, wi) = cos(θti − θwi) · lti · lwi . Then, this feature

is defined as mini∈M sim(ti, wi), i.e. the worse similarity of both fragments.

alpha helix max maxi∈M sim(ti, wi), i.e. the better similarity of both fragments.

→ fig. 5.23

acc min DSSP [Kabsch and Sander, 1983] can calculate a “solvent accessibility” value

for each residue of a known protein structure. This feature is mini∈M
∑oe(i)

r=ob(i)
s(r)

with s(r) being the solvent accessibility at residue r.

acc max maxi∈M
∑oe(i)

r=ob(i)
s(r)

acc sum
∑

i∈M
∑oe(i)

r=ob(i)
s(r) → fig. 5.24

acc avg acc sum divided by length total. A low accessibility is typical for buried

fragments. So, a low acc min means that at least one fragment is buried; low

acc max/acc sum/acc avg mean that both fragments are buried.

55

5. FEATURES

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

2,000

4,000

6,000

RMSD

al
p
h
a
h
el
ix

m
a
x

Figure 5.23: Feature alpha helix max; see section 5.6

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

101

102

103

RMSD

ac
c
su
m

Figure 5.24: Feature acc sum; see section 5.6

5.7 SCOP based features

The “Structural Classification of Proteins” (SCOP) is a humanly curated and regularly

updated hierarchic database of protein domains [Murzin et al., 1995]. The first four

levels of the hierarchy are: class, fold, superfamily and family. “Proteins are clustered

together into families on the basis of one of two criteria that imply their having a

common evolutionary origin: first, all proteins that have residue identities of 30%

and greater; second, proteins with lower sequence identities but whose functions and

structures are very similar”. If it is less clear that two proteins are evolutionary related,

but a common ancestry is still probable due to structural and functional similarity, they

56

5.8 Spatial features

are assigned to the same superfamily. Proteins that are in the same fold might not be

related at all. Both the delineation of protein domains and the classification are done

manually/visually with the help of of some automated tools.

The idea is that a building block where all witnesses are in the same SCOP family

could be less preferable than a building block that comes from multiple different

(super-)families. This is because the sequence-structure relationship from the former

building block is likely highly specific to the function/sequence of its family while the

later building block might have a more generalizable sequence-structure relationship.

So the feature definition is straightforward:

num scop families |Mf | with Mf being the set of SCOP families that are found

among all equivalent fragments.

num scop superfamilies |Msf | with Msf being the set of SCOP superfamilies that

are found among all equivalent fragments. → fig. 5.25

Both features can be interpreted as cleaned up versions of no of witnesses (see sec-

tion 5.3).

The HHsearch user guide [Söding, 2006] lists another idea: “Check relationship

among top hits: If several of the top hits are homologous to each other, (e.g. when they

are members of the same SCOP superfamily), then this will considerably reduce the

chances of all of them being chance hits”. To make this work for building blocks, I am

using the following algorithm: For all top matches (using 50%/30% “Probability” as a

threshold, see “seq is5030” in section 5.1) I extract their (super-)families.

top scop families |Tf ∩Mf | with Tf being the set of SCOP families that are found

among the top hits.

top scop superfamilies |Tsf ∩Msf | with Tsf being the set of SCOP superfamilies

that are found among the top hits. → fig. 5.26

5.8 Spatial features

Let’s define a fragment as a set of atoms where each atom is represented by its

Cartesian coordinates. Given a relation p(w, r) that returns the “interaction center”

57

5. FEATURES

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

100

101

102

RMSD

n
u
m

sc
op

su
p
er
fa
m
il
ie
s

Figure 5.25: Feature num scop superfamilies; see section 5.7

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

5

10

15

RMSD

to
p
sc
op

su
p
er
fa
m
il
ie
s

Figure 5.26: Feature top scop superfamilies; see section 5.7

58

5.8 Spatial features

(a Cartesian coordinate) for each residue r of a witness w, I = {ob(i1), . . . , oe(i1)} and

J = {ob(i2), . . . , oe(i2)} one can calculate the distance between these bipartite sets of

coordinates as:

distance min = min
i∈I, j∈J

|p(w, i)− p(w, j)|

distance max = max
i∈I, j∈J

|p(w, i)− p(w, j)|

I calculated the interaction center of a residue according to a definition by Park et al.

[1997]: It is located 3 Å from the Cα atom along the vector pointing towards the Cβ

atom1.

The closer two fragments are together, the stronger their atomic interactions with

each other. Such “contacts” might stabilize the structure; structures with more contacts

are more likely to be evolutionary conserved (c.f. section 1.3). Thus, the expectation

is that the lower the distance between two building block fragments the higher their

conservation.

One might ask the question if fragments aren’t per the building block definition in

close contact with each other and if distance isn’t a superfluous feature then. Well, first

of all the building block definition uses a distance cut-off, which if broad enough might

still leave room for a correlation. Second of all, the distance cutoff (both algorithmically

and numerically) is chosen rather arbitrarily, i.e. without much experimentation. So,

if for example one finds many true positives near the cutoff, one might have to think

about increasing it.

A low distance max value is a strong signal for contacts, because it states how close

every atom from the first fragment is to every atom of the second fragment. Whereas a

low distance min just states how close one atom from the first fragment is to one atom

of the second fragment. Combined, both values can be used to draw conclusions about

the spatial orientation of the fragments: If distance max is far bigger than distance min,

one can assume the two fragments to be relatively orthogonal to each other and if both

values are similar, one would expect them the fragments lying roughly in parallel. This

knowledge is useful because parallel fragments not only have more atoms that are able

to bond, but also have more bonding partners for each individual atom.

1except for Glycine where the interaction center is defined as the location of the Cα atom

59

5. FEATURES

Unfortunately, the difference between distance min and distance max is correlated

with the fragment lengths; distance avg tries to compensate this1:

distance avg =

∑
i∈I minj∈J |p(w, i)− p(w, j)|

|I|

Given a building block match, all three measures can be calculated for every eq(BB, M).

This posses the question how to aggregate the individual measures to one feature:

minimum, maximum and average come to mind. With agg being either min, avg or

max:

distance min:[agg] agg{eqBB, eqM}∈eq(BB,M)distance min(eqBB, eqM) → fig. 5.27

distance avg:[agg] agg{eqBB, eqM}∈eq(BB,M)distance avg(eqBB, eqM)

distance max:[agg] agg{eqBB, eqM}∈eq(BB,M)distance max(eqBB, eqM) → fig. 5.28

I also tested different strategies that focus more directly on the number of contacts:

A contact is assumed if two residues are in close range, for example if the interaction

centers of both residues are within a certain threshold. With c being a function that

returns “1” if two residues are in contact, “0” otherwise and threshold being the contact

threshold ∈ {5.5, 7.0}:

number of contacts[threshold] :[agg] agg{eqBB, eqM}∈eq(BB,M)

∑
i∈I

∑
j∈J c(i, j)

number of residues in contact[threshold] :[agg]

agg{eqBB, eqM}∈eq(BB,M)

∑
i∈I signum

∑
j∈J c(i, j)

5.9 Statistical coupling based features

The term “statistical coupling” in relation to protein sequence was coined by Lockless

and Ranganathan [1999]. Statistical coupling analysis (SCA) is based on the observation

that some pairs of residues covariate stronger than others throughout evolution. “A

loss-of-function point mutation in a protein is often rescued by an additional mutation

that compensates for the original physical change. According to one hypothesis, such

compensation would be most effective in maintaining a structural motif if the two

1assuming that |I| ≥ |J |; accordingly for |J | > |I|

60

5.9 Statistical coupling based features

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

5

10

15

RMSD

d
is
ta
n
ce

m
in
:a
v
g

Figure 5.27: Feature distance min:avg; see section 5.8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

20

30

40

50

RMSD

d
is
ta
n
ce

m
ax

:a
v
g

Figure 5.28: Feature distance max:avg; see section 5.8

61

5. FEATURES

mutated residues were spatial neighbors” [Neher, 1994]. The objective is to take a

multiple sequence alignment (MSA) of n residues length and turn it into a n× n matrix

that reflects how strongly any two sites (= residue positions) are coupled. For example,

if two sites are spatially in contact and one of them is replaced with a smaller side

chain, the contact could be kept “intact” by replacing the other one with a bigger

side chain. Suel et al. [2002] have found that statistical coupling between sites can be

used to predict contacts. However, contacts do not necessarily result in statistically

coupled sites [Pazos and Valencia, 2008]. It has also been found that SCA can be used

to discriminate correct vs. incorrect folds [Bartlett and Taylor, 2008].

In terms of building block features, one could say that SCA is the sequential

counterpart to section 5.8. Maybe SCA can complement the spatial features by finding

evolutionary constraints in a broader sense. My hypothesis is that building blocks

that have a high sequential coupling between the residues of their fragments are more

evolutionary conserved and therefore preferable when it comes to structure prediction.

Furthermore, if two fragments have residues that are both in contact and sequentially

coupled, that might be a strong signal for sequence-structure correlation. I further

hypothesize that a strong sequence-structure correlation makes the sequence alignment

score more correlated to the structural similarity. The later correlation is usually the

great unknown of fragment retrieval by sequence (c.f. the “black box” in section 1.5).

Sadly, all SCA features share the same mayor flaw as the spatial features: they do

not depend on the target sequence. Even though we could include the target sequence

in the underlying MSA, these MSAs typically contain 3-figure numbers of sequences,

so that the impact of the target sequence is negligible. This brings us to another

problem: In order to calculate a meaningful coupling matrix, the MSA needs to consist

of non-redundant sequences only. One typically filters the sequences with a pairwise

sequence identity threshold. Additionally, a certain minimum number of sequences

needs to remain after the filtering. Estimates for the minimum required number of

non-redundant sequences to produce meaningful results range from 30 to 125 [Dickson

et al., 2010].

For this thesis, the statistical coupling matrix was generated as follows: Each row of

the MSA was generated by concatenating the sequences of two (equivalent) building

block instance fragments. The MSA was filtered with an 80 % sequence identity threshold

and turned into a sequence profile. Using that profile, for each site a “conservation”

62

5.10 Structural compatibility features

value can be calculated. The “conservation” is a non-linear measure of how much the

amino acid distribution differs from a random amino acid distribution. Note, that the

random distribution is not flat because some amino acids occur more often than others

in nature. Then, for each pair of sites it can be calculated how a perturbation in one

site changes the conservation value of the other site. To calculate conservation values

and the statistical coupling matrix, I used an implementation by Yip et al. [2008].

sca msa size The size of the MSA, i.e. the number of non-redundant sequences across

all (equivalent) building block instances. Note that the following features are only

defined for sca msa size ≥ 30. → fig. 5.29

conservation [agg] The min, max and avg of the conservation value at any of the

n = |I|+ |J | sites.

sca avg The SCA matrix is a symmetric n×n matrix. This feature averages all matrix

cells that represent an inter-fragment coupling, i.e. 1
|I|·|J | ·

∑
i∈I

∑
j∈J SCAi,j .

sca stddev The standard deviation of all inter-fragment coupling values.

sca over stddev[factor] Counts how many inter-fragment coupling values are greater

than sca avg + sca stddev · factor with factor ∈ {1, 2}. → fig. 5.30

number of sca contacts[threshold] :[agg] This feature is an attempt to model the

correlation between sequence conservation and structural contacts. Similar to

number of contacts[threshold] :[agg], but only counting contacts where the two

sites have a statistical coupling value above sca avg + sca stddev. → fig. 5.31

As already mentioned, the main problem with the SCA based features is that they

are only defined for sca msa size ≥ 30 which usually is only given for ≈ 20% of matches.

Another problem is that there are many possible ways to turn a matrix into a single

representative feature.

5.10 Structural compatibility features

The following idea and most of its code was contributed by Mahmoud Mabrouk. For

his thesis (assembly), he was examining whether sequentially overlapping matches were

structurally compatible or not. Compatible matches can be used alongside each other

63

5. FEATURES

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

2,000

4,000

RMSD

sc
a
m
sa

si
ze

Figure 5.29: Feature sca msa size; see section 5.9

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0

20

40

RMSD

sc
a
ov
er

st
d
d
ev
1

Figure 5.30: Feature sca over stddev1; see section 5.9

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0

2

4

RMSD

n
u
m
b
er

o
f
sc
a
co
n
ta
ct
s5
.5
:a
v
g

Figure 5.31: Feature number of sca contacts5.5:avg; see section 5.9

64

5.10 Structural compatibility features

to generate prediction constraints; non-compatible matches are mutually exclusive. In

practice, compatibility is defined as both matches being superimposable within a certain

threshold.

What is especially compelling about this idea is that correct matches are mostly1

compatible with other correct matches. At the same time, incorrect matches are relatively

unlikely to be compatible with each other. In consequence, the more compatible matches

a building block has, the more likely it is a correct match.

He originally implemented this idea by first doing an all vs. all structure alignment

of the overlapping parts of the matches. This essentially gave him a weighted graph

where the vertices are the matches and the edge weight is given by their RMSD. He then

applied a cut-off to obtain an unweighted graph and mined this graph for maximum

cliques. The building blocks in the biggest clique(s) were pretty likely to be correct

matches.

The problem with this strategy is that it does not make a statement about most

of the building blocks, because they are not part of the top clique(s). However, a

correct match could have little to none sequentially overlapping & compatible matches,

especially if there is a small number of correct matches. Thus, this approach needs to

process a lot of matches; even if those are available for one particular target, an all vs.

all structural alignment is quite computationally expensive; so is mining for maximum

cliques.

Based on his initial idea, the following features – applicable to all matches which

have at least one sequentially overlapping match – are defined:

struct compat overlaps The number of sequentially overlapping matches (with at

least 3 overlapping residues).

struct compat rmsd The average RMSD between these matches (all vs. all).

→ fig. 5.32

struct compat compatibility The number of these matches that have at least one

such RMSD < 2.7 Å divided by struct compat overlaps. → fig. 5.33

1since we are working with cutoffs, compatibility/correctness is not transitive

65

5. FEATURES

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

2

4

RMSD

st
ru
ct

co
m
p
at

rm
sd

Figure 5.32: Feature struct compat rmsd; see section 5.10

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

0.5

1

RMSD

st
ru
ct

co
m
p
at

co
m
p
at
ib
il
it
y

Figure 5.33: Feature struct compat compatibility; see section 5.10. This plot is quite the

opposite of what I expected; I would have expected it to be reflected across a horizontal

line at 0.5. Values of exactly 1.0 are easy to explain: many of them are not significant

because struct compat overlaps could be 1. The rest of the expected correlation is probably

displaced by the following phenomena: The shorter the target protein, the higher the

probability of an sequential overlap and the lower the information gain through that. Also,

overlapping matches seem to be often homologous to each other. This explains why high

compatibilities are spread across the whole RMSD spectrum. It doesn’t explain why low

compatibilities are mostly found for low RMSDs, though.

66

5.11 Sequence clustering based features

5.11 Sequence clustering based features

To recall, HHsearch’s “Probability” tries to model the probability P (Ai ∩Bi) = P (Ai) ·

P (Bi | Ai) (c.f. fig. 4.4 for event definition) with mixed results. This is not to say that

HHsearch performs bad – a great deal of it’s matches are correct – it’s just that the

ranking of the matches is too noisy.

Because sequence is literally the only information we have about both the target

protein and the building blocks, it makes sense to have a closer look. The following idea

is based on the fact that some sequence fragments occur (with slight variations) more

often than others in the PDBSS. For simplicity, I will explain the idea for single-fragment

matches first: Let’s say we have a fragment where the sequence (or a very similar one)

occurs often in the PDBSS, but has many completely different structures; and there

is another fragment whose sequence occurs equally often, but always has the same

structure. Let’s also assume that HHsearch found both matches on the same target

protein and that both matches have similar scores. If I had to choose between one of

these matches, I suppose the later one would be the better choice because it has proven

to be a more robust sequence-structure relationship.

To formalize this idea, one can express it as a conditional probability:

P (B∗
i | A∗

i) =
P (A∗

i ∩B∗
i)

P (A∗
i)

Note how there is an asterisk at each event which is meant to express that the alignment

position is neglected, i.e. fragment i aligns at least once anywhere on the target (A∗
i and

B∗
i still need to align at the same position of course). Consequently these probabilities

are agnostic of the sequence alignment score; this seems acceptable because the score is

already contained in other features.

Unfortunately P (A∗
i ∩B∗

i) and P (A∗
i) are hard to obtain. But assuming that the

size N of the PDBSS is big enough and samples the target protein’s homologs equally,

one could approximate them with the relative frequency:

P (A∗
i ∩B∗

i) ≈
|A∗

i ∩B∗
i |

N

P (A∗
i) ≈

|A∗
i |

N

67

5. FEATURES

Where |A∗
i | is the number of witnesses that contain at least one fragment that has a

similar sequence and |A∗
i ∩B∗

i | is the number of witnesses that contain at least one

fragment that additionally has the same structure as the fragment in question.

For two-fragment building block matches, one can say accordingly:

P (B∗
1 ∩B∗

2 | A∗
1 ∩A∗

2) =
P (B∗

1 ∩B∗
2 ∩A∗

1 ∩A∗
2)

P (A∗
1 ∩A∗

2)

with

P (B∗
1 ∩B∗

2 ∩A∗
1 ∩A∗

2) ≈
|B∗

1 ∩B∗
2 ∩A∗

1 ∩A∗
2|

N

P (A∗
1 ∩A∗

2) ≈
|A∗

1 ∩A∗
2|

N

resulting in

P (B∗
1 ∩B∗

2 | A∗
1 ∩A∗

2) ≈
|B∗

1 ∩B∗
2 ∩A∗

1 ∩A∗
2|

|A∗
1 ∩A∗

2|
As hinted before, the problem is that this approximation uses the law of large numbers

and in this contextN ≈ 5100 is probably not large enough. Also, the absolute frequencies

are often both 1. This makes P (B∗
1 ∩ B∗

2 | A∗
1 ∩ A∗

2) = 100% which is of course an

artifact. To enable the learner can detect this, I will additionally use the numerator

and the denominator as separate features.

bayesian1 denominator [mt] The number of witnesses where there exist two non-

overlapping building block fragments f1 and f2; The sequence of fx has to belong

to the same sequence cluster as the ixth fragment of the match.

bayesian1 numerator [mt] The subset of witnesses mentioned before where f1 and

f2 come form a building block instance that belongs to the same building block

as the match.

bayesian1 [mt] bayesian1 numerator [mt] divided by bayesian1 denominator [mt].

bayesian2 denominator [mt] Similar to bayesian1 denominator [mt] but fx may

also come from the same sequence cluster as any fragment that aligned at the

exact same target residue range as the ixth fragment of the match. Ideally, all

fragments that align at the same spot should belong to the same sequence cluster.

In reality this isn’t always the case because HHsearch can find distant sequence

similarities and because the target sequence fragment might be equally close to

multiple clusters (aliasing).

68

5.11 Sequence clustering based features

bayesian2 numerator [mt] Analogous to bayesian1[mt]. → fig. 5.34, fig. 5.35

bayesian2 [mt] bayesian2 numerator [mt] divided by bayesian2 denominator [mt].

→ fig. 5.36

with mt being the sequence clustering method and threshold; one of:

I14 Using MCL (see section 3.4) with an inflation parameter of i = 1.4.

I16 As before, using an inflation parameter of i = 1.6.

T5 Sequences belong to the same sequence cluster if they can be aligned with an

E-value ≤ 5 (note that a sequence can belong to multiple clusters according to

this definition).

T10 As before, using an E-value threshold of 10.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

5

RMSD

b
ay
es
ia
n
2
n
u
m
er
at
or

I1
4

Figure 5.34: Feature bayesian2 numerator I14; see section 5.11

69

5. FEATURES

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

2

4

6

RMSD

b
ay
es
ia
n
2
n
u
m
er
at
or

T
5

Figure 5.35: Feature bayesian2 numerator T5; see section 5.11

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

0.5

1

RMSD

b
ay
es
ia
n
2
I1
6

Figure 5.36: Feature bayesian2 I16; see section 5.11

70

6

Classification

6.1 Training set

In supervised learning one usually partitions the samples (each two-fragment building

block match being a sample) into a training set and a test set. The training set is

used to train the classifier and the test set is used to measure its performance. To

avoid artifacts induced by the partition, one generates multiple different partitions and

averages the results.

Under the assumption that all samples are independent, the samples can be randomly

assigned to either the training set or the test set. Unfortunately, this is not the case

for building block matches: When samples that come from the same target protein are

found in both the training and the test set, classifiers perform much better (c.f. Gao et al.

[2009]). However, in a blind protein structure prediction situation like CASP, all samples

of the current target are unlabeled. Therefore the samples have to be partitioned in a

way that samples from the same target are only found in exactly one of the two sets.

Another problem are unbalanced training sets: Many machine learning algorithms

act undesirably when fed with a training set that has way more samples from one class

(“majority class”) then from the other class (“minority class”). If for example 90 % of

samples are labeled with the positive class (correct matches), the resulting model might

predict the positive class for any input. Ideally a training set contains roughly the same

number of samples per class.

71

6. CLASSIFICATION

6.1.1 Leave-one(-target)-out validation

A simple way to do validations given these constraints is to regard the samples from

each target protein as a different test set. The training set is then defined as all the

remaining samples. To avoid the class imbalance problem, the training set is balanced

through majority class under-sampling in a way that for each target protein in the

training set there is roughly the same number of positive and negative samples (i.e. the

majority class is determined independently for each target protein). Also the number of

samples per target protein is limited to a maximum number (currently 40) in order to

avoid over-representation of a certain target protein.

The problem with this leave-one-out type of validation is that some target proteins

have only very few samples of one or both of the two classes while other target proteins

have thousands of samples. Depending on how one calculates/averages the performance

measures, this either leads to unjustified under-representation of such target proteins or

to hazardously low resolution of the performance measures. For example, performance

measures for a target protein that has only two samples can only be 0 %, 50 % or 100 %.

6.1.2 K-fold cross-validation

To address this problem, one can aggregate target proteins into bigger batches: In k-fold

cross-validation one divides the dataset into k roughly same sized subsets (“batches”).

A new model is then trained k times, each time using a different one of these batches as

the test set and the rest of the dataset as the training set.

The partition into batches and the composition of each batch have to be optimized

according to multiple criteria: batches should be balanced and have roughly the same

size; targets should not be hugely over-represented and map to exactly one batch. At

the same time, as few samples as possible should be deleted in order to avoid loosing

precious data. Of course there is often no solution that fulfills all these criteria, so I

developed a heuristic algorithm that finds an acceptable solution for most cases.

One mayor difference between cross-validation and leave-one-target-out validation

is that the test set of the former is balanced while the test set of the later is not

necessarily balanced. Thus it is necessary to verify the performance measures obtained

for cross-validation, see section 7.1.

72

6.2 Feature selection

6.2 Feature selection

Different learning algorithms have varying susceptibility for noisy and/or redundant

features. For example, a k-nearest-neighbor (kNN) classifier that uses an Euclidean

distance measure puts the same weight on every dimension. Therefore, a noisy dimension

diminishes the weight of each meaningful dimension and redundant dimensions effectively

increase the weight of the aspect they are modeling. Also, the calculation of some of

the previously mentioned features is quite time consuming, so it would be beneficial to

know if some of them don’t add any value and thus can be skipped entirely.

Feature selection algorithms can be classified into filter, wrapper and embedded

methods. They can also be classified whether they are univariate or multivariate. The

former look at features independently, the later also identify features that augment

each other when selected together. A wrapper method typically wraps around a

cross-validation and optimizes the performance by trying different subsets of features.

A filter method finds an optimal feature subset independently from the learner and

embedded methods integrate the feature selection into the learning process e.g. decision

trees or other learners that include a pruning step.

In this thesis it comes down to using either a filter method or a wrapper method.

The problem with most wrapper methods is that they take a long time to finish. With

currently around 140 feature variations, a brute force wrapper is out of the question

because of O(2n). Even a heuristic wrapper method like forward/backward selection

takes weeks/months to finish. This issue gets even worse because unfortunately, the very

limited amount of available data (only 105 CASP9 targets with matches, some of them

with very few matches) prohibits that one can set aside some of the targets solely for

the purpose of selecting features with them. Therefore a k-fold cross-validation would

need k feature selections, each of them wrapped around a k − 1-fold cross-validation.

This is impractical, even for small k and especially for leave-one-out validation.

In this thesis, minimum-redundancy-maximum-relevance (MRMR) feature selection

[Peng et al., 2005] and SVM based recursive feature elimination (SVM-RFE) [Guyon

et al., 2002] were tested. MRMR is a filter method that iteratively adds features that cor-

relate best with the label and are least redundand to already added features. SVM-RFE

interatively trains an SVM and removes the features with the lowest weights1. Both

1even though SVM-RFE is a wrapper method by definition, it does not directly optimize the

73

6. CLASSIFICATION

algoritms can be configured to select a certain number of features. The features selected

by MRMR consistently performed slightly better than SVM-RFE in a downstream

cross-validation.

6.3 Choosing a classifier

The following variables are tested for building block classification.

• Learning algorithm: I tested Support Vector Machines (SVMs; implementation

by Rüping [2004]), AutoMLP [Breuel and Shafait, 2010] – a neural network

learner with automatic learning rate and size adjustment – and k-nearest-neighbor

classification. Parameter optimization showed that SVMs work best on the given

dataset with a “dot” (inner product) kernel and the C (complexity) parameter

set to 0.01 – 0.1; kNN works best with k between 4 and 7 using “weighted vote”.

• Number of features: I tested 1, 5, 10, 15, 20 and all features selected by MRMR.

• RMSD threshold: The data is way to noisy to directly predict the RMSD as a

floating point value, but it is interesting to know how well the binary classification

performs across different RMSD thresholds. I tested threshold between 1 Å and

3.5 Å in 0.25 Å steps.

The performance is measured in classification accuracy, sensitivity and specificity.

accuracy
TP + TN

TP+ FP + TN+ FN

sensitivity
TP

TP + FN

specificity
TN

FP + FN

TP (true positive) a correct match that was classified as a correct match

FP (false positive) an incorrect match that was classified as a correct match

classification performance via cross-validation and therefore has time characteristics that are typically

associated with filter methods

74

6.3 Choosing a classifier

TN (true negative) an incorrect match that was classified as an incorrect match

FN (false negative) a correct match that was classified as an incorrect match

These measures are calculated using a 4-fold cross-validation with around 500 samples

per batch. Across all RMSD thresholds, a total of 3200 distinct samples is used. Note

that the feature selection happens independently for each training set. The graphs show

that an RMSD threshold of 2.75 Å can be classified best. It appears that all learners do

well, although SVMs and neural networks perform significantly better. The difference

between SVMs and neural networks is small; for 2.75 Å, SVM has better sensitivity

while neural networks have better specificity. Interestingly, the SVM does not work

at all for the unfiltered features (all examples are classified as negatives; not shown in

graphs).

If only a single feature is selected, usually seq evalues min or seq probab max are

chosen. This is interesting because this means that for two fragments, the better

matching fragment is more significant than the worse matching fragment. Of course

this probably depends on the Evalue thresholds that were used for the training set and

might not necessarily hold true when thresholds are chosen more daringly. When 5

features are selected, typically both of these together with 3 non-HHsearch features are

selected. More details about well-performing features can be found in section 7.2. It

seems that the specificity for 10 or more features stays roughly the same. The sensitivity

stays roughly the same for 15 features or more. All classifiers perform better if the

features are normalized with the Z-transformation (comparison not shown).

In conclusion, it seems that a reasonable combination would be an SVM learner

using the top 15 normalized features selected by MRMR.

For readability sake, the following graphs show only a representative subset of the

tested combinations.

75

6. CLASSIFICATION

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5
0.65

0.7

0.75

0.8

0.85

0.9

RMSD threshold

ac
cu

ra
cy

kNN(20)

kNN(all)

NN(15)

NN(20)

SVM(1)

SVM(5)

SVM(10)

SVM(15)

SVM(20)

SVM(25)

Figure 6.1: Classification accuracy across different RMSD thresholds determined by 4-fold

cross-validation. Each line represents a different number of features + learner combination.

76

6.3 Choosing a classifier

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

0.7

0.75

0.8

0.85

0.9

RMSD threshold

se
n
si
ti
v
it
y

kNN(20)

kNN(all)

NN(15)

NN(20)

SVM(1)

SVM(5)

SVM(10)

SVM(15)

SVM(20)

SVM(25)

Figure 6.2: Classification sensitivity across different RMSD thresholds determined by

4-fold cross-validation. Each line represents a different number of features + learner

combination.

77

6. CLASSIFICATION

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

0.5

0.6

0.7

0.8

0.9

RMSD threshold

sp
ec
ifi
ci
ty

kNN(20)

kNN(all)

NN(15)

NN(20)

SVM(1)

SVM(5)

SVM(10)

SVM(15)

SVM(20)

SVM(25)

Figure 6.3: Classification specificity across different RMSD thresholds determined by 4-fold

cross-validation. Each line represents a different number of features + learner combination.

78

7

Results

7.1 Classification performance

To evaluate the actual contribution that this thesis would do to the CASP pipeline, the

accuracy/sensitivity/specificity graphs are not meaningful enough. To understand why,

let’s look at the following extreme examples: On the one hand there is a target with a

handful of non-overlapping building block examples. In this case, a wrong classification

of any of the building block matches would have a direct impact on the prediction

quality, because a false positive would result in incorrect constraints; a false negative

would result in “wasted” constraints. On the other hand there is a target with hundreds

of matches – of course overlapping each other to a large degree –, most of them correct

matches. In this case, a wrong classification is less likely to have a negative effect on the

prediction because only a subset of the matches can be selected so that it is mutually

compatible, anyway.

So, in order to determine this thesis’ contribution in a meaningful way, one would

have to do an actual assembly, i.e. cover the target sequence as optimally as possible

with building blocks that where classified as positives. Sadly an optimal assembly

algorithm is not yet available at this point. Even if it were, it could potentially be so

complex on its own that it adds a lot of “noise” to the measurement. Therefore, I have

developed two very simplified assembly models that hopefully enable a more realistic

examination of the classifiers’ contribution.

For both models, different algorithms that are able to rank matches are tested:

random ranks matches at random,

79

7. RESULTS

naive ranks matches by seq evalues min ascending (c.f. section 7.2),

prediction (no bail) ranks matches by their confidence1 of belonging to the positive

class (descending),

prediction does the same but filters out confidences below 50 %,

hybrid if the whole target protein has not a single match with a confidence above

50 %, this algorithm falls back to “naive”. Otherwise, it ranks matches by

seq evalues min but filters out confidences below 50 %.

The performance of the ranking algorithms is measured residue-wise; the slightly

unorthodox2 confusion matrix looks like this:

TP (true positive) A residue where the selected match is correct.

FP (false positive) A residue where the selected match is incorrect.

TN (true negative) A residue where no match was selected and indeed none of the

matches were correct.

FN (false negative) A residue where no match was selected but at least one of the

matches were correct.

Note that Ω = TP ∩ FP ∩ TN ∩ FN is the set of residues that are covered with at least

one match (as opposed to all residues of the target protein).

The two assembly models are as follows:

residue wise selection For each residue, the highest ranking match is selected. This

model has two mayor problems: For once, selected building blocks are not neces-

sarily mutually compatible. The other problem is that only the “prediction” and

the “hybrid” ranking algorithm can produce negatives with this model.

In order to make the differences between the ranking algorithms more visible, I

filtered Ω so that it only contains residues that have at least one negative match.

Because otherwise, due to the generally good quality of the retrieved matches,

1produced by the SVM implementation; derived from the distance of the sample to the SVM

hyperplane
2note how residues that have both correct and incorrect matches are not inherently positive/negative

but their ground truth is determined by the selected match

80

7.1 Classification performance

ranking algorithms that won’t predict negatives have an advantage. On the other

hand, this preprocessing favors ranking algorithms that do predict negatives.

Therefore, the truth probably lies somewhere in the middle.

forward selection assembly Matches are selected iteratively: Initially, every match

is a candidate. In each iteration, the best ranking match is selected from the

list of candidates. Then, all matches that are incompatible with the current

selection are removed from the list of candidates. A match is incompatible with

the current selection if it overlaps any of the already selected matches sequentially,

but not structurally (c.f. section 5.10). The algorithm terminates when the list of

candidates is empty. For the calculation of the confusion matrix, only the first

selected match per residue matters. Note how this model can elegantly reassemble

more-than-two fragment matches, because all two-fragment subsets of the same

match are of course compatible with each other.

This model solves/alleviates both of the previous model’s problems; the random

and the naive classifier can now produce unmatched residues because all matches

at one particular residue might be incompatible with previously selected matches.

This is also key to understanding the disadvantage of this model: If any of the

ranking algorithms selects a big incorrect match, this could mean that many

sequentially overlapping correct matches are pruned (because they are most likely

structurally incompatible with the incorrect match). While this is of course quite

realistic (assuming that mutually compatible matches are a requirement!), it might

add noise.

Classification performances using the different ranking algorithms and assembly models

can be seen in table 7.1. Using the “forward selection assembly” model, the “hybrid”

algorithm achieves better precision than the “naive” algorithm for 18 targets; it achieves

a worse precision for only five targets. Upon closer inspection, four of these five targets

only have a “naive” precision lower than 40 %, anyways. Only in one case, the precision

goes down from 94.4 % to 85 %. Whereas 15 of the 18 targets with better performance

go up to 100 %. So, in total, the “naive” algorithm achieves 100 % precision for 46

targets and the “hybrid” algorithm achieves it for 61 targets. Of course, the “hybrid”

algorithm also results in less covered residues, but on average only 1.06 less true positive

residues per target than the “naive” algorithm.

81

7. RESULTS

aaaaaaaaaa
ranking

model residue wise

unfiltered Ω

residue wise

filtered Ω

forward selection

assembly

random 69.2 % 45.8 % 63.0 % / 53.8 %

naive 72.0 % 52.1 % 67.5 % / 59.4 %

prediction (no bail) 71.3 % 51.4 % 65.0 % / 53.7 %

prediction 76.9 % / 80.2 % 65.7 % / 77.9 % 71.0 % / 63.3 %

hybrid 80.5 % / 79.7 % 70.9 % / 76.6 % 76.2 % / 65.8 %

Table 7.1: Average precision/accuracy across CASP9 targets. Note that target proteins

that do not have any correct match are excluded because the classification doesn’t matter

for these anyway (not to be confused with residues that do not have a correct match).

Looking at targets where classification accuracy is poor, it is apparent that free

modeling (FM) targets (according to a classification in Kinch et al. [2011]) are a mayor

concern. In fact, any match on a FM target gets classified as incorrect. This might

be because the training set consist of only ≈ 10 % FM targets and therefore both the

feature selection and the classifier are geared towards template based modeling (TBM).

From the five targets with worse precision (see above), one is a FM target, the other

ones are TBM targets.

7.2 Best performing features

Apart from the the actual contribution in the project context, the bigger picture of this

thesis is to present features that can classify building blocks. Even though the plots in

chapter 5 show that some of the features seem to work well, the plots don’t give much

insight as to how they perform relative to each other. The plots especially don’t show

when two features are redundant, i.e. two features might both work well in classifying

almost the same subset of samples.

The best performing features were determined by performing a leave-one-target-out

cross-validation with an RMSD threshold of 2.7 Å. MRMR was configured to select

15 features for each training set. Due to the fact that each training set is slightly

different, each training set can result in a slightly different set of features. Table 7.2

shows the most frequently selected features across all training sets (each training set

spanning 104 targets, resulting in a total of ≈ 1700 samples).. As mentioned before, the

82

7.2 Best performing features

Feature name Frequency in %

frags reverse 100

witness same instance 100

seq separation 12 ratio align 100

seq separation diff 100

seq probab max 100

seq probab prod 100

seq evalues min 100

length match ratio 99

seq ranks max 92.4

bayesian2 numerator I16 58.1

bayesian2 numerator I14 56.2

bayesian2 numerator T5 40

seq probab min 39

equivgroups pdbs 23.8

sca msa size 21

no of witnesses 17.1

seq ranks min 13.3

num scop families 6.7

acc max 3.8

hbonds max 3.8

seq separation 12 ratio 2.9

seq evalues max 2.9

equivgroups 2.9

num scop superfamilies 1.9

bayesian2 I16 1

frags adjoining 1

num structure exceptions:max 1

Table 7.2: Best performing features as selected by MRMR.

83

7. RESULTS

Feature name Frequency in %

seq evalues max 84.6

distance max:avg 84.6

seq probab min 76.9

distance max:max 69.2

distance max:min 53.8

struct compat overlaps 53.8

seq probab prod 53.8

frags reverse 53.8

seq separation stddev 38.5

is largest local 38.5

seq evalues min 38.5

sca msa size 30.8

hbonds max 30.8

hbonds avg 30.8

distance min:min 30.8

seq separation diff 23.1

bayesian2 denominator T5 23.1

frags adjoining 23.1

struct compat compatibility 23.1

witness rmsd avg 23.1

seq ranks max 23.1

Table 7.3: Best performing free modeling features as selected by MRMR.

classifier performs well for TBM targets, but poorly for FM targets. Therefore another

cross-validation was conducted, this time using only FM targets. Table 7.2 shows the

most frequently selected features across all FM training sets. It shall be noted that the

data for this test was sparse (each training set spanning only 12 targets, resulting in

a total of only ≈ 200 samples). Furthermore, even with the feature selection and the

classifier geared towards FM targets, precisions only went up to 8 % – 16 % for 4 of the

targets.

84

7.3 Conclusions

7.3 Conclusions

• Many of the shown feature plots show some kind of relationship between the

feature and the RMSD, but all of them have a large degree of noise.

• The proposed classifier provides a significant improvement in both of the assembly

models and “raw” classification accuracy/sensitivity/specificity. In consequence,

the classifier is a valuable contribution no matter if the structure prediction

requires mutually compatible constraints or not.

• The classifier only performs well for TBM targets. Free modeling targets can’t

be classified with reasonable results at this point. For the tested FM targets,

the proposed “hybrid” ranking algorithm would not have had a negative impact,

because it falls back to “naive” ranking if no matches are classified as correct.

Due to the fact that CASP10 will most likely have only a small portion of FM

targets, it seems reasonable to use all CASP9 targets as a training set for the

CASP10 run.

• Our setup for CASP10 calculates 12 top performing features for each building

block match. Using CAPS9 targets as the training set, the matches are classified

as correct and incorrect with an SVM learner. The assembly modules currently

lack a method of generating mutually compatible constraints. Therefore, forward

selection assembly (with “hybrid” ranking) is used in the CASP pipeline.

• The best performing features across all targets contain a lot of features that are

essentially modeling the number of witnesses of some sorts (such as no of witnesses,

sca msa size, bayesian2 numerator [mt] and equivgroups pdbs). For FM targets,

these features play little to no role. A similar pattern can be observed for sequence

separation based features, witness same instance and frags match ratio. All of

these differences intuitively make sense, because they bias towards matches that

come from very similar templates.

• For FM targets, some of the more sophisticated features get some attention, for

example distance max:[agg] and struct compat overlaps.

85

7. RESULTS

• For TBM targets, it seems to be a good tactic to use the alignment “E-

value”/“Probability” of the better of two fragments. This is somewhat surprising

because conservatively one would think that a multi-fragment alignment is only as

good as its worst fragment. For FM targets, this conservative assumption is indeed

more appropriate. This discrepancy is probably due to TBM targets generally

yielding higher scoring alignments and co-occurrence of fragments playing an

increased role compared to FM targets.

• The only features that rank among the best features for both FM and TBM are

frags reverse and the ones derived from HHsearch’s scores.

• The SCOP based features (section 5.7) perform worse compared to other features

that model the number of witnesses. Apparently, the generalizability of a building

block plays a secondary role (especially for TBM). Even though top scop families

has a promising plot it is probably redundant to other features.

• SCA (statistical coupling analysis) based features (section 5.9) and hydrophobicity

patterns (section 5.6) do not work well because they are both noisy. Furthermore,

SCA based features are only defined for a fraction of the building blocks.

• Low solvent accessibility (section 5.6) i.e. interiority of a building block seems

to be correlated with the RMSD, but plays only a minor role compared to other

features.

• The size of the fragments plays no significant role even though bigger fragments

are more statistically significant.

• The sequence clustering based features (section 5.11) work fairly well. Interestingly,

the the feature selection chose the numerators more often than the fraction itself.

The numerators are essentially just another variation of number of witnesses.

There is not definitive answer as to which clustering method/threshold works best.

In fact, sometimes the same feature with a different clustering method/threshold

is chosen twice in the top 15 features. This is particularly surprising because one

would expect those features to be redundant and MRMR tries to keep feature

redundancy to a minimum.

86

7.4 Future work

• Witness density features (section 5.4) do not play much of a role. Together with

the good performance of features that model the number of witnesses it can be

said that the building block grouping strategy discussed in section 2.3 seems to be

appropriate for the current database size. However, sequence profiles of building

blocks can neither be used for retrieval nor as features (section 5.2) because they

are too noisy.

• Structural compatibility (section 5.10) features are not worthwhile the way they

are currently calculated. Figure 5.33 even has a very unintuitive plot.

• Target independent features like fragment length, spatial features, SCA based

features, is largest local, witness density, no of witnesses perform indeed worse

than target dependent features (c.f. section 4.2). The only exception to this rule

is distance max:[agg] for FM targets.

7.4 Future work

• The current way to achieve a balanced training set is naive under-sampling.

Even though the under-sampling happens according to certain constraints (see

section 6.2), there are many more sophisticated tactics in the literature of how to

deal with highly skewed training data. It would be interesting to try for example

the “Neighborhood Cleaning Rule” [Laurikkala, 2001]; this tactic removes majority

samples that lead to a misclassification of minority samples by looking at the

three nearest neighbors of each sample.

• The current dataset only includes CASP9 targets. As that the retrieval does not

yield any samples for some of the targets, only 105 targets remain for experimenta-

tion. Only 12 of them are FM targets which not enough to draw any conclusions.

The next step would be to include CASP8 targets or any other targets that are

not included in the PDBSS.

• A bigger dataset would also have the advantage of being able to set aside a

part of the training set solely for a feature selection that is wrapped around a

cross-validation. One could then filter the features first with MRMR and run a

forward feature selection on the remaining ones.

87

7. RESULTS

• Currently, when none of the samples for one particular target are classified as

correct, the tactic is to fall back to ranking samples by E-value (see “hybrid”

ranking, section 7.1). Another tactic would be to subsequently increase the

predicted RMSD threshold until some matches are classified as correct.

• There are certain TBM targets that work perfectly and others that do not work

at all. It would be interesting to see if the working/failing targets have something

in common. Apart from visually inspecting their structure and the building block

matches, one could color the samples in the feature plots depending on which

target a sample belongs to. This could expose features that work only for a subset

of the targets and are noisy for others.

• Many of the decisions – especially in section 7.1 – are based on the hypothesis

that 100 % precision is more important than coverage of as many residues as

possible with building block matches. This is based on the assumption that the

downstream energy minimization would be significantly disturbed by wrong or

mutually incompatible constraints (c.f. section 1.4). A suitable experiment to test

this hypothesis would be to do protein structure predictions for many or all of

the CASP9 targets; for each target one would make three prediction runs: each

time either using the unfiltered building block matches, the filtered building block

matches or only the matches that remain after forward selection assembly.

• As mentioned in section 5.3, there is a bug in the building block database generation

process that prevent certain types of building block from ending up in the database.

Even frags reverse should theoretically not be dependent on this bug, it would

be interesting to see whether it still remains one of the best performing features

after this bug is fixed. It would also be interesting to investigate how circular

permutated proteins and frags reverse interact.

88

References

Stephen Altschul. The statistics of sequence similarity scores, 1999. URL http:

//www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html. 10

Christian B. Anfinsen. Principles that Govern the Folding of Protein Chains. Science,

181(4096):223–230, July 1973. ISSN 0036-8075. URL http://dx.doi.org/10.1126/

science.181.4096.223. 1

Gail J. Bartlett and William R. Taylor. Using scores derived from statistical coupling

analysis to distinguish correct and incorrect folds in de-novo protein structure predic-

tion. Proteins: Structure, Function, and Bioinformatics, 71(2):950–959, 2008. ISSN

1097-0134. URL http://dx.doi.org/10.1002/prot.21779. 12, 62

Spencer Bliven and Andreas Prlić. Circular permutation in proteins. PLoS computational

biology, 8(3):e1002445, 03 2012. URL http://dx.doi.org/10.1371/journal.pcbi.

1002445. 46

James U. Bowie, Neil D. Clarke, Carl O. Pabo, and Robert T. Sauer. Identification

of protein folds: Matching hydrophobicity patterns of sequence sets with solvent

accessibility patterns of known structures. Proteins: Structure, Function, and Bioin-

formatics, 7(3):257–264, 1990. ISSN 1097-0134. URL http://dx.doi.org/10.1002/

prot.340070307. 55

Thomas Breuel and Faisal Shafait. Automlp: Simple, effective, fully automated learning

rate and size adjustment. In The Learning Workshop, 4 2010. 74

J. M. Bujnicki. Protein-structure prediction by recombination of fragments. Chem-

biochem, 7(1):19–27, January 2006. ISSN 1439-4227. URL http://dx.doi.org/10.

1002/cbic.200500235. 4

89

http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html
http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html
http://dx.doi.org/10.1126/science.181.4096.223
http://dx.doi.org/10.1126/science.181.4096.223
http://dx.doi.org/10.1002/prot.21779
http://dx.doi.org/10.1371/journal.pcbi.1002445
http://dx.doi.org/10.1371/journal.pcbi.1002445
http://dx.doi.org/10.1002/prot.340070307
http://dx.doi.org/10.1002/prot.340070307
http://dx.doi.org/10.1002/cbic.200500235
http://dx.doi.org/10.1002/cbic.200500235

REFERENCES

Christopher Bystroff and David Baker. Prediction of local structure in proteins using a

library of sequence-structure motifs. Journal of Molecular Biology, 281(3):565 – 577,

1998. ISSN 0022-2836. URL http://dx.doi.org/10.1006/jmbi.1998.1943. 12

C. Chothia and A. M. Lesk. The relation between the divergence of sequence and

structure in proteins. The EMBO journal, 5(4):823–826, April 1986. ISSN 0261-4189.

URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1166865/. 2

B.A. Cunningham, J.J. Hemperly, T.P. Hopp, and G.M. Edelman. Favin versus

concanavalin a: Circularly permuted amino acid sequences. Proc Natl Acad Sci U S

A, 76(7):3218–3222, 1979. 46

Pawel Daniluk and Bogdan Lesyng. A novel method to compare protein structures

using local descriptors. BMC Bioinformatics, 12(1):344+, 2011. ISSN 1471-2105.

URL http://dx.doi.org/10.1186/1471-2105-12-344. 5

M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A model of evolutionary change in

proteins. In Atlas of Protein Sequences and Structure, 5:345–352, 1978. 10

Russell J. Dickson, Lindi M. Wahl, Andrew D. Fernandes, and Gregory B. Gloor.

Identifying and Seeing beyond Multiple Sequence Alignment Errors Using Intra-

Molecular Protein Covariation. PLoS ONE, 5(6):e11082, June 2010. URL http:

//dx.doi.org/10.1371/journal.pone.0011082. 62

Narcis Fernandez-Fuentes, Joseph M. Dybas, and Andras Fiser. Structural characteristics

of novel protein folds. PLoS computational biology, 6(4):e1000750+, April 2010. ISSN

1553-7358. URL http://dx.doi.org/10.1371/journal.pcbi.1000750. 51

Xin Gao, Jinbo Xu, Shuai Cheng Li, and Ming Li. Predicting local quality of a

sequence-structure alignment. J. Bioinformatics and Computational Biology, 7(5):

789–810, 2009. URL http://dx.doi.org/10.1142/S0219720009004345. 13, 36, 71

Mitiko Go and Sanzo Miyazawa. Relationshio between mutability, polarity and exteriority

of amino acide residues in protein evolution. International Journal of Peptide and

Protein Research, 15(3):211–224, 1980. ISSN 1399-3011. URL http://dx.doi.org/

10.1111/j.1399-3011.1980.tb02570.x. 55

90

http://dx.doi.org/10.1006/jmbi.1998.1943
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1166865/
http://dx.doi.org/10.1186/1471-2105-12-344
http://dx.doi.org/10.1371/journal.pone.0011082
http://dx.doi.org/10.1371/journal.pone.0011082
http://dx.doi.org/10.1371/journal.pcbi.1000750
http://dx.doi.org/10.1142/S0219720009004345
http://dx.doi.org/10.1111/j.1399-3011.1980.tb02570.x
http://dx.doi.org/10.1111/j.1399-3011.1980.tb02570.x

REFERENCES

Stephan Günnemann, Ines Färber, Brigitte Boden, and Thomas Seidl. Subspace

Clustering Meets Dense Subgraph Mining: A Synthesis of Two Paradigms. In

IEEE International Conference on Data Mining, pages 845–850, 2010. URL http:

//dx.doi.org/10.1109/ICDM.2010.95. 23

Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection

for cancer classification using support vector machines. Mach. Learn., 46(1-3):389–422,

March 2002. ISSN 0885-6125. doi: 10.1023/A:1012487302797. 73

M. Hall. Correlation-based Feature Selection for Machine Learning. PhD thesis, Univer-

sity of Waikato, 1999. URL http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.37.4643. 31

S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from protein blocks.

Proceedings of the National Academy of Sciences, 89(22):10915–10919, November

1992. ISSN 0027-8424. URL http://dx.doi.org/10.1073/pnas.89.22.10915. 10

Enoch S. Huang, Ram Samudrala, and Jay W. Ponder. Ab initio fold prediction of

small helical proteins using distance geometry and knowledge-based scoring functions.

Journal of Molecular Biology, 290(1):267 – 281, 1999. ISSN 0022-2836. URL http:

//dx.doi.org/10.1006/jmbi.1999.2861. 13

Torgeir R. Hvidsten, Andriy Kryshtafovych, and Krzysztof Fidelis. Local descriptors

of protein structure: A systematic analysis of the sequence-structure relationship in

proteins using short- and long-range interactions. Proteins: Structure, Function, and

Bioinformatics, 75(4):870–884, 2009. ISSN 1097-0134. URL http://dx.doi.org/10.

1002/prot.22296. 5

W. Kabsch and C. Sander. Dictionary of protein secondary structure: pattern recognition

of hydrogen-bonded and geometrical features. Biopolymers, 22(12):2577–2637, De-

cember 1983. ISSN 0006-3525. URL http://dx.doi.org/10.1002/bip.360221211.

3, 45, 55

Ilona Kifer, Ruth Nussinov, and Haim J. Wolfson. Protein structure prediction using

a docking-based hierarchical folding scheme. Proteins: Structure, Function, and

Bioinformatics, 79(6):1759–1773, 2011. ISSN 1097-0134. URL http://dx.doi.org/

10.1002/prot.22999. 5

91

http://dx.doi.org/10.1109/ICDM.2010.95
http://dx.doi.org/10.1109/ICDM.2010.95
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.4643
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.4643
http://dx.doi.org/10.1073/pnas.89.22.10915
http://dx.doi.org/10.1006/jmbi.1999.2861
http://dx.doi.org/10.1006/jmbi.1999.2861
http://dx.doi.org/10.1002/prot.22296
http://dx.doi.org/10.1002/prot.22296
http://dx.doi.org/10.1002/bip.360221211
http://dx.doi.org/10.1002/prot.22999
http://dx.doi.org/10.1002/prot.22999

REFERENCES

Lisa N. Kinch, Shuoyong Shi, Hua Cheng, Qian Cong, Jimin Pei, Valerio Mariani,

Torsten Schwede, and Nick V. Grishin. Casp9 target classification. Proteins: Structure,

Function, and Bioinformatics, 79(S10):21–36, 2011. ISSN 1097-0134. URL http:

//dx.doi.org/10.1002/prot.23190. 4, 82

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated An-

nealing. Science, Number 4598, 13 May 1983, 220, 4598:671–680, 1983. URL

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.4175. 3

Rachel Kolodny, Patrice Koehl, Leonidas Guibas, and Michael Levitt. Small libraries of

protein fragments model native protein structures accurately. Journal of molecular

biology, 323(2):297–307, October 2002. ISSN 0022-2836. URL http://view.ncbi.

nlm.nih.gov/pubmed/12381322. 2

Jorma Laurikkala. Improving identification of difficult small classes by balancing class

distribution. In Proceedings of the 8th Conference on AI in Medicine in Europe:

Artificial Intelligence Medicine, AIME ’01, pages 63–66. Springer-Verlag, 2001. ISBN

3-540-42294-3. 87

Uta Lessel and Dietmar Schomburg. Similarities between protein 3-d structures. Protein

Engineering, 7(10):1175–1187, 1994. URL http://dx.doi.org/10.1093/protein/

7.10.1175. 3

Steve W. Lockless and Rama Ranganathan. Evolutionarily Conserved Pathways of

Energetic Connectivity in Protein Families. Science, 286(5438):295–299, October

1999. ISSN 0036-8075. URL http://dx.doi.org/10.1126/science.286.5438.295.

60

Flavia Moser, Recep Colak, Arash Rafiey, and Martin Ester. Mining Cohesive Patterns

from Graphs with Feature Vectors. In SIAM International Conference on Data

Mining, pages 593–604, 2009. 23

Alexey G. Murzin, Steven E. Brenner, Tim Hubbard, and Cyrus Chothia. SCOP:

A structural classification of proteins database for the investigation of sequences

and structures. Journal of Molecular Biology, 247(4):536–540, April 1995. URL

http://dx.doi.org/10.1016/S0022-2836(05)80134-2. 56

92

http://dx.doi.org/10.1002/prot.23190
http://dx.doi.org/10.1002/prot.23190
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.4175
http://view.ncbi.nlm.nih.gov/pubmed/12381322
http://view.ncbi.nlm.nih.gov/pubmed/12381322
http://dx.doi.org/10.1093/protein/7.10.1175
http://dx.doi.org/10.1093/protein/7.10.1175
http://dx.doi.org/10.1126/science.286.5438.295
http://dx.doi.org/10.1016/S0022-2836(05)80134-2

REFERENCES

E. Neher. How frequent are correlated changes in families of protein sequences? Proceed-

ings of the National Academy of Sciences of the United States of America, 91(1):98–102,

January 1994. ISSN 0027-8424. URL http://dx.doi.org/10.1073/pnas.91.1.98.

62

Tams Nepusz, Rajkumar Sasidharan, and Alberto Paccanaro. Scps: a fast imple-

mentation of a spectral method for detecting protein families on a genome-wide

scale. BMC Bioinformatics, 11:120, 2010. URL http://dx.doi.org/10.1186/

1471-2105-11-120. 24

Britt H. Park, Enoch S. Huang, Michael Levitt, and Beckman Laboratories For. Factors

affecting the ability of energy functions to discriminate correct from incorrect folds.

J. Mol. Biol, 266:831–846, 1997. 13, 59

Florencio Pazos and Alfonso Valencia. Protein co-evolution, co-adaptation and inter-

actions. The EMBO Journal, 27(20):2648–2655, September 2008. ISSN 1460-2075.

URL http://dx.doi.org/10.1038/emboj.2008.189. 62

Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mutual

information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE

transactions on pattern analysis and machine intelligence, 27(8):1226–1238, August

2005. ISSN 0162-8828. URL http://dx.doi.org/10.1109/TPAMI.2005.159. 73

Stefan Rüping. mysvm - a support vector machine, 2004. URL http://www-ai.cs.

uni-dortmund.de/SOFTWARE/MYSVM/index.html. 74

M. I. Sadowski and D. T. Jones. Benchmarking template selection and model quality

assessment for high-resolution comparative modeling. Proteins: Structure, Function,

and Bioinformatics, 69(3):476–485, 2007. ISSN 1097-0134. URL http://dx.doi.

org/10.1002/prot.21531. 11

M. Schiffer and A. B. Edmundson. Use of helical wheels to represent the structures of

proteins and to identify segments with helical potential. Biophys. J., 7:121–135, Mar

1967. 54

Kim T. Simons, Charles Kooperberg, Enoch Huang, and David Baker. Assembly of

protein tertiary structures from fragments with similar local sequences using simulated

93

http://dx.doi.org/10.1073/pnas.91.1.98
http://dx.doi.org/10.1186/1471-2105-11-120
http://dx.doi.org/10.1186/1471-2105-11-120
http://dx.doi.org/10.1038/emboj.2008.189
http://dx.doi.org/10.1109/TPAMI.2005.159
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/index.html
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/index.html
http://dx.doi.org/10.1002/prot.21531
http://dx.doi.org/10.1002/prot.21531

REFERENCES

annealing and bayesian scoring functions. Journal of Molecular Biology, 268(1):209

– 225, 1997. ISSN 0022-2836. URL http://dx.doi.org/10.1006/jmbi.1997.0959.

13

Kim T. Simons, Ingo Ruczinski, Charles Kooperberg, Brian A. Fox, Chris Bystroff,

and David Baker. Improved recognition of native-like protein structures using a

combination of sequence-dependent and sequence-independent features of proteins.

Proteins, 34:82–95, 1999. 12

Johannes Söding. Quick guide to HHsearch, nov 2006. URL ftp://ftp.tuebingen.

mpg.de/pub/protevo/HHsearch/HHsearch1.5.01/HHsearch-guide.pdf. 40, 57

Gurol M. Suel, Steve W. Lockless, Mark A. Wall, and Rama Ranganathan. Evolutionarily

conserved networks of residues mediate allosteric communication in proteins. Nature

Structural & Molecular Biology, 10(1):59–69, December 2002. ISSN 1072-8368. URL

http://dx.doi.org/10.1038/nsb881. 5, 62

Alex Tossi and Luca Sandri. Hydromcalc, 2001. URL http://www.bbcm.univ.trieste.

it/~tossi/HydroCalc/HydroMCalc.html. 54

Stijn van Dongen. faqs and facts about the mcl cluster algorithm, 2010a. URL

http://micans.org/mcl/man/mclfaq.html. 25

Stijn van Dongen. Work flows and protocols for mcl and friends, 2010b. URL http:

//micans.org/mcl/man/clmprotocols.html. 25

Kevin Y. Yip, Prianka Patel, Philip M. Kim, Donald M. Engelman, Drew McDermott,

and Mark Gerstein. An integrated system for studying residue coevolution in proteins.

Bioinformatics, 24(2):290–292, January 2008. URL http://dx.doi.org/10.1093/

bioinformatics/btm584. 63

Yang Zhang and Jeffrey Skolnick. The protein structure prediction problem could

be solved using the current pdb library. Proceedings of the National Academy of

Sciences of the United States of America, 102(4):1029–1034, 2005. URL http:

//dx.doi.org/10.1073/pnas.0407152101. 4

94

http://dx.doi.org/10.1006/jmbi.1997.0959
ftp://ftp.tuebingen.mpg.de/pub/protevo/HHsearch/HHsearch1.5.01/HHsearch-guide.pdf
ftp://ftp.tuebingen.mpg.de/pub/protevo/HHsearch/HHsearch1.5.01/HHsearch-guide.pdf
http://dx.doi.org/10.1038/nsb881
http://www.bbcm.univ.trieste.it/~tossi/HydroCalc/HydroMCalc.html
http://www.bbcm.univ.trieste.it/~tossi/HydroCalc/HydroMCalc.html
http://micans.org/mcl/man/mclfaq.html
http://micans.org/mcl/man/clmprotocols.html
http://micans.org/mcl/man/clmprotocols.html
http://dx.doi.org/10.1093/bioinformatics/btm584
http://dx.doi.org/10.1093/bioinformatics/btm584
http://dx.doi.org/10.1073/pnas.0407152101
http://dx.doi.org/10.1073/pnas.0407152101

	List of Figures
	Glossary
	1 Introduction
	1.1 Protein structure prediction
	1.2 Building block definition
	1.3 Building blocks rationale
	1.4 Project context
	1.5 Goals
	1.6 Related work

	2 A database of building blocks
	2.1 Storage format
	2.2 Data source and quality
	2.3 Eliminating redundancy

	3 Excursus: Sequential clustering
	3.1 Connected component analysis
	3.2 Conventional clustering algorithms
	3.3 Dense subgraph mining
	3.4 Spectral clustering
	3.5 Graph preprocessing

	4 Building block alignments
	4.1 Nomenclature
	4.1.1 Formal definitions

	4.2 What makes a good feature?
	4.3 Fragment co-evolution
	4.4 Statistical significance of RMSD

	5 Features
	5.1 Sequence similarity based features
	5.2 Sequence profile alignment feature
	5.3 Miscellaneous features
	5.4 Witness density based features
	5.5 Sequence separation based features
	5.6 Hydrophobicity based features
	5.7 SCOP based features
	5.8 Spatial features
	5.9 Statistical coupling based features
	5.10 Structural compatibility features
	5.11 Sequence clustering based features

	6 Classification
	6.1 Training set
	6.1.1 Leave-one(-target)-out validation
	6.1.2 K-fold cross-validation

	6.2 Feature selection
	6.3 Choosing a classifier

	7 Results
	7.1 Classification performance
	7.2 Best performing features
	7.3 Conclusions
	7.4 Future work

	References

