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Abstract

The diverse functions of proteins are closely related to their motions. Reve-
aling and analyzing protein dynamics based on protein structure is therefore
a central interest of proteomics. Elastic Network Models (ENMs) are compu-
tationally inexpensive harmonic models of coarse-grained protein dynamics.
Despite their simplicity, the protein motions they predict are of surprising bio-
logical relevance. A recently introduced ENM variant called lmcENM aims to
improve ENMs by allowing them to capture noncollective, local motions rela-
ted to ligand binding that were previously inaccessible to them. These motions
are called localized functional transitions. This is achieved by identifying and
removing certain connections called breaking contacts from the ENM network.
To this end, a Support Vector Machine (SVM) is used, but its classification
performance is still low.

In this thesis, I construct and evaluate a novel Deep Learning-based breaking
contact predictor to be used as a replacement for the SVM in lmcENM. The
model is a Convolutional Neural Network, a common Deep Learning architec-
ture that operates on image data. I show that the model mostly reaches a level
of performance comparable to the SVM, but without depending on complex
hand-crafted graph features. Even though it does not work equally well for all
motion types, the model clearly surpasses the SVM in terms of classification
performance.

I also propose and implement various other improvements to the lmcENM
method, for example extending the method to multichain proteins.

I close with a discussion on future applications of the combination of Deep
Learning and ENMs, of which this thesis is the first exploration.
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Zusammenfassung

Titel:
Faltende neuronale Netzwerke zur Vorhersage von brechenden Kontakten bei
Proteinbewegungen

Die diversen Funktionen von Proteinen hängen eng mit ihren Bewegungen
zusammen. Das Aufdecken und Analysieren von Proteindynamik ist daher
ein zentrales Interesse der Proteomik. Elastische Netzwerkmodelle (ENMs)
sind rechnerisch günstige harmonische Modelle grobaufgelöster Proteindyna-
mik. Trotz ihrer Einfachheit haben die von ihnen vorhergesagten Proteinbewe-
gungen überraschende biologische Relevanz. Eine kürzlich eingeführte ENM-
Variante namens lmcENM versucht ENMs dadurch zu verbessern, ihnen zu
ermöglichen bislang unzugängliche nichtkollektive, lokalisierte Bewegungen im
Zusammenhang mit der Bindung von Liganden abzubilden. Diese Bewegun-
gen heißen lokalisierte funktionale Transitionen. Dies wird erreicht, indem be-
stimmte Verbindungen, genannt brechende Kontakte, identifiziert und aus dem
ENM-Netzwerk entfernt werden. Zu diesem Zweck wird eine Stützvektorma-
schine (SVM) eingesetzt, deren Klassifikationsgenauigkeit allerdings noch ge-
ring ist.

In dieser Arbeit konstruiere und evaluiere ich ein neuartiges Deep Learning-
basiertes Vorhersagemodell für brechende Kontakte, welches als Ersatz für die
SVM in lmcENM eingesetzt werden kann. Das Modell ist ein faltendes neuro-
nales Netzwerk (CNN), eine häufige Deep Learning-Architektur, die auf Bild-
daten operiert. Ich zeige, dass das Modell meist ein Leistungsniveau erreicht,
welches mit der SVM vergleichbar ist, allerdings ohne auf komplexe, hand-
gemachte Graph-Eigenschaften angewiesen zu sein. Auch wenn es nicht für
alle Bewegungstypen gleich gut funktioniert, übertrifft es die Klassifikations-
leistung der SVM klar.

Ausserdem schlage ich verschiedene Verbesserungen der lmcENM-Methode
allgemein vor und implementiere sie, zum Beispiel die Erweiterung auf mehr-
kettige Proteine.

Ich schliesse mit einer Diskussion von zukünftigen Anwendungen der Kom-
bination von Deep Learning und ENMs, von welchen diese Arbeit die erste ist.
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1 Introduction

Proteins are among the most important biomolecules. Just like the genetic material
encoding them, they are essential to life. They are found in every cell and perform
a great variety of functions, from giving structural support, catalyzing very specific
chemical reactions and detecting antigens to allowing muscles to contract and infor-
mation to propagate in the brain. A great variety of functions can be encoded using
sequences of the 20 proteinogenic amino acids [3]. This one-dimensional amino acid
sequence determines a proteins’ native three-dimensional shape to a great extent, a
principle known as Anfinsens’ dogma [6].

But imagining proteins as existing in a single native conformation is not com-
pletely realistic. At reasonable temperatures, proteins vibrate, jiggle and move
around constantly, and so the native state of a protein is more accurately described
as a conformational ensemble around the free energy minimum [33].

Folded proteins not only vibrate randomly around the energy minimum, but have
characteristic motions associated, local and global, that are integral to their func-
tion [10, 59]. In a large majority of cases, these motions are encoded intrinsically
in their structure [114]. Binding of interaction partners is also central for proteins
to carry out their functions. Binding usually results in conformational changes by
shifting the energetically optimal region of conformational space (“conformational
selection mechanism”) [38, 120]. Only rarely does ligand presence actually change
the accessible conformational space itself (“induced fit mechanism”) [66, 114].

The motions associated with binding are called functional transitions. Examples
are receptors changing shape upon small molecule binding [72] (see Figure 1.2),
transporters pumping ions across the cellular membrane [111], and individual steps
of the sequence of motions allowing biomolecular machines like kinesin to walk along
microtubules [15]. Another example involving the therapeutically important HIV
protease enzyme is shown in Figure 1.1.

Protein motion is normally studied using experimental methods like X-ray crystal-
lography or NMR (nuclear magnetic resonance), but these have problems attached:
the insight into protein dynamics they can provide is limited, they are costly, time-
consuming, and may not work for some proteins of interest [27, 67, 89, 91, 127].

A different approach altogether is to perform in silico experiments. The most
common way to study protein dynamics computationally are molecular dynamics
(MD) simulations [18, 48, 60, 90, 101]. The small time steps required for sufficient
accuracy in protein settings combined with the size of macromolecular systems and
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Chapter 1. Introduction

Figure 1.1: First example of a functional transition: Flap opening and closing is
essential for the function of HIV protease. Three major forms are known: closed,
semiopen, and open. In an unrestrained MD simulation devoid of any ligand, the
semiopen conformation was most commonly observed, with the open and closed state
also being part of the ensemble. A ligand stabilized the closed form. This provides in
silico evidence for conformational selection theory. Blue: closed, red: semiopen, cyan:
open conformation, Figure from [49]

their comparatively long relevant timescales lead to an enormous computational
demand that can rarely be satisfied.

An alternative to MD simulations are coarse-grained methods, with the Elastic
Network Model (ENM) being the prime example. ENMs model proteins as a net-
work of point masses representing residues and distance-bounded spring connections
between them. Protein dynamics are then given by Normal Mode Analysis (NMA)
of this system, a technique from physics yielding patterns of motions inherent to
oscillating systems. Despite being highly reduced models, ENMs predict intrinsic
protein dynamics of surprising biological relevance [2, 10, 29, 68, 118].

On the other hand, owing to their simplicity and focus on coarse topology, ENMs
only really work well for global, highly collective motions. They fail to capture lo-
calized or uncorrelated functional transitions, caused by their built-in assumption
that the contact topology does not change significantly between functional confor-
mations [16, 85, 97, 118, 133].

This limitation of ENMs was recently addressed by Putz and Brock in “Leverag-
ing Novel Information for Coarse-Grained Prediction of Protein Motion” [99, 100].
They found that capturing of localized functional motions by ENMs can be greatly
improved by removing springs in certain parts of the protein that are especially

2



1.1. Contributions

Figure 1.2: Second example of a functional transition: a ligand binds to a G protein-
coupled receptor (GPCR), causing the receptor to adopt a new conformation. This in
turn allows G protein binding and subsequently intracellular signaling to take place.
Figure from [72]

mobile during functional transitions, so called breaking contacts. This results in a
network that is locally more flexible in these important regions.

Because in many cases there is only an unbound structure available but not a
bound one, the paper is also about building a machine learning based classifier to
predict breaking contacts from only the unbound structure. This classifier is based
on a Support Vector Machine (SVM). By removing predicted breaking contacts from
the ENM, they arrive at a new ENM variant, called lmcENM (Elastic Network Model
of learned maintained contacts). While the SVM succeeds in predicting breaking
contacts that lead to improved ENMs, there is still much room for improvement
compared to the ground truth: the SVM reaches about half of the improvement
given by the ground truth, which itself is also not a hard limit on possible ENM
performance.

1.1 Contributions

In this thesis, I present a novel classifier to predict protein breaking contacts based
on a ResNet, which is a type of Convolutional Neural Network model (CNN). This
classifier can serve as a replacement for the SVM used in lmcENM. CNNs are the
standard deep learning model in computer vision and are also often used in com-
putational structural biology [1, 77, 80, 125, 131]. I model the breaking contact

3



Chapter 1. Introduction

prediction problem accordingly and argue that the inductive biases of CNNs make
them a good fit. Using a CNN especially allows to forgo complex hand-crafted graph
features used in lmcENM and to enlarge the sequential context available for pre-
diction. Additionally, I increase the dataset size, partly by expanding my method
to multichain proteins. Furthermore, I introduce some novel features, showing that
they are useful for breaking contact prediction. I also introduce the concept of
breaking contact relevance heuristics and apply it to the lmcENM pipeline, leading
to improved ENM results. To the best of my knowledge, the present work is the
first application of Deep Learning to Elastic Network Models.

1.2 Thesis structure

Chapter 2 explains the theory of ENMs and machine learning necessary to under-
stand the model developed in this thesis and its context. Chapter 3 explains the
details of how the reference method lmcENM [99] works, which my model is based
on. Additionally, I discuss some related variants of the Elastic Network Model and
how they relate to lmcENM and my method.

In chapter 4, I present the model developed in this thesis along with the new
dataset used to train it. I discuss the experiments performed while building the
model, their results and implications in chapter 5. I draw a conclusion in chapter 6,
and in chapter 7, I present ideas and directions for future work.

4



2 Background

2.1 Elastic Network Models

Elastic Network Models (ENMs) are coarse-grained methods to study and predict
intrinsic protein dynamics. They predict thermal fluctuations of proteins around
their equilibrium conformation. ENMs represent proteins by a network of point
masses and spring connections between them (“mass-and-spring network”). Only
the Cα-atoms of amino acids are considered as point masses and each point mass is
connected to all its spatial neighbours within a fixed cutoff radius.

After constructing the network, Normal Mode Analysis (NMA) is applied,
yielding the normal modes of the system. Normal modes are special intrinsic motions
of systems. They are orthogonal to each other and can move independently. In a
normal mode, all parts of a system move sinusoidal. Physical systems have exactly
as many normal modes as they have degrees of freedom. The normal modes of a
system are the eigenvectors of the system of equations formed by its equations of
motion. Therefore, to perform NMA of a protein, one has to solve an eigenvalue
problem, which in turn depends on the potential function used (the “force field”).
Each normal mode is an eigenvector and the associated eigenvalue represents the
energy or frequency of the motion. These eigenvalues are called eigenfrequencies.
The lower the eigenfrequency, the more dominant, energetically accessible and global
the mode is. All normal modes together span the entire deformation space of the
protein, but often, a few low-frequency modes are enough to account for functionally
relevant motions of the protein [2, 9, 29, 68, 70, 104, 106, 118]. NMA as used in
ENMs is based on the harmonic hypothesis: the potential energy landscape of a
protein - despite being locally highly rugged - can be approximated by a parabola.

Tirion introduced the first ENM in 1996, replacing the complex semiempirical MD
force fields used in protein NMA up to this point with a single-parameter Hookean
potential [119]. She then showed that it still reproduced the slow dynamics predicted
by standard NMA well. With this new potential, no initial energy minimization was
needed anymore, as the experimentally determined starting conformation is just
defined to be at a local energy minimum. The computational demand of solving
the NMA eigenvalue problem was also greatly reduced. This made protein NMA
tractable, even for large proteins.

The assumption that a simple quadratic potential, like the one introduced by
Tirion, suffices to usefully approximate intrinsic dynamics of proteins, is central to

5



Chapter 2. Background

ENMs. The second assumption made by ENMs is that these dynamics are robustly
encoded by the coarse-grained geometry of the protein [7, 8, 42, 47]. ENMs are even
robust to variations in formalism [76].

While many functionally relevant motions can be predicted using ENMs, their
simplicity is also the source of their most important limitation: ENMs fail to capture
localized functional transitions, that is, functional transitions with a low degree of
collectivity [85, 133]. The uniformity of springs and indiscriminate connectivity leads
to a network that is overconstrained, preventing the capturing of local motions.

Shortly after Tirion’s groundbreaking paper, the Gaussian Network Model
(GNM) variant of ENMs was introduced [8, 42], which reduced the resolution of
the network from all-atom to residue level, using only the Cα-atoms. Furthermore,
the GNM assumes the thermal fluctuations to be normally distributed.

In 2001, the important Anisotropic Network Model (ANM) was first pub-
lished [7, 118]. In the case of the GNM, the normal modes are vectors containing for
each point mass a scalar displacement value, analogous to experimental B-factors
(see Subsection 5.5.2). ANM normal modes on the other hand consist of a displace-
ment vector for each point mass. GNM modes only give magnitudes of motion for
each residue, whereas ANM modes additionally give a direction, see Figure 2.1.

ANMs are widely used today. An overview of their applications is given in [84].
These include, among others: exploring intrinsic dynamics of large assemblies of
biomolecules [86], interpolating between conformations, structural refinement, dock-
ing, evolutionary conservation, and guiding MD simulations. Additionally, lmcENM,
which my method is based on, is essentially a topologically sparsified ANM. There-
fore, I will now discuss some of the details of how ANMs work. For a more in-depth
mathematical derivation, see [7, 21, 99, 119].

2.1.1 Anisotropic Network Model

The ANM combines the residue-level resolution of the GNM with Tirion’s original
quadratic harmonic potential [7, 118]. The network nodes of an ANM are formed
by the protein’s Cα-atoms. Edges exist between all nodes whose spatial distance
is within a predetermined cutoff value dc. This parameter can be chosen on a per-
protein level. Smaller cutoff values are generally desirable as they lead to a more
flexible network, improving capturing of non-collective motions. Care has to be
taken however, as a cutoff value that is too small will destabilize the network [55].

Edges represent springs with a uniform stiffness value. More sophisticated ANM
variants exist that vary the stiffness value based on different types of additional
information (see Section 3.2).
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The total network potential is defined as the sum of all pairwise potentials between
residues i and j:

VANM =
L∑
i,j

Kij

2 (d1
ij − d0

ij)2 (2.1)

where L is the number of residues of the protein, d1
ij and d0

ij are the instantaneous
and equilibrium (i.e. initial) distances, and Kij is an entry of the stiffness matrix,
which is defined for residues i, j as

Kij =

γ, d0
ij ≤ dc

0, otherwise
. (2.2)

Here, γ is the spring stiffness constant. Typically, it is chosen as γ = 1.
The force constants of the system are captured in the Hessian H of the potential,

the matrix of second partial derivatives. Reduced to residue-level, a protein in
three-dimensional space has 3L degrees of freedom, x, y, z for each atom. Therefore
the Hessian is in total a 3L × 3L matrix organized in L2 submatrices of size 3 × 3
(“superelements”), each describing the interaction between two Cα-atoms:

H =


H1,1 H1,2 . . . H1,L

H2,1 H2,2 . . . H2,L

...
... . . . ...

HL,1 HL,2 . . . HL,L

 (2.3)

with the superelements given by

Hij =


∂2V

∂xi∂xj

∂2V
∂xi∂yj

∂2V
∂xi∂zj

∂2V
∂yi∂xj

∂2V
∂yi∂yj

∂2V
∂yi∂zj

∂2V
∂zi∂xj

∂2V
∂zi∂yj

∂2V
∂zi∂zj

 . (2.4)

Normal Mode Analysis then needs to invert the Hessian to yield the covariance
matrix of a 3L-variate Gaussian distribution [21]. This distribution contains the de-
sired information about the thermal fluctuations around the experimentally defined
equilibrium. But H does not have full rank: six variables correspond to rigid body
motions of the protein (three translations, three rotations). These modes have an
eigenfrequency of zero. Instead, a pseudoinverse is obtained by eigendecomposition,
resulting in 3L− 6 nontrivial eigenvectors and eigenvalues representing the normal
modes and their frequencies.
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Figure 2.1: Visualization of ANM network of PDB entry 1tup showing nodes, edges
and displacement vectors for the lowest-frequency normal mode. Cutoff distance is
8Å. Color indicates norm of displacement vectors, from blue over white to red. Image
generated using the ANM webserver at http://anm.csb.pitt.edu/

2.2 Machine Learning

The model discussed in this thesis is using a Deep Learning architecture. Deep
Learning (DL) is a branch of Machine Learning (ML), which itself is part of the
wider field of Artificial Intelligence (AI). Before introducing DL, I will provide a
brief overview of ML in general and the algorithm used in the reference method
lmcENM, the Support Vector Machine (SVM), to be able to compare them.

Machine learning is concerned with the development and study of algorithms
that allow computers to automatically learn from experiences, progressing towards
a defined goal. This learning process is applied to a set of data points known
as “training data”. ML algorithms can be said to find and learn patterns in the
data they are applied to. Common categories of ML algorithms are supervised,
unsupervised, and reinforcement learning, as well as dimensionality reduction:

• Supervised learning algorithms use data points that have labels attached
to them to build a predictive model. Data points for an object recognition
dataset could be images of objects and the labels what an image shows, e.g.
“cat” or “desk”. Typical use cases are classification and regression problems,
i.e. categorical and continuous prediction (“Will it rain tomorrow?” vs. “How
much is this house worth?”). A successful supervised learning algorithm is

8
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2.2. Machine Learning

said to generalize well, meaning that the patterns the model learned are suf-
ficiently relevant to result in correct predictions when the model is applied to
unseen data from the same distribution. There are many supervised learning
algorithms of varying complexity, from fitting a linear function to data using
the least-squares method to highly elaborate deep learning architectures with
millions or even billions of learnable parameters.
Besides gathering and preparing data, a substantial fraction of the effort in-
volved in applying a supervised learning algorithm to a specific problem is
directed towards reducing bias and variance. Bias is the error resulting
from wrong assumptions that the model makes. This can be caused by learn-
ing the wrong or too little facts from the training data. The variance error
is related to sensitivity to small variations in training data. A model with
high variance will pick up on unimportant patterns in the training data. High
bias or variance will both result in poor generalization. Bias and variance are
closely related to the problems of underfitting and overfitting to training data.
Because from a certain point onwards reducing one will increase the other, the
situation is also called the bias-variance tradeoff.

• Unsupervised learning on the other hand involves unlabeled data. The task
is to learn an efficient internal representation of structures in the data. This
representation can be seen as a learned a priori probability distribution on a
specific domain. Examples are language models and clustering algorithms like
k-means. Sometimes, mimicry of the input data is the goal.

• Reinforcement learning deals with agents in a dynamic environment. RL
algorithms allow the agent to learn behaviours based on the current state of
the environment (as measured by the agent’s inputs) that maximize a reward
function. A common topic in RL is the exploration-exploitation tradeoff.

• Dimensionality reduction algorithms reduce the number of dimensions of a
dataset while trying to retaining as much useful information as possible. The
motivation for this is that lower-dimensional data is easier to handle in a lot
of ways (e.g. the curse of dimensionality). An important dimensionality
reduction algorithm is Principle Component Analysis (PCA).

The algorithms and methods explained in the rest of this chapter all fall in the
category of supervised learning. While both Support Vector Machines and Deep
Learning methods can be used for both classification and regression, breaking contact
prediction as understood in this thesis is a classification task.

9



Chapter 2. Background

2.2.1 Support Vector Machines (SVMs)

The Support Vector Machine [13] is a common supervised learning algorithm. To
perform binary classification, it learns a maximum margin, a class boundary that is
as far away as possible from points of either class. This is illustrated in Figure 2.2.
The data points closest to the boundary are called support vectors. The idea behind
maximizing the margin size is to achieve robust generalisation, as the larger the class
gap, the more unlikely it is for an unseen data point to cross it. SVMs generally
learn a linear class boundary, but arbitrary data cannot be assumed to be linearly
separable. To address this, SVMs use the kernel trick, an efficient, implicit mapping
of the input data to a higher- (possibly infinite-) dimensional space where it becomes
linearly separable. Advantages of SVMs are their interpretability (at least for linear
kernels), robustness, performance on datasets of limited size and strong theoretical
foundation in the form of Vapnik–Chervonenkis statistical learning theory (VC the-
ory) [123]. They also have few hyperparameters that need to be optimized. The
main disadvantage of SVMs is their high training cost, which is generally cubic in
the number of examples. While VC theory guarantees optimality of a training result,
this only holds for one specific set of hyperparameters, and non-convex grid search
still needs to be performed. Another disadvantage is their inflexibility with regards
to possible outputs as well as their heavy reliance on manual feature engineering.

H1 H2 H3

X1

X2

Figure 2.2: Separating and non-separating hyperplanes of a simple, linearly separable
dataset. While H1 does not separate the data, H2 and H3 do. But only H3 is a
maximum-margin boundary that would be learned by a SVM: data points are maximally
far away from it.1

1 Image by Wikimedia user ZackWeinberg, based on PNG version by Cyc. License: CC BY-SA 3.0.
https://commons.wikimedia.org/wiki/File:Svm_separating_hyperplanes_(SVG).svg
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2.2.2 Deep Learning

Deep Learning [74] has taken the world by storm in the last decade, and continues
to be a highly active research area. New architectures are being invented weekly and
benchmark results pushed ever higher. DL-based systems are permeating society and
are applied to a myriad of problems, from music recommendations [93] to quantum
chemistry [122]. DL is used to create human-like text [14] and practically solve
protein structure prediction [57]. Today, DL research is dominating the field of ML
and has displaced most other long-established methods. The remarkable abilities of
modern deep learning architectures are advancing the very notion of what computers
can do, sometimes already showing superhuman performance in specific tasks [45,
95, 110] and even raising new ethical questions in the process [82].

The foundation of modern Deep Learning was laid already in 1958, with Rosen-
blatt’s perceptron algorithm [103]. The perceptron is an abstraction of a bio-
logical neuron, adjusting its binary output depending on the input it “perceives”
according to a learning rule. The perceptron’s parameters define a linear decision
boundary. This shows its limitations, and means that the algorithm will only con-
verge for linearly separable data. The perceptron was conceived at a time of great
optimism in the field of AI, a period known as the golden years. The perceptron
in particular was the object of high expectations, as seen in this New York Times
article:

“The Navy revealed the embryo of an electronic computer today that it
expects will be able to walk, talk, see, write, reproduce itself and be con-
scious of its existence. Later perceptrons will be able to recognize people
and call out their names and instantly translate speech in one language
to speech and writing in another language, it was predicted.”

[The New York Times, 8 July 1958, quote from [96]]

While the early AI optimism soon subsided, the modest perceptron was improved
into the multilayer perceptron (MLP), the first and most simple artificial neural
network (ANN). Also called feedforward neural networks, ANNs are hierarchical
collections of artifical neurons organized in layers: an input layer, whose dimensions
are called features, at least one so-called hidden layer and an output layer. Neurons
are typically connected to all neurons in the next layer, and the connections have
weights and biases (“fully connected” layers). After the weights have been randomly
initialized, ANNs are trained using backpropagation [62, 79, 105, 108], an efficient
algorithm that recursively applies the chain rule to determine how to change the
weights and biases of all neurons in the network to nudge the final output closer
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to a desired one. The desired output is given by the labels of the training example
and the mistake the network currently makes is quantified using a loss function,
which must be differentiable (in fact, all parts of a neural network need to be). The
average loss over the training set is minimized by (stochastic) gradient descent
(SGD), which backpropagation made possible to use in neural networks. Training
takes place in a number of rounds called epochs, where in each epoch every example
from the training set is shown to the network once, in randomized order.

Another important component of ANNs is the use of nonlinear activation func-
tions, which are typically applied to the output of neurons. Nonlinearities are crit-
ical for the expressiveness of neural networks: without them, they collapse to linear
classifiers.

Feedforward ANNs with nonlinearities are powerful learners: the universal ap-
proximation theorems state that ANNs can approximate any well-behaved func-
tion to arbitrary precision, using just one hidden layer of unbounded width [50] or
an unbounded number of layers with bounded width [83]. This raises the question
of, in light of the aforementioned result, why anyone would expend resources on
more than one hidden layer.

First, notice that the universal approximation theorems are nonconstructive, i.e.
they only guarantee the existence of an approximating shallow neural network for a
function, not give instructions of how to arrive at it.

Second, the answer leads to the premise of deep learning: learning useful inter-
mediate representations in multiple hidden layers. The classic (and admittedly
strained) example is handwritten digit recognition: suppose the input is an N ×N

pixel grayscale image (i.e. pixels only have a single channel, the brightness value)
depicting a digit from 0− 9, which is flattened into a vector of size N2 and fed into
the network. Then the neurons in the first hidden layer may learn very abstract
shapes such as edges and ridges. The following layers learn increasingly concrete
and complex concepts based on the concepts below, such as points, lines, circles,
arcs etc. and combinations of those, at different locations in the input. Finally,
the most high-level concepts are combined to construct flexible prototypes of the
numbers itself. For example, the number 8 consists of two circles of approximately
the same size stacked approximately vertically.

An illustration of the feedforward ANN architecture is given in Figure 2.3. This
specific network would be considered shallow, as it possesses only a single hidden
layer. The large number of parameters still becomes apparent.

This hierarchical representation learning has been shown to happen in deep neural
networks, although the intermediate representations are not always as readily inter-
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Figure 2.3: A simple, fully connected neural network for handwritten digit recognition
with an example input. The network has an input layer taking a flattened 28×28 pixel
grayscale image, one hidden layer of width 128, and a 10 neuron output layer repre-
senting a probability distribution over the digits from 0-9. Image from "MIT 6.S191:
Introduction to Deep Learning", https://raw.githubusercontent.com/aamini/
introtodeeplearning/master/lab2/img/mnist_2layers_arch.png, MIT License

pretable as in this example. The resulting networks have, most of the time, a greater
capability to generalize than shallow ones, sometimes drastically so. Depending on
the problem, very deep architectures may have hundreds of hidden layers.

After neural networks fell out of favor multiple times in the history of AI, the
appearance of powerful enough GPUs in the 2010s combined with breakthroughs
largely solving the problems of vanishing and exploding gradients [37, 44, 53]
led to a deep learning renaissance that is showing no signs of ending soon. DL is the
favored machine learning technique today not least because of two facts: (a) huge
datasets have become available for many practically important problems, and (b)
deep neural networks are able to utilize these massive amounts of data efficiently
and effectively. In other words, they scale well. Additionally, they are extremely
flexible in terms of input, output, and the problem statement itself. The general
idea of neural networks can be applied to unsupervised, semisupervised and super-
vised problems, binary- and multiclass classification, regression, learning on graphs
(graph neural networks (GNNs)), images (convolutional neural networks (CNNs, see
Subsection 2.2.3), Transformers), sequence data (recurrent neural networks (RNNs)
and long short term memory networks (LSTMs), Transformers), generative models
(GANs), and more.
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Deep neural networks are not without problems, however. Owing to their enor-
mous capacity, they are prone to overfitting and care needs to be taken to ad-
dress this tendency. Many approaches to limit overfitting have been developed.
Interestingly, even heavily overparametrized networks allowed to perfectly fit their
training sets generalize somewhat: a testament to their sometimes counterintuitive
nature [4, 136]. Even in these extreme cases, more than simple memoization seems
to be happening. In practice, a combination of techniques such as regularization,
normalization and early stopping is often used to combat overfitting.

Another theoretically predicted problem that has effectively disappeared is that
of minimizing the loss function: it was thought that a simple first-order methods
like gradient descent would quickly and invariably get stuck in local minima, which
would largely render neural networks useless in practice [74]. However, this rarely if
ever seems to matter. While proper initialization is important [45], testing a small
number of random starting seeds is sufficient to account for model variability in
most cases. If not, this is more likely to indicate a different underlying problem.
The inexactness of gradient approximation by SGD also helps.

Furthermore, neural networks have a large number of “moving parts” that can be
individually perturbed and thus many hyperparameters, optimization of which can
require a certain amount of experience and resources.

Lastly, neural networks work best when there are large amounts of data available,
and the required dataset size is hard to estimate beforehand. This relationship of
performance and amount of data available is illustrated in Figure 2.4.

Figure 2.4: Scalability of ML algorithms: classical ML algorithms are often the best
choice when moderate amounts of data are available, but can eventually fail to scale or
learn from more data. Often, this is the point where deep learning becomes superior.
Figure adapted from [94]
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2.2.3 Convolutional Neural Networks (CNNs)

Fully connected neural networks quickly grow to have a truly enormous amount of
parameters. This is especially the case with large input vectors, such as images.

The number of parameters (weights and biases) of a MLP with input dimension
Di, nh hidden layers with the dimension of the ith hidden layer given by Dh(i), and
output dimension Do is given by

|Pfc| = DiDh +
nh−1∑
i=1

Dh(i)Dh(i + 1) + Dh(nh)Do︸ ︷︷ ︸
weights

+
nh∑
i=1

Dh(i) + Do︸ ︷︷ ︸
biases

. (2.5)

Consider a fully connected network for object classification (100 classes) in im-
ages. It takes as input quadratic RGB images of the modest dimension 100 × 100.
This results in a flattened input dimension of 100 · 100 · 3 = 30000. Adding 5 hid-
den layers of constant width 1000 already results in ∼34 million parameters to be
learned. The same example with 1000 × 1000 images results in ∼3 billion parame-
ters, practically almost intractable. It is mostly the input dimension and the hidden
layer width that leads to a large number of parameters, and many real-life problems
would result in even higher numbers for those. To handle such large inputs, clearly
a more efficient approach is required. The full connectivity of simple MLPs makes
them also very prone to overfitting.

Convolutional Neural Networks [34, 44, 75] solve these problems using sparse,
local connectivity. Instead of a large number of neurons looking at individual pixels,
convolutional layers train a number of small matrices, so called kernels, that
are slid or convolved over the whole image. Common kernel sizes are for example
3 × 3 and 5 × 5. Instead of flattening an image into a one-dimensional vector, the
2D structure is retained, but a third dimension, the depth, is added. CNNs also
work for primarily 1D (sequence) and 3D (for example video data) inputs, with an
arbitrary depth dimension. Convolutional kernels are always applied to the whole
depth of the input, but only consider the local context in width and height. To
compute the activation of a kernel by an input, the kernel is for each input pixel
positioned so that the pixel in question is in the middle of the kernel. Then the
dot product of the kernel matrix and the local context of the pixel including itself
is calculated (through the whole depth), which is the activation for the kernel at
this pixel. For all pixels together, this yields the activation map of the kernel. The
output depth of a convolutional layer is given by its number of kernels. The output
width and height is controlled by the amount of zero-padding (extending the edges

15



Chapter 2. Background

with zeros to allow applying kernels there) and stride (how many pixels to move the
kernel at a time, a setting > 1 will skip pixels). These can be adjusted so that the
output dimensions are equal to or smaller than the input dimension.

Formally, the output of a 2D convolutional layer with Cout kernels and an input
of size W ×H × Cin (width, height, depth) can be compactly described as

Oi = bi +
Cin∑
j=1
K(i, j) ⋆ Ij (2.6)

for 1 ≤ i ≤ Cout and where Oi is the output of the ith kernel, bi is the scalar
bias of the ith kernel, ⋆ is the valid 2D cross-correlation operator (mathematically,
convolutional layers actually perform cross-correlation, not convolution), K(i, j) is
the weight matrix of the ith kernel at depth j, and Ij is the jth input channel.
Stacking all Oi along the channel dimension completes the output of the layer,
resulting in an output of size Wout ×Hout × Cout. The concrete values of Wout and
Hout depend on the settings for zero-padding and stride.2

The basic assumption of CNNs is this: if a feature is useful at one position (x, y) of
the input, it will also be useful at another position (x′, y′). The kernels learn to look
for one specific intermediate representation, as discussed above, over the whole input
image, crucially using the same weights for all positions at the same depth. These
principles are called translation invariance and parameter sharing and are the
most important inductive biases of CNNs. Using parameter sharing, the number of
parameters to be learned is drastically reduced, and for a single 2D convolutional
kernel of size F × F and an input with D channels amounts to F 2D + 1. This low
number of parameters makes it possible to have many convolutional kernels in a
layer, analogous to the width of a hidden layer, as well as numerous hidden layers.

Figure 2.5: Linear increase of the effective receptive field (ERF) in CNNs through
multiple convolutional layers. Figure from [78]

2 For an in-depth calculation, see https://cs231n.github.io/convolutional-networks/
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Each activation map is influenced by an area F × F around each pixel. This is
called the receptive field of the kernel. Stacking convolutional layers leads to a
linear increase in the effective receptive field: each pixel in the F × F receptive
field of a second layer depends on the F × F area around itself, resulting for two
equal layers in an effective receptive field of (2F−1)×(2F−1). See Figure 2.5 for an
illustration of this effect. Using dilated convolutions [135], the effective receptive
field can even be increased exponentially with only a linear increase in parameters.
See Figure 2.7 for an illustration of how they work.

Typical CNN architectures also contain pooling layers, especially max-pooling,
whose output is the maximum over a small, e.g. 2×2 patch of input. The purpose of
pooling is to decrease the input size periodically and counteract overfitting. Pooling
layers are recently becoming less important, as the same downscaling effect can
also be achieved through convolutional stride. An example of a traditional CNN
architecture involving convolutional, pooling and fully connected layers at the end
is shown in Figure 2.6.

Figure 2.6: Typical CNN architecture for object recognition, showing convolutional,
pooling, and fully connected layers. Translation-invariant features are learned by the
convolutional layers, image size reduced by pooling layers and the final classification
done using fully connected layers. Notice that input image size has to be fixed. Image
by Wikimedia user Aphex34, License: CC BY-SA 4.0, https://commons.wikimedia.
org/wiki/File:Typical_cnn.png

Fully convolutional architectures are also possible. They are able to handle
inputs of arbitrary width and height and don’t change the output size in these
dimensions. I will use this property for my breaking contact prediction model.
A typical task for such a network is semantic segmentation, also called pixel-level
classification. This task involves labeling objects in an input image. It is illustrated
in Figure 2.8 due to its significance to the breaking contact prediction problem,
which, when approached using CNNs, can be seen as a two-class version of semantic
segmentation.
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Figure 2.7: Receptive field of a dilated convolution. When the dilation is equal to
one, the receptive field is that of a regular convolution. A dilation larger than one skips
pixels, but over all activations no information is lost. This allows the receptive field to
grow exponentially with only a linear increase in parameters. Image from [22]

Figure 2.8: Example of semantic segmentation, also called pixel-level classification.
The 2D output dimensions are equal to the input dimensions. Each pixel is assigned
one of multiple classes representing a type of object. Image from https://developers.
arcgis.com/python/guide/how-unet-works/
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3 Related Work

The most important work related to my method is arguably Putz and Brock’s
lmcENM, which I introduce in this chapter at length. Besides this, it was diffi-
cult to find closely related work, as the combination of Elastic Network Models and
machine learning seems to be largely unexplored. Nevertheless, I close with a dis-
cussion of notable ENM variants in general and try to determine which is closest to
lmcENM and my method.

3.1 ENM of learned maintained contacts (lmcENM)

The Elastic Network Model of learned maintained contacts, or short lmcENM [99,
100], is the reference method my model is based on. Its main idea is to sparsify the
connectivity of a standard ANM, making it locally more flexible, in order to allow it
to capture localized function-related motion better than a simple cutoff-based ANM.
To predict protein motion of an unbound structure, lmcENM begins with a standard
ANM. Then, using a SVM classifier (see Subsection 2.2.1) trained on known apo-holo
pairs, the unbound structure’s breaking contacts during a functional transition are
predicted and subsequently removed from the ANM.

While lmcENM can in principle be combined with other ENM variants that use
nonuniform spring stiffness (see Section 3.2), its focus is primarily on investigating
the effects of altered contact topology.

3.1.1 Baseline network ANMminDeg4

Springs in ANMs are usually distance-cutoff based with a uniform spring stiffness
(see Subsection 2.1.1). The lower the cutoff, the smaller the number of springs and
the more flexible the network becomes. A more flexible network allows the ANM
to better capture localized motions at the expense of motion magnitude accuracy.
As the goal of lmcENM is improved prediction of localized functional motions, a
low cutoff of 10Å is used. ANMs with low cutoffs tend to become unstable, which
manifests itself as more than six trivial (i.e. zero) eigenvalues. To support network
stability, Putz and Brock additionally devised an algorithm to stabilize the contact
graph. It is implementing minimum connectivity rules identified by Jeong in [55],
specifically a minimum of 3L− 6 edges (equal to the number of degrees of freedom)
and a minimum node degree of 4, where L is the length of the protein (i.e. its number
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of amino acid residues). Notice that the latter includes the former. The algorithm
(1) connects nodes not fulfilling the minimum degree rule to close sequential and/or
minimum distance non-neighbours. The stabilized ANM with cutoff 10Å is called
ANMminDeg4.

Algorithm 1: Contact Graph Stabilization
Data: Contact graph G = (V, E), V = {v1, v2, . . . , vL} of protein of length L

with Euclidian distance function D : V × V → R+

Result: Jeong-stable contact graph G′ = (V, E′), E ⊆ E′

1 for vi ∈ {v ∈ V | deg G(v) < 4} do
2 while deg G(vi) < 4 do

// Check for close sequential non-neighbour
3 if ∃ vj ∈ V \NG(vi) where |i− j| ≤ 4 then
4 E ←− E ∪ {vi, argminvj∈V \NG(vi) |i− j|}

// Fall back to minimum distance non-neighbour
5 else
6 vj ←− argminv∈V \NG(vi)D(v, vi)
7 E ←− E ∪ {vi, vj}

8 return (V, E)

3.1.2 Breaking contacts and other dynamic contact changes

Breaking contacts are pairs of residues in a protein whose distance is initially below
a certain maximum and then changes by a minimum percentage during a functional
transition. Forming and maintained contacts are defined using similar ideas, and
illustrated in Figure 3.1.

Formally, this results in the following transition matrix, where i and j are residues,
d0

ij and d1
ij are their distances in the apo and holo structures, dc is the ANM distance

cutoff, and ∆dij := d1
ij − d0

ij :

Tij =



maintained contact, if d0
ij ≤ dc and |∆dij

d0
ij
| ≤ ec

breaking contact, if d0
ij ≤ dc and |∆dij

d0
ij
| > ec

forming contact, if d0
ij > dc and d1

ij ≤ dc

no contact, otherwise.

(3.1)

It can be seen that ec is the minimum relative distance change of two residues
in a functional transition for a contact to be considered breaking. For lmcENM
and the dataset used, the optimal ec was empirically determined to be 9%. While

20



3.1. ENM of learned maintained contacts (lmcENM)

forming contacts are conceptually interesting, only breaking contacts were shown
to be useful for improving capturing of localized motions. Adding forming contacts
resulted in performance below the baseline ENM.

Given both apo and holo structures, the breaking contacts can easily be computed.
Removing those from ANMminDeg4 results in the ENM of observed maintained con-
tacts (mcENM), a ground truth network to compare lmcENM to.

Figure 3.1: Illustration of types of dynamic contact changes: maintained, breaking
and forming contacts. Figure from [99]

3.1.3 SVM dataset, features, and training

For each apo-contact with a minimum sequence separation of 4, i.e. for each pair
of residues i, j with d0

ij ≤ dc = 10 and |i − j| ≥ 4, a SVM is used to predict the
probability of it breaking during a functional transition. To obtain probabilities
instead of a binary value, Platt scaling [129] is used. The SVM is trained (and
validated using leave-one-out cross validation) on a dataset of 90 apo-holo pairs
from the Protein Structural Change Database (PSCDB) [5].

The PSCDB contains 839 pairs of unbound and ligand-bound protein structures
divided into seven categories: coupled domain motion (59 pairs), independent do-
main motion (70), coupled local motion (125), independent local motion (135), bury-
ing ligand motion (104), no significant motion (311), and other type motion (35).
While lmcENM aims to specifically improve local motion types, having pairs from
the full spectrum of high level protein motions allows to see how performance changes
for all of them. Using several filters, Putz and Brock arrived at a set of 90 single-
chain protein pairs. Note that there is a strong class imbalance due to the fact that
maintained contacts are far more common than breaking contacts, which has to be
taken care of during training.

The performance of the SVM directly depends on the quality and importance
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of the features used. Two kinds of features are used in lmcENM: (a) whole pro-
tein features, and (b) physicochemical, structural and topological properties of the
structural context of a contact and its embedding in the protein’s structure. The
latter are derived from the immediate neighbourhood graph (ING) of the
contact [99, 109] and the secondary structure element (SSE) graph.

The immediate neighbourhood graph INij of two contacting residues i, j consists
of nodes (residues) and edges (contacts between them). It includes nodes i, j, as
well as their first shell neighbours, i.e. residues in direct contact with either i or j.
An example INij is shown in Figure 3.2. Notice how the graph contains sequentially
contiguous and noncontiguous residues.

Figure 3.2: The immediate contact neighbourhood graph of residues i and j, INij .
Nodes in dark grey are part of INij . Figure adapted from [99]

The SSE graph is an abstraction of the protein with nodes on the secondary
structure (α-helices, β-strands, loop regions) level, connected by edges if any of
their residues are in contact. Node labels characterize individual SSEs and edge
labels describe an interface.

In total, a 170-dimensional feature vector is constructed from these data sources,
with the vast majority being derived from the ING and SSE graph. Features derived
from the local contact neighbourhood can be grouped into six categories (examples
in parentheses):

• Pairwise (centroid distance, SSE contact type and hydrogen bonding, mutual
information)

• Graph topology (number of nodes and edges, average closeness centrality, ra-
dius, diameter)

• Graph spectrum (largest and second largest eigenvalue, energy)
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• Single node (closeness and betweenness centrality, sequence separation from
N/C-terminus, sequence conservation)

• Node label statistics (residue depth, chemical type, SS distribution, neighbour-
hood impurity degree, distance to centroid)

• Edge label statistics (link impurity, mutual information distribution)

The rationale for the heavy emphasis on the local context is the hypothesis that
the direct neighbourhood of a contact contains the most important information
about its propensity to break. It can further be seen that to encode the graph to a
constant-length feature vector, statistics about the graph are used, including many
hand-engineered graph-theoretic features from the field of network analysis.

The top 16% of contacts by SVM score are removed from ANMminDeg4 by setting
their spring stiffness to 0. Some predicted breaking contacts may be non-removable,
as doing so would violate Jeong stability. Removal of predicted breaking contacts is
attempted in decreasing order of SVM score. The constant value of 16% was again
chosen empirically over a number of other removal strategies, although in reality the
fraction of breaking contacts is protein-specific.

3.1.4 Results

For the purposes of this thesis, the results of lmcENM can be evaluated on two levels:
the performance of the binary classifier given by the SVM and the impact of removing
predicted breaking contacts from ANMminDeg4. While the absolute performance of
the SVM as measured by precision and coverage is rather low (see Table 3.1), it
succeeds in predicting relevant and sufficiently correct breaking contacts. Removing
SVM-predicted breaking contacts in most cases greatly improves capturing of local
motions that were only poorly captured before. In these cases, relevant modes can
be said to be shifted more to the front of the list, reducing the dimensionality of the
essential deformation space (how many modes are needed to represent e.g. 70% of
the deformation space). ANM performance for already well-captured motion classes
does not significantly deteriorate and is sometimes lightly improved. While in some
single cases lmcENM even exceeds the ground truth performance of mcENM, on
average there is still quite some room for improved performance, which could be
attained by improved prediction of breaking contacts.

A useful measure to assess the accuracy of ANMs, given two conformations, is the
mode overlap. It describes the fraction of conformational change explained by a
single mode j based on the angle between conformational displacement vector and
mode direction vector Mj , and is defined as
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Motion Type Precision Coverage AUROC
Coupled Local Motions (28) 0.24/0.27 0.41/0.44 0.62/0.61
Independent Local Motions (18) 0.22/0.25 0.40/0.41 0.56/0.58
Coupled Domain Motions (20) 0.18/0.18 0.43/0.44 0.64/0.62
Independent Domain Motions (14) 0.15/0.16 0.39/0.37 0.62/0.63
Burying Ligand Motions (4) 0.13/0.19 0.32/0.30 0.49/0.51
Other Types of Motions (9) 0.20/0.30 0.25/0.28 0.55/0.55
All (90) 0.19/0.23 0.41/0.41 0.61/0.60

Table 3.1: Performance of the SVM classifier used in lmcENM as measured by preci-
sion, coverage, and Area under the Receiver Operating Characteristic curve (AUROC)
of the top 16% predicted breaking contacts. Mean and median are reported and results
are grouped by motion types. The SVM performs best for local motion types. Table
data from [99]

Oj =

∣∣∣∑3L Mj∆ri

∣∣∣[∑3L M2
j · ∑3L ∆r2

i

]1/2 , (3.2)

where ∆ri = (rE
i − rS

i ) is the displacement vector from start to end conformation
at residue i and L is the number of residues of the protein. Summation of the first
k mode overlaps yields the cumulative mode overlap

CO(k) =
[

k∑
j=1

O2
j

]1/2

. (3.3)

The cumulative mode overlap of the first ten modes CO(10) is the most important
ANM accuracy measure in [99] as well as this thesis. The following figure summarizes
the impact lmcENM has on the relevance of the first 10 normal modes, as well as
showing the improvement relative to the ground truth mcENM that is still possible.

What analysis also showed is that lmcENM works best for coupled local and
independent local motions, categories for which standard ENMs perform poorly,
while other motion classes are relatively unaffected. Even though a constant top 16%
of predicted breaking contacts are removed, the domain movers that are already well
captured using standard ENMs are quite stable against false positives. The effect
of lmcENM and mcENM on the CO(10) is visible in Figure 3.3.

Putz and Brock also analyzed lmcENM in terms of a number of other ENM metrics
like fluctuation profile correlation, fraction of variance, and degree of collectivity,
analysis of which falls outside the scope of this thesis.
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Figure 3.3: Improvement of lmcENM (blue) and mcENM (grey) in average 10-
cumulative mode overlap, CO(10), over baseline ENM. The data is binned according to
how well the baseline ENM captured the motion as measured by CO(10). The greatest
improvement can be seen for proteins where the baseline ENM performed worst. Figure
from [99].

3.2 Other ENM variants

There are a lot of other ENM variants incorporating different additional sources of
information. In [99], Putz and Brock categorize variants into those using physico-
chemical, structural and dynamical knowledge. Common themes in ENM variants
are cutoff-free spring functions based for example on spatial distance [47, 134], se-
quential distance [55], or bonding type [65], more involved potentials [112, 115],
mixed resolution models [69], and combining ENMs with information from short
MD trajectories [36, 97]. Many models trade physical accuracy for significant ad-
ditional computational cost. Very recent developments are an improvement [40]
of Xia’s multiscale ENM [130] and a residue-specific ENM interestingly involving
ligands [61].

Few if any variants choose a pure topological modification/reduction approach
similar to lmcENM: [25] adds springs between buried residues as well as between
hydrogen-bonded residues, [36] comes conceptually closest to lmcENM by only re-
taining springs largely maintained throughout MD simulations.

Besides fitting spring parameters to MD trajectories, none of the surveyed meth-
ods involve elaborate machine learning, and none use deep learning.
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4 CNN for breaking contact prediction

In this chapter, I present the main contribution of the thesis, a novel Convolutional
Neural Network (see Subsection 2.2.3) for breaking contact prediction (BCP). To do
so, I first argue for the appropriateness of a CNN as a machine learning model for
breaking contact prediction and the implications of CNN inductive biases for the
BCP problem in contrast to lmcENM’s original SVM approach.

Then, I discuss the construction of the dataset used to train it and the validation
approach. Next, I present the final model architecture including a list of features
used. At the end of the chapter, I describe the metrics used to evaluate the model.

From here on, lmcENMCNN is used to refer to the method presented in this thesis
and lmcENMSVM to refer to the original implementation as described in [99].

4.1 Applying CNNs to BCP

The SVM used in lmcENMSVM classifies each apo-contact individually, using some
global features and many features derived from graph representations of its local
context. Using a CNN, it is possible to approach this problem differently, imposing
fewer assumptions about the optimal structure of features. At the same time, the
inductive biases of a CNN are quite suitable for breaking contact prediction.

To be able to apply CNNs to the problem, I structure input data in a contact
map-type format. For a protein with L residues, this is a tensor M with shape
L × L × 96, where Mi,j contains the 96-dimensional feature vector of the residues
at sequence positions i and j. These two residues may or may not be in contact
in the apo structure, which is simply encoded in the form of a feature. Features at
position i, j directly represent residue-level and pairwise features of the respective
residues. Examples of residue-level features are chemical type, secondary structure
at this position, and half-sphere exposure. Examples of pairwise features are three-
dimensional distance, whether the contact distance is less than or equal to dc, and
mutual information (MI) in the multiple sequence alignment (MSA). The features
are concatenated to a feature vector of length 96 and form the depth dimension of
the input data.

Using this approach, there is no need to specify a priori what statistics to extract
from the raw data anymore, as was the case with immediate neighbourhood graph
(ING) derived features in lmcENMSVM. This simplification of features is in line
with the common DL philosophy of letting the network learn efficient high-level
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features on its own, avoiding error-prone and tedious manual feature engineering.
The locality assumption behind lmcENMSVM’s neighbourhood graph is preserved
through the locality property of convolutional kernels, but is in contrast not limited
in the size of the context it can use to make a prediction: while it is a hyperparameter
that has to be fixed eventually, the size of the prediction context can be easily
extended by adding more convolutional layers, resulting in a larger effective receptive
field, whereas the ING (ignoring the SSE graph and global feature contributions) by
definition only takes into account direct neighbours.

Furthermore, the translation invariance property of CNNs applies to the break-
ing contact prediction problem, as patterns of breaking contacts should largely be
independent of their position along the amino acid chain. Exceptions may be given
by the N- and C-termini, which are often found to be rather disordered loop re-
gions. I address this by removing proteins from my dataset whose motion almost
exclusively consists of these terminal loop movements and including a “percentage
of L at this position” feature, which should allow the CNN to use any remaining
relevant position-specific information. More evidence for this assumption about the
BCP problem is provided by the observation that sequence separation as a feature
did not seem to be useful, even resulting in a higher loss than without it.

CNNs also implement the “corroborating evidence” proposed in [99]: the inputs
to the final layer of all other residue pairs in the effective receptive field (ERF) are
available to the pair being predicted.

The sequence-based locality of the contact map creates one downside of the CNN
approach: in case they are sequentially far away, it is possible for a contact of a given
residue to fall outside the ERF. This would lead to the loss of potentially valuable
information. The chance of this happening decreases with a growing ERF. As the
ERF can be made really large through dilated convolutions and contacts are seldom
more than a few hundred residues apart sequentially, the chance of this happening
could be reduced to zero by incorporating the complete contact map. On the other
hand, using this data formulation, it is hard to isolate the effects of enlarging the
sequential context and capturing a larger fraction of the 3D context of a contact in
this sequence range, as changing the ERF affects both.

The main characteristics of modeling the BCP problem in this way are therefore:

• Input to the classifier for one protein is a L× L× 96 tensor with the features
in the depth dimension.

• No high level features, instead residue-level and pairwise features are computed
for all residue pairs i, j, contact or not. High level, graph-like features are
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learned by the network. Noncontact positions are masked out of the loss (see
Subsection 4.6.1), but can be used by kernels for prediction.

• Easily scalable prediction context through convolutional layers. In contrast,
lmcENMSVM takes into account only the first-shell neighbours in the ING
(very short range), including a slightly larger context via the SSE graph (short-
medium range) and some whole protein features. A deep CNN can potentially
uniformly cover the complete range up to several hundred residues away. No
global features are used in the CNN.

• The assumption of locality importance is preserved, but locality in the CNN
data formulation is primarily sequence-based instead of spatial.

4.2 Constructing a larger dataset

To leverage the full potential of the CNN, as much training data as possible is needed.
While the 90 proteins used in lmcENMSVM contain in total ∼14000 breaking and
∼156000 non-breaking contacts, this is still at the low end of DL dataset sizes.
Consequently, I construct my own maximally large dataset from the PSCDB. Using
the PSCDB again retains comparability to lmcENMSVM.

The increased size of my dataset is the result of (a) using fewer and more lenient
filters than Putz and Brock, and (b) the fact I extend my method to be able to work
with multichain proteins, which lmcENMSVM is unable to use. This resulted in
a much more elaborate preprocessing stage, but also a broad applicability of the
method. In this preprocessing stage, besides cleaning and renumbering structures,
I perform three global sequence alignments using the Gotoh algorithm (weights:
BLOSUM62, gap start/extension penalties: -20, -2): both conformer PDBs to their
FASTA sequences and both FASTA sequences to each other. This has to be done
because even though both conformers describe essentially the same protein, due to
experimental difficulties not all residues are always modeled, and chain identifiers
or numberings are often completely different. The alignment process results in a
reliable numbering, alignment, and handling of gaps, for both single- and multichain
proteins.

After downloading and parsing the complete PSCDB, I applied the following
filters, besides removing obsolete PDB entries:

• Aligned sequence length must be ≥ 70.

• Experimental method used for structure determination must be X-ray diffrac-
tion and resolution at least 3Å.
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• Minimum aligned RMSD of the two conformers of 0.8Å in ProDy [12]. This
excludes very small movements with a negligible fraction of breaking contacts.
Putz and Brock used 1Å.

• Maximum gap length of 20 in all three alignments, ignoring gaps at the termini.

• No symmetrical assemblies due to questionable biological relevance (the pipeline
could theoretically handle them, and code to generate the symmetrical struc-
tures is in place).

All resulting apo-holo pairs were visually reviewed and some were removed. Rea-
sons for removal were: highly disordered proteins, broken models or PDB bugs, ex-
clusively terminal loop motion, nonglobular topology, and unstable baseline ENM,
i.e. more than six zero eigenvalues after Jeong stabilization.1 Proteins from the
“no significant motion” category were not excluded, but had to pass the minimum
RMSD filter. Hypothetical proteins were not categorically excluded, either. Finally,
the largest three proteins were excluded due to their extreme size (L > 1000).

These steps resulted in a new set of 273 apo-holo pairs, including 56 multichain
proteins (see Table 4.1). The new dataset contains about 42600 breaking and 527000
nonbreaking contacts with sequence separation of at least four, more than three times
as many breaking contacts as before. These numbers correspond to a mean breaking
contact fraction of all contacts of ∼8%, versus ∼9% for the original lmcENMSVM

dataset. Figure 4.1 illustrates the wide range of protein sizes in the dataset.

Motion Type n % nMC %MC

Coupled Local Motion (CLM) 66 24.2 14 25.0
Independent Local Motion (ILM) 56 20.5 9 16.1
Coupled Domain Motion (CDM) 42 15.4 8 14.3
Independent Domain Motion (IDM) 44 16.1 11 19.6
Burying Ligand Motion (BLM) 11 4.0 4 7.1
Other Types of Motion (OTM) 25 9.2 3 5.4
No Significant Motion (NSM) 29 10.6 7 12.5
All 273 100 56 100

Table 4.1: Distribution of motion types in the newly constructed dataset, including
number and total percentage of multichain (MC) proteins.

1 Putz and Brock also remarked that Jeong stabilization is not always sufficient to stabilize ENMs
at low cutoffs. The dc value of 10Å worked for all of their 90 proteins, but failed for some in my
extended dataset.
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Figure 4.1: Scatter plot of protein length vs. fraction of observed breaking contacts
in the new filtered PSCDB dataset. Each point represents an apo-holo pair. A wide
range of protein lengths is represented in the dataset, with a concentration in the range
of 100-400. There are large differences in the overall mobility between proteins as well.
Plot created using matplotlib [52]

4.3 Splitting the dataset

For supervised learning algorithms, available data needs to be split at least into two
sets, namely training and test data points. The parameters of the model are fitted to
the training data, and generalization capability is judged on the test data. Because of
the increased size of my dataset and extensive number of experiments needed, leave-
one-out cross validation (LOOCV) as used in lmcENMSVM is no longer practical and
not as strongly needed anymore. Instead of cross validation, I opted for a 65-25-10
split into training, validation and test/holdout sets. The validation set is used during
model development. The test or holdout set is a portion of the data that the model
is only evaluated on after hyperparameter optimization has concluded, in order to
avoid overfitting (it is a common pitfall in ML to do model selection and model
evaluation on the same dataset). Initially, I used a more conventional 80-10-10 split,
but this lead to unacceptable instability of the validation ENM metrics from epoch
to epoch, making them almost useless for model selection (see Subsection 4.6.3).
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The much larger validation set in the 65-25-10 split (see Table 4.2) improved the
stability of ENM metrics to a significantly more useful level.

Splitting was performed using stratified sampling over the motion types in all
sets. The holdout set was constrained to contain exclusively targets present in the
dataset from [99], and therefore no multichain targets. To avoid overoptimistic
results, homology detection was performed on all targets. This was first attempted
with HHsearch [116], but this proved too sensitive for my application, producing
many false positives, even with a low e-value. In the end, homology detection was
performed via pairwise threading using DeepThreader [138], like Putz and Brock.
Homology was defined as a pairwise GDT_TS > 0.6 (Global Distance Test, Total
Score). After the sets were generated, they were permuted until no clusters of
homologous targets were split across different sets and the sets were still consistent
with the rules laid out above, as well as all clusters present in one of the three sets.

Set All CLM ILM CDM IDM BLM OTM NSM

Training 179/65.5 43/24.0 36/20.1 28/15.6 30/16.8 7/3.9 16/8.9 19/10.6
Validation 68/25.0 16/23.5 15/22.1 10/14.7 10/14.7 3/4.4 7/10.3 7/10.3
Holdout 26/9.5 7/26.9 5/19.2 4/15.4 4/15.4 1/3.8 2/7.7 3/11.5

Table 4.2: Motion category distribution of the dataset after splitting into training,
validation and holdout sets, aiming for a 65-25-10 split. Numbers are given as absolute
and percentage of all in set (CLM: Coupled Local Motion, ILM: Independent Local
Motion, CDM: Coupled Domain Motion, IDM: Independent Domain Motion, BLM:
Burying Ligand Motion, OTM: Other Types of Motion, NSM: No Significant Motion).

4.4 Model architecture

The final model architecture is depicted in Figure 4.2. The model is a fully con-
volutional neural network (FCNN, see Subsection 2.2.3) and also a residual neural
network (ResNet) [44]. ResNets are inspired by pyramidal cells in the cerebral cor-
tex and make use of so called skip connections, shortcuts that jump over the internal
parts of a layer and promote the flow of gradients in deep networks.

Feature maps are initially compressed from 96 to 64 and then passed through
five residual blocks (ResBlocks) containing two 3× 3 convolutional layers each, sur-
rounded by auxiliary layer types. The identity input is added to the output at the
end of each ResBlock and in this way passed through the network. The blocks make
use of dilated convolutions [135], instance normalization [121], dropout [113], and the
exponential linear unit (ELU) activation function [19]. The block architecture and
dilation values of 1, 2, 4, 8, 16 are reused from trRosetta [132], a successful protein
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Figure 4.2: Final convolutional ResNet architecture. 96 feature maps are generated
from the apo structure and its multiple sequence alignment (MSA). The ResNet first
compresses them to 64 feature maps and then passes them through five residual blocks
with two convolutional layers each and increasing dilation values. The outputs of the
model are sorted by a special scoring function called relevance heuristic (see Section 5.4)
and the top 16% predicted breaking contacts removed from the ANM, resulting in
lmcENMCNN. Finally, standard NMA is performed on lmcENMCNN. Removed break-
ing contacts are shown in red, maintained contacts in grey. Protein renderings created
using PyMOL [23], MSA illustration from https://bioinf.comav.upv.es/courses/
biotech3/theory/multiple.html

structure prediction method. This block architecture was more stable and reliable
than any tested variation of it.
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Also similar to trRosetta, symmetry is enforced at the end of the network by
adding the transpose in the width and height dimension to the model output.

To handle class imbalance, different weights are applied to the two classes (break-
ing and maintained) in the loss function (see Section 4.6), a standard technique. A
weight of 1/0.15 ≊ 6.67 for the breaking contact class relative to the non-breaking
contact class produces balanced results. It is of note that this is approximately the
inverse of the top percent of contacts selected.

Because examples vary in their width and height, mini-batching or SGD cannot
be used and samples are processed individually.

The Adam optimizer [64] with standard learning rate (0.001) is used. I combined
Adam with Adaptive Sharpness-Aware Minimization (ASAM) [31, 71] with neigh-
bourhood size ρ = 2.0, addition of which moderately improved classifier metrics and
greatly improved validation ENM metrics, indicating significantly improved gener-
alization. Especially the coupled local motion (CLM) class benefited: maximum
CO(10) values (see Subsection 4.6.3) increased about 40%. The value of ρ = 2.0
performed best among {1.0, 2.0, 4.0}. While without ASAM, not compressing the
features didn’t have a noticeable effect, in combination with ASAM this resulted
in a tenfold increase in validation loss. I hypothesize that this is connected to the
high ρ, which might be incompatible with the increased dimensionality. A test with
ρ = 0.2 showed the loss increase when not compressing features to be much less.
Due to time constraints, I didn’t investigate this further.

The model and the full pipeline is implemented independently of the original
lmcENMSVM pipeline and is written completely in Python 3. PyTorch [98] is used
for deep learning, ProDy [12] is used for ENM calculations, and NetworkX [41] for
graph operations. Preprocessing steps use BioPython [20], ProDy, atomium [54] and
NumPy [43]. Feature generation involves numerous external programs, including
DSSP [58], STRIDE [46], POPS [32], MSMS [107], SymD [117], PyRosetta [17], and
fpocket [73].

For ENM calculations, ProDy needs protein chains to be continuously numbered
and without gaps. The full alignment is mapped onto such a numbering and pre-
dicted BCs in this new numbering filtered again so that they have a minimum
sequence separation of four.

Predicted BCs are sorted using a relevance heuristic based on model score and
apo distance (see Section 5.4) and in this order attempted to be removed from the
ANMminDeg4 of the apo structure (see Subsection 3.1.1). Predicted BCs are only
removed if doing so will not violate Jeong stability (see Subsection 3.1.1). This
results in lmcENMCNN, on which NMA can then be performed.
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4.5 Features

The features used in the final model are listed in Table 4.3. For each feature, I
specify whether it is residue-level (R) or pairwise (P), the type of its values, its size
in the feature vector and a description, if necessary. Categorical features are one-hot
encoded. Most fundamental features from lmcENMSVM are reused, others added or
modified. Sometimes, for features that were one-hot encoded into different ranges
in lmcENMSVM, I used the raw discrete or continuous value instead. Results of
adding new features are presented in Section 5.5. DSSP is used instead of STRIDE
for secondary structure assignment. Owing to the fact that multichain proteins are
now present in the dataset, I include a binary interchain contact feature. Besides
these, the largest fundamental feature differences are in evolutionary features, which
I discuss in the next subsection.

4.5.1 MSA-based features

Sequence-evolutionary information correlates with protein dynamics, especially se-
quence conservation [81]. Coevolutionary phenomena have also been shown to con-
tain information about protein flexibility [11]. Evolutionary information on the se-
quence level is commonly captured in multiple sequence alignments (MSAs). From
the MSA, many position-specific features can be computed, among others. In the
case of lmcENMSVM, the features used to capture evolutionary information are mu-
tual information (MI) and sequence conservation as measured by Jensen-Shannon
Divergence (JSD) [30].

For lmcENMCNN, I used different MSA-derived features, closer to [81]: Shannon
entropy [30], the MI after applying average product correction (APC) [28], and the
MI after applying both minimum entropy normalization [88] and APC. Unmodified
MI was not included.

Additionally, I introduce Direct Information (DI) [128] as a novel feature, which
has proven to be superior to MI for protein contact prediction [87]. I hypothesized
that the statistically clearer DI might be superior to MI for protein BCP as well. As
I didn’t implement JSD, the impact of the sum of these changes cannot be tested,
but the impact of leaving out DI is tested in Section 5.5.

MSAs were generated using HHblits 3.3.0 against the uniclust30_2018_08 data-
base using the parameters -mact 0 -n 3 -diff inf -cov 60 -maxfilt 500000.
Shannon entropy, MI variants, and DI were calculated using ProDy.
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Feature Cat. Values Size Description

Chemical type R categorical 2× 4
AAs can be nonpolar,
polar, basic, or acidic

Secondary structure type R categorical 2× 8
8-state SS type, calc.
using DSSP

3D Cα distance P continuous 1

Residues in contact P binary 1 3D Cα distance ≤ dc

Φ dihedral angle R continuous 2× 1

Ψ dihedral angle R continuous 2× 1

ω angle R continuous 2× 1
Dihedral angle over the
peptide bond

χ1 angle R continuous 2× 1
First sidechain dihedral
angle, 0 for ALA, GLY

Normalized sequence posi-
tion

R continuous 2× 1 Defined as i/L and j/L

Interchain pair P binary 1
Residues part of differ-
ent chains

Inter-SSE pair P binary 1
Residues part of differ-
ent SSEs

Relative solvent accessible
surface area (rASA)

R continuous 2× 1 Calc. using DSSP

Solvent accessible surface
area (SASA)

R continuous 2× 1 Calc. using POPS

Normalized SASA R continuous 2× 1 Calc. using POPS

Solvation free energy
(SFE)

R continuous 2× 1 Calc. using POPS

Cα half-sphere exposure
(HSE)

R continuous 2× 3

HSE based on the ap-
proximate Cα-Cβ vec-
tors using three consec-
utive Cα positions2

2 See https://biopython.org/docs/latest/api/Bio.PDB.HSExposure.html#Bio.PDB.
HSExposure.HSExposureCA
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Feature Cat. Values Size Description

Cn half-sphere exposure
(HSE)

R continuous 2× 1
Residue exposure as
number of Cα-atoms
around its Cα-atom3

Residue depth R continuous 2× 1 Calc. using BioPython

Avg. B-factor of all residue
atoms

R continuous 2× 1

Avg. B-factor of side chain
atoms

R continuous 2× 1 -1 for GLY

B-factor of Cα-atom R continuous 2× 1

Corrected mutual informa-
tion (MI)

P continuous 1
Calc. using ProDy,
average product correc-
tion4

Normalized and corrected
MI

P continuous 1
Calc. using ProDy,
minimum entropy nor-
malization5

Shannon entropy R continuous 2× 1 Calc. using ProDy6

Direct information (DI) P continuous 1 Calc. using ProDy

Hydrogen bonding count R discrete 2× 2
Number of donor and
acceptor hydrogen
bonds

Pairwise hydrogen bonding P binary 1
Hydrogen bond between
both residues exists

Residue in symmetric part R binary 2× 1
Calc. using SymD,
see [99] for details

Distance to symmetry
plane

R continuous 2× 1
Calc. using SymD,
see [99] for details

3 See https://biopython.org/docs/latest/api/Bio.PDB.HSExposure.html#Bio.PDB.
HSExposure.ExposureCN

4 See http://prody.csb.pitt.edu/manual/reference/sequence/analysis.html#prody.
sequence.analysis.applyMutinfoCorr

5 See http://prody.csb.pitt.edu/manual/reference/sequence/analysis.html#prody.
sequence.analysis.applyMutinfoNorm

6 See http://prody.csb.pitt.edu/manual/reference/sequence/analysis.html#prody.
sequence.analysis.calcShannonEntropy

37

https://biopython.org/docs/latest/api/Bio.PDB.HSExposure.html#Bio.PDB.HSExposure.ExposureCN
https://biopython.org/docs/latest/api/Bio.PDB.HSExposure.html#Bio.PDB.HSExposure.ExposureCN
http://prody.csb.pitt.edu/manual/reference/sequence/analysis.html#prody.sequence.analysis.applyMutinfoCorr
http://prody.csb.pitt.edu/manual/reference/sequence/analysis.html#prody.sequence.analysis.applyMutinfoCorr
http://prody.csb.pitt.edu/manual/reference/sequence/analysis.html#prody.sequence.analysis.applyMutinfoNorm
http://prody.csb.pitt.edu/manual/reference/sequence/analysis.html#prody.sequence.analysis.applyMutinfoNorm
http://prody.csb.pitt.edu/manual/reference/sequence/analysis.html#prody.sequence.analysis.calcShannonEntropy
http://prody.csb.pitt.edu/manual/reference/sequence/analysis.html#prody.sequence.analysis.calcShannonEntropy
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Feature Cat. Values Size Description

Contact with any pocket R binary 2× 1
All pocket features calc.
using fpocket. Top 20
pockets are considered.

Contact with top-ranking
pocket

R binary 2× 1

Number of contacts with
pocket

R discrete 2× 1

Score of pocket R continuous 2× 1
0 if no contact with any
pocket

Druggability of pocket R continuous 2× 1
0 if no contact with any
pocket

Avg. B-factor of pocket R continuous 2× 1
0 if no contact with any
pocket

Hydrophobicity of pocket R continuous 2× 1
0 if no contact with any
pocket

Volume of pocket R continuous 2× 1
0 if no contact with any
pocket

Polarity of pocket R continuous 2× 1
0 if no contact with any
pocket

Charge of pocket R continuous 2× 1
0 if no contact with any
pocket

Table 4.3: Features used in the final model. The feature vector has in total 96 dimen-
sions. Features are either defined on the level of single residues (R), or pairs of residues
(P). Their values are categorized as continuous, discrete, categorical, or binary. Their
size as number of dimensions in the feature vector is also listed, along with a brief
description. More details on most features can be found in [99].

4.6 Evaluation metrics

To assess the performance of the model, several metrics are calculated during train-
ing. After each epoch, training and validation losses, classifier metrics, as well as
ENM metrics are computed. ENM metrics are calculated starting with epoch ten.
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4.6. Evaluation metrics

4.6.1 Loss function

The cross-entropy loss is used, a combination of the softmax function and negative
log-likelihood loss. Let y be the model output with shape L × L × 2 and y1 and
y0 the output describing the breaking and maintained contact classes, then the loss
L(y, c) of class c is given by

L(y, c) = − ln
(

eyc∑
j eyj

)
= − ln

(
eyc

ey0 + ey1

)
. (4.1)

Then, class weighting and masking is applied and the mean calculated. Let w1

and w0 be the weights of the respective classes and M ∈ {0, 1}L×L be the masking
matrix, then the following equation yields the final weighted loss scalar:

L̄w(y) = mean
(
flatten

(( [
w0 w1

] [L(y, 0)
L(y, 1)

])
· M

))
. (4.2)

The masking matrix masks positions with sequence separation less than four, gaps
in the sequence alignment, and positions that are not apo contacts, as noncontact
positions are irrelevant for the loss.

4.6.2 Classifier metrics

Binary classifier metrics are calculated on the basis of absolute numbers of TP (true
positives), FP (false positives), TN (true negatives), and FN (false negatives). I
calculate the base metrics accuracy, precision, and recall:

Acc = TP + TN
TP + TN + FP + FN , Prec = TP

TP + FP , Rec = TP
TP + FN . (4.3)

Accuracy, as defined above, is useful in problems where the classes are equally
distributed, but the BCP problem exhibits strong class imbalance. Instead, the
harmonic mean of precision and recall, called the F1 score, is used as the primary
measure of classification performance:

F1 = 2TP
2TP + FP + FN = 2 · Prec · Rec

Prec + Rec . (4.4)

Additionally, I calculate the area under the Receiver Operating Characteristic
(ROC) curve, called AUROC, as a second summary metric. It is also used in the
evaluation of lmcENMSVM. For a concise description of the AUROC, refer to [99].
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4.6.3 ENM metrics

After each epoch, I calculate two ENM metrics to judge the current effect the clas-
sifier has on ENMs. They are calculated based on a given set of predicted breaking
contacts, and involve creating several modified ENMs for all proteins in the valida-
tion set, computing their normal modes, and then comparing them to their respective
baseline ANMminDeg4. This frequent evaluation of ENM performance is necessary
because the metrics can fluctuate quite widely from epoch to epoch, and so no step
can be ignored. It also allows to observe the evolution of ENM performance as
training progresses, and its relationships to other metrics.

First, a set of predicted breaking contacts needs to be derived from the classifier
probabilities. In developing lmcENMSVM, a constant number of top scoring breaking
contacts, threshold values, and constant top scoring percentages of breaking contacts
were tested, and eventually the top 16% of predicted breaking contacts were chosen.

For lmcENMCNN, I evaluate two strategies for choosing breaking contacts:

• choosing the argmax over the two classes (equivalent to a threshold of > 0.5).
This allows for a flexible percentage of predicted BCs per protein.

• choosing the top scoring percent ptop ∈ {14, 15, 16}. As the average fraction
of breaking contacts is slightly lower in my new dataset, no higher percentages
were tested. Note that at the end of the evaluation, I realized that the number
of removed BC had been calculated based on all initial contacts, i.e. including
those with sequence separation less than four. As the number of apo contacts
with sequence separation less than four is quite substantial, this means that
actually, about 20-25% of BC with sequence separation ≥ 4 had been removed.
The exact number varies by protein. I repeated the final run with the fixed
calculation but no definite differences were noticed, hence the evaluation was
left as is. The F1 values were correctly calculated, however.

The first ENM metric I calculate is the ∆CO(10), which I define as the average
change in CO(10) after removing the top 16% of predicted BCs from ANMminDeg4

for all validation set proteins.
Second, I calculate the average difference in CO(10) between lmcENMCNN and

lmcENMSVM for all proteins in the intersection of my validation (or holdout) set
and the lmcENMSVM 90 protein dataset. I call this metric the vsCO(10), “vs”
for “versus”. A value of zero would indicate that in terms of ENM end results, on
average, lmcENMCNN performs on par with lmcENMSVM for the shared proteins in
the datasets of both methods.
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4.6. Evaluation metrics

Especially at the beginning of training, it can happen that the model predicts a
set of BCs that result in an unstable ENM, i.e more than six zero eigenvalues. It can
even happen that the contact graph breaks into multiple components, unable to be
stabilized by Algorithm 1. In case of instability, I iteratively lower the percentage
of top BCs that are attempted to be removed by 0.5% until the ENM is stable. The
final successful percentage is reported.

Even though I don’t evaluate any further ENM metrics in this thesis, all single
ENM metrics from [99] are already implemented.
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5 Results and Discussion

In this chapter, I present and analyze the results of the experiments performed,
show how the final model parameters were chosen and what the effects of different
design choices are. From the insights gained in these experiments, I try to formulate
general hypotheses about the breaking contact prediction (BCP) problem.

I start by discussing the generalization performance of the model in Section 5.2,
analyzed in terms of classifier and ENM performance. Next, in Section 5.3, I in-
vestigate the impact of varying the depth of the network and therefore the effective
receptive field. During experimentation, I developed the idea of relevance heuristics,
simple functions used to rescore the predicted weighting contacts. I investigate their
impact in Section 5.4. Finally, I describe some novel classifier features and show the
results of an ablation study performed on the model, in Section 5.5.

5.1 Methodology

Before going into the results, a few more words about the methodology of the exper-
iments. Hyperparameter search for a CNN is substantially harder than for a SVM.
The first reason for this is that SVMs have hardly any hyperparameters compared to
a neural network. And second, SVM training yields exactly one final model for one
set of hyperparameters, whereas neural network training in general is an iterative
process without a defined end point, yielding a new model after each epoch. Thus,
a stopping criterion has to be defined. The usual rule of thumb is to stop when
either the (averaged) validation loss or accuracy reached its minimum and begins
increasing again (“early stopping”). But in the case of protein BCP, the most rele-
vant metrics are arguably the resulting ENM metrics (see Subsection 4.6.3), which I
found to be only loosely correlated to loss and classifier metrics. While ENM metrics
are clearly not changing randomly throughout the training process, the model with,
for example, the highest F1, is not in general the model with the highest ∆CO(10).
ENM metrics also fluctuate more than other metrics. In evaluating the results, I
therefore place special attention on the relationships between the different classes of
metrics, focusing on ENM metrics in particular.

Three runs of 120 epochs with fixed seeds were performed for each configuration
to probe and account for inter-run model variability. Care was taken to ensure
complete reproducibility when using the same seed. Experiments were performed
on HPC nodes with NVIDIA Tesla V100 GPUs (32 GB VRAM).
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5.2 Model performance on validation and holdout sets

The final model was not selected based on highest F1, AUROC or maximization of
a single ENM metric. Instead, I sought out from all experiments the most balanced
performance over the different motion types, with a special emphasis on the local
motions, as this was also the goal in the construction of lmcENMSVM. To this end,
I filtered the results so that as many motion types as possible showed a positive
∆CO(10). Then I sorted by CLM ∆CO(10) and chose the strongest model.

This revealed the first insight, namely that it is very hard for the model to per-
form equally good for all types. It seemed to be especially hard to simultaneously
achieve positive ∆CO(10) on the CLM and CDM types. Only a small handful out
of thousands of epochs showed this combination of metrics, and they performed
poorly on other motion types. I assume this happens due to very different patterns
and amounts of breaking contacts between the two types. The selected model has a
positive ∆CO(10) in four out of the seven motion types.

Set Type F1 CNN F1 SVM AUROCCNN AUROCSVM

Validation

CLM 0.38/0.35 0.30/0.33 0.81/0.82 0.62/0.61
ILM 0.34/0.33 0.28/0.31 0.77/0.77 0.56/0.58
CDM 0.24/0.25 0.25/0.26 0.74/0.73 0.64/0.62
IDM 0.34/0.33 0.22/0.22 0.80/0.79 0.62/0.63
BLM 0.25/0.22 0.18/0.23 0.59/0.58 0.49/0.51
OTM 0.25/0.22 0.22/0.29 0.75/0.73 0.55/0.55
NSM 0.29/0.26 n.a. 0.79/0.79 n.a.
All 0.31/0.29 0.26/0.30 0.77/0.77 0.61/0.60

Holdout

CLM 0.42/0.31 0.31/0.34 0.82/0.82 0.57/0.57
ILM 0.37/0.33 0.31/0.29 0.76/0.77 0.51/0.50
CDM 0.21/0.22 0.20/0.22 0.67/0.67 0.54/0.49
IDM 0.37/0.33 0.19/0.22 0.75/0.80 0.65/0.68
BLM 0.18/0.18 0.08/0.08 0.79/0.79 0.33/0.33
OTM 0.28/0.28 0.17/0.17 0.72/0.72 0.42/0.42
NSM 0.34/0.38 n.a. 0.79/0.79 n.a.
All 0.33/0.28 0.25/0.22 0.76/0.78 0.54/0.51

Table 5.1: Classifier metrics of the predictions of the final model on validation and
holdout sets. Micro-averaged mean and median of the values are listed. Validation
values for lmcENMSVM (F1 SVM, AUROCSVM) refer to the 90 protein dataset from [99]
evaluated using Leave-one-out-cross validation (LOOCV), see Subsection 3.1.3. The
column with higher mean is highlighted.
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5.2. Model performance on validation and holdout sets

5.2.1 lmcENMCNN shows improved classifier performance

The overall classifier metrics of the final model are listed in Table 5.1. The CNN
clearly outperforms the SVM in terms of F1 and AUROC. Especially the AUROC
is dramatically improved, and now sits well above 0.70 for all motion types except
BLM, which is also improved from a random score to almost 0.60 (0.79 in the holdout
set). I observed improved classifier metrics across all experiments.

The second insight, strongly supported by the classifier metrics of lmcENMCNN,
is that the probabilities of the CNN and thus the model in argmax mode, are much
more accurate than those of lmcENMSVM. Having a strong argmax-based clas-
sifier makes it possible to predict a flexible percentage of breaking contacts per
protein, better accounting for the different motion types and their different amounts
of breaking contacts. In all the top% modes combined, only a dozen epochs out of
all experiments had positive CLM and CDM ∆CO(10), while almost one hundred
argmax-based models had. While the model selected in the end is based on the
top 16% mode, the decision was close. The argmax mode was also competitive in all
experiments and possibly performed better for domain motion types. The average
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Figure 5.1: General training plots of the final model configuration. Epoch 65, which
was chosen as the final model, is marked with a dotted vertical line. The selected model
has the best all-protein AUROC and second best all-protein F1, but not the best loss.
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percentage of predicted breaking contacts in argmax mode fluctuated strongly in
the beginning, but then converged to 10-15%.

To give the reader an overview of the training process, Figure 5.1 shows general
training plots, and additionally splits metrics by whether examples are singlechain
or multichain proteins. The training plots look stable and show no indication of
issues. The techniques used to combat overfitting (ASAM, dropout) seem to be
working well, with slight overfitting as indicated by increasing validation loss only
visible after 80 epochs. The loss for multichain proteins is quite a bit lower, but this
could be due to singlechain outliers, see next paragraph.

5.2.2 lmcENMCNN shows mixed ENM performance

The next Figure, 5.2, shows the same metrics, but this time split by motion type.
Additionally, the ∆CO(10) by motion type over the entire run is shown.
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Figure 5.2: Training plots of the final model configuration by motion type. Epoch 65
is marked with a dotted vertical line.
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The plots reveal two more things. First, BLM is an outlier in terms of loss and
AUROC, but the same effect is not visible in the F1 plot. I suspect this effect
is not very significant, as there are only three BLM proteins in the validation set
and therefore not much can be concluded. Still, the effect was consistent over all
runs. Visual inspection of the BLM proteins in the training and validation sets was
without findings.

Second, the ∆CO(10) plot is quite interesting. While it has a lot of curves,
it manages to show the general area where the motion types live. What is also
visible, is that clearly, the CLM type performs the best, followed by NSM and
ILM. Interestingly, a few epochs later, CLM and NSM show a further increase in
∆CO(10), with NSM greatly improved. As this was at the cost of other motion
types, the epoch was not chosen to limit overfitting to the local motion types.

Set Type ANM lmcENMCNN lmcENMSVM mcENM vsCO(10)

V

CLM 0.50/0.51 0.63/0.63 (16) 0.67/0.67 (5) 0.69/0.71 0.02/0.01
ILM 0.54/0.52 0.56/0.56 (15) 0.52/0.46 (7) 0.72/0.72 0.02/-0.02
CDM 0.86/0.90 0.84/0.86 (10) 0.86/0.85 (6) 0.91/0.92 0.0/-0.01
IDM 0.84/0.84 0.81/0.84 (10) 0.87/0.90 (4) 0.88/0.90 0.02/0.01
BLM 0.47/0.51 0.49/0.55 (3) n.a. (0) 0.62/0.59 n.a.
OTM 0.66/0.70 0.60/0.66 (7) 0.24/0.24 (1) 0.74/0.72 0.14/0.14
NSM 0.67/0.68 0.70/0.72 (7) n.a. (0) 0.80/0.84 n.a.
All 0.64/0.69 0.67/0.70 (68) 0.69/0.72 (22) 0.77/0.81 0.02/-0.00

H

CLM 0.46/0.35 0.59/0.63 (7) 0.55/0.61 (7) 0.64/0.65 0.03/0.06
ILM 0.53/0.47 0.51/0.46 (5) 0.53/0.53 (5) 0.66/0.67 -0.03/-0.01
CDM 0.90/0.96 0.88/0.93 (4) 0.92/0.96 (4) 0.93/0.96 -0.04/-0.04
IDM 0.87/0.87 0.84/0.87 (4) 0.85/0.87 (4) 0.89/0.88 -0.02/-0.00
BLM 0.79/0.79 0.72/0.72 (1) 0.76/0.76 (1) 0.87/0.87 -0.04/-0.04
OTM 0.69/0.69 0.67/0.67 (2) 0.68/0.68 (2) 0.82/0.82 -0.01/-0.01
NSM 0.57/0.63 0.57/0.56 (3) n.a. (0) 0.74/0.73 n.a.
All 0.65/0.65 0.66/0.69 (26) 0.68/0.72 (23) 0.76/0.80 -0.01/-0.01

Table 5.2: CO(10) metrics of the predictions of the final model on validation and
holdout sets, compared to ANMminDeg4 (listed as ANM), lmcENMSVM, and mcENM.
Mean and median of the values is listed. Columns ANMminDeg4, lmcENMCNN, and
mcENM are calculated on the full validation and holdout sets. Columns lmcENMSVM
and vsCO(10) are calculated on the intersection of V/H sets and the 90 protein dataset
from [99], see Section 4.3 and Subsection 4.6.3. This intersection didn’t contain any
NSM proteins (add. no BLM in the case of validation), so their comparison metrics
cannot be calculated. Rows where vsCO(10) > 0 are marked in bold, indicating superior
performance of lmcENMCNN.
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The ENM metrics react strongly to changes in classifier metrics. Classifier and
ENM metrics seem to be well correlated in this run, which was not always the case.

This leads me to Table 5.2, showing the ENM metrics of lmcENMCNN as measured
by CO(10) and compared to lmcENMSVM, the baseline ANMminDeg4, and the ground
truth mcENM, split by motion type.

Compared to the classifier metrics, the ENM metrics results are more mixed.
While lmcENMCNN outperforms lmcENMSVM on the validation set, it struggles on
the holdout set (although lmcENMSVM seems to struggle, too). What is positive,
is that lmcENMCNN performs well for the local motions across the board, with the
exception of holdout ILM. As shown in Figure 5.2, a later epoch would have increased
CLM even further. The mixed performance on validation and holdout sets reflects
the difficulty of finding a lmcENMCNN model that robustly performs well across all
motion types. The data forming the columns ANM, lmcENMCNN, lmcENMSVM,
and mcENM is visualized in the form of boxplots in Figure 5.3.
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Figure 5.3: Boxplots of ENM performance as measured by CO(10) by motion type, for
validation and holdout sets. For the holdout set, additionally lmcENMSVM is shown.
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What remains unclear, is why lmcENMCNN does not translate the considerable
and consistent increases in raw classification performance into equally large improve-
ments on the ENM metrics. Fundamentally, this means that the breaking contacts
predicted by lmcENMCNN are on average more correct, but less relevant than those
of lmcENMSVM. There are a number of possible contributions to this:

• Fundamental feature differences. There could be differences introduced by the
reimplementation of the fundamental features that are not beneficial. Forgoing
one-hot encoding of many features in favor of raw values could play a role. The
sidechain contact feature was not implemented. Furthermore, no whole protein
features are used in lmcENMCNN, and the receptive field most of the time does
not cover the whole contact map.

• High-level feature differences. The high-level features learned by the CNN,
while clearly impressively effective, are likely still not as balanced and expres-
sive as the manually engineered graph features used in lmcENMSVM.

• Sequential locality as induced by the 2D data format necessary for the CNN
could limit performance by making propagation of relevant data difficult (see
also next section).

• The filters not applied to construct the larger dataset could have led to un-
intended side effects. There was especially no filter for the type and size of
ligand in the pairs.

• A larger dataset is still desirable for deep learning. The more data, the better.
More data can help further increase generalization and stabilize ENM metrics
to facilitate better model selection. The impact of limited dataset size however
would have to be carefully analyzed to identify the reducible parts of bias and
variance [94].

For three proteins in the validation set and two in the holdout set, the percent
of removed BCs had to be iteratively lowered for them to become stable. Their
metrics are listed in Table 5.3. With the exception of 1ms3A and 3eugA, who have
poor F1 and AUROC values, the model metrics are in the normal range. In the case
of 1ms3A, the loss is surprisingly low for the F1 value (which was calulated based
on argmax mode). The OTM scores are likely dragged down in general by 1ms3A.
Interestingly, for 2o0kA, better results than lmcENMSVM are achieved, even though
(or because) only 6.5% predicted BCs were removed.
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Apo PDB ID 2vclA 1xtiA 1ms3A 2o0kA 3eugA
Set V V V H H
Motion Type CLM ILM OTM CLM IDM
Stable % 15.0 10.5 10.5 6.5 4.0
Loss 0.023 0.031 0.014 0.016 0.093
F1 0.36 0.40 0.14 0.30 0.17
AUROC 0.84 0.77 0.67 0.87 0.54
ANM CO(10) 0.54 0.42 0.74 0.65 0.76
∆CO(10) 0.19 -0.00 -0.50 0.16 -0.12
vsCO(10) n.a. n.a. n.a. 0.06 -0.07

Table 5.3: Proteins whose amount of removed predicted BCs had to be reduced to
achieve a stable ANMminDeg4. The amount of removed predicted BCs was lowered in
steps of 0.5% until the number of zero eigenvalues was equal to six.

5.2.3 Case Studies

I want to close this discussion on general model performance with case studies show-
ing success and failure cases of breaking contact prediction by lmcENMCNN.

A target where lmcENMCNN works really well is 2p52A from the holdout set.
It is a 187 amino acid protein with motion classified as CLM. For this protein,
lmcENMSVM only identifies 8 true positive breaking contacts, corresponding to a
precision of 0.07 and recall of 0.14. Due to the large amount of false positives,
lmcENMSVM does not manage to improve the CO(10) value of this protein over
ANMminDeg4, reducing it by -0.8%. On the other hand, lmcENMCNN achieves a
precision of 0.24 and recall of 0.50, managing to increase CO(10) by 19%. Other
examples where lmcENMCNN achieves an improvement while lmcENMSVM deteri-
orates ENM performance are 1dx9C (OTM, 168 AA, precision/recall: 0.15/0.31)
and 1a8dA (ILM, 451 AA, precision/recall: 0.16/0.41), both from the validation
set. Here, lmcENMSVM had ∆CO(10)’s of -10.2% and -8.3% while lmcENMCNN

achieves +4% and +9% respectively, aided by stronger classification performance
(precision/recall: 0.24/0.51 and 0.26/0.66). Figure 5.4 shows the breaking contact
networks of targets 2p52A and 1a8dA.

One target for which lmcENMCNN does not work at all is the already mentioned
1ms3A. It is a 632 AA long, predominantly β protein with OTM motion that can
be described as domain-like. The CO(10) is drastically reduced by lmcENMCNN,
from 0.74 to 0.24. The amount of removed predicted BC had to be lowered to
10.5% to achieve a stable ENM. Above 10.5%, there were seven zero eigenvalues.
The classification performance is low for 1ms3A, with an F1 of only 0.14. It is by a
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Chapter 5. Results and Discussion

large margin the worst performing protein in the dataset. Interestingly, the argmax
mode performs even worse for this protein (∆CO(10) -0.51), even though only 5%
breaking contacts are predicted and removed. This protein however is also one of the
few where even the ground truth, mcENM, worsened ENM performance, albeit only
by 1.5%. There is no data available for lmcENMSVM. To further understand why
this protein performs so bad, I performed a sensitivity analysis, iteratively removing
more predicted breaking contacts. The results of this are shown in Figure 5.5.

0 2 4 6 8 10 12 14 16
Percent removed pred. BC

0.0

0.2

0.4

0.6

0.8

1.0

CO
(1

0)

top 16%
argmax

Figure 5.5: Sensitivity analysis of validation set target 1ms3A/1ms0B. The horizontal
axis represents the amount of predicted breaking contacts that are removed, and the
vertical axis shows the resulting CO(10). The stability limits of argmax (4.5%) and top
16% mode (10.5%) are marked with vertical lines. The CO(10) rapidly decreases, even
when only small amounts of predicted breaking contacts are removed.

The rapid deterioration of ENM performance is something that was not seen in
the sensitivity analysis in [99]. I visually inspected the different contact networks for
2.5% and 3.0%, a difference that resulted in a loss of more than 30% CO(10). The
protein consists of two domains connected by an α-helix, and it seems like part of
the contacts that were removed in the 3% network but not in the 2.5% network were
on both ends of the helix, as well as at loop regions connecting the two domains.
This situation is depicted in Figure 5.6. I hypothesize that removal of these contacts
could have destabilized the connection between the two domains and led to large,
unwanted domain hinge motions. This hypothesis would need to be investigated
further by looking at the resulting normal modes.
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lmcENMCNN

top 3%

mcENM

observed BC
TP pred. BC
FP pred. BC

Figure 5.6: Breaking contact networks for target 1ms3A/1ms0B produced by mcENM
(top) and lmcENMCNN (bottom). For mcENM, the apo conformation is shown in blue,
the holo conformation in white, ANM contacts with a minimum sequence separation
of four in grey, and observed breaking contacts in red. For lmcENMCNN, the top 3%
predicted BC are shown, with true positive predicted breaking contacts in yellow and
false positives in red. The predicted BCs at the ends of the α-helix connecting both
domains could be responsible for the fast deterioration of CO(10) seen in the sensitivity
analysis (see Figure 5.5), as well as the instability of the lmcENMCNN network for this
target when using higher percentages of predicted BCs.
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5.3 Prediction context experiment

As discussed in Subsection 2.2.3, the network’s effective receptive field (ERF, see
Figure 2.5) and therefore the sequential context available to classify an apo con-
tact can easily be varied by adding or removing layers. An important experiment
is therefore to find the optimal network depth and more generally investigate the
influence of different ERFs.

Table 5.4 shows the layerwise ERF of one “dilation block”, that is, a sequence of
residual blocks containing two convolutions each (see Figure 4.2), whose dilation D

is doubled in each residual block, up to D = 16 in the fifth ResBlock. The ERF
values were calculated using the recurrence relation

rf i =

1 if i = 0

rf i−1 + (Fi − 1) · ∏i−1
j=1 Sj · Di otherwise,

(5.1)

where rf1 is the receptive field of the first layer and Fi, Si, and Di are the filter
size side length, stride, and dilation values of the ith convolutional layer.

ResBlock 1 2 3 4 5
ConvLayer 1 2 1 2 1 2 1 2 1 2
Dilation D 1 1 2 2 4 4 8 8 16 16
Output ERF 3 5 9 13 21 29 45 61 93 125

Table 5.4: Layer-wise effective receptive field (ERF) of one dilation block with maxi-
mum dilation of D = 16, corresponding to five ResBlocks.

Therefore, one full dilation block amounts to an ERF of 125× 125. As this ERF
is sequential and not spatial, it cannot be directly compared to the neighbourhood
graph and its constituents (see Subsection 3.1.3).

I tested the following network depths: two, three and four ResBlocks (resulting
in dilation sequences Dseq ∈ {(1, 2), (1, 2, 4), (1, 2, 4, 8)}), as well as one, two, and
three full dilation blocks. These configurations correspond to ERFs of 13, 29, 61,
125, 250, and 375, respectively. Table 5.5 shows the effects of changing ERF on the
best values of various metrics.

I found that with increasing depth, the network fits the training set faster, and
consequently also begins overfitting earlier. This means that best values are attained
in progressively earlier epochs, but also the values are worse in general. This is
especially visible for loss and AUROC values. The ENM metrics reach their optimum
with a bit more depth. All best values were achieved with networks with ERF ≤ 61.

54



5.4. Relevance heuristics

ERF Loss ↓ AUROC ↑ F1 ↑ ∆CO(10) ↑ vsCO(10) ↑

13 0.0424 86.3 0.7774 97.7 0.3142 96.7 0.0182 89.7 0.0115 96.3
29 0.0425 75.7 0.7779 93.0 0.3200 91.7 0.0181 96.7 0.0167 84.0
61 0.0425 73.3 0.7770 73.0 0.3194 92.3 0.0192 83.7 0.0142 73.3

125 0.0431 41.7 0.7694 64.7 0.3134 72.0 0.0183 91.0 0.0157 61.3
250 0.0440 35.3 0.7629 38.7 0.3064 40.3 0.0129 76.7 0.0056 59.3
375 0.0449 28.7 0.7556 25.3 0.3012 36.7 0.0153 47.7 0.0068 41.7

Table 5.5: Effect of increasing ERF on various model metrics. The average best value
over three seeds is listed along with the average epoch where it occurred. Predicted
breaking contacts were sorted by the baseline relevance heuristic (model score only),
see Section 5.4. Arrows indicate whether best is defined as min or max.

While the configuration with one full dilation block, i.e. ERF 125, wasn’t the
best in any single metric, it clearly came out on top when searching for a balanced
model that was still strong for the local motion types, as described in Section 5.2.

It is interesting that increasing the ERF does not lead to improvements visible in
single metrics, more so, they are slightly worsened by it. I suspect that the relevant
information gained by including more spatially close neighbours is drowned out by
many sequential neighbours that have little relevance for classifying the contact,
therefore making prediction actually more difficult. The fact that the most useful
model was found at the middle of the scale is encouraging, however.

It is important to point out that from this result, one cannot conclude that the
relevant prediction context for BCP is severely limited in general. This could only
be found out with either a graph-based model (see Section 7.2) or a model with full
attention over the contact map (see Section 7.3).

5.4 Relevance heuristics

To protect the stability of the ANM, predicted breaking contacts (BCs) are only
removed from ANMminDeg4 if doing so does not violate Jeong stability, that is, after
Algorithm 1 was applied to the contact graph (see Subsection 3.1.1). As implemented
in lmcENMSVM, predicted BCs are attempted to be removed one by one. It is easy
to see that this procedure is sensitive to the order in which removal of BCs is
attempted. A different ordering of the BCs can result in a different set of BCs that
can successfully be removed, leading to a different ENM.

Breaking contacts differ in their ability to influence normal modes, as shown by a
sensitivity analysis in [99]. Sometimes, a “critical mass” has to be reached before a
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significant change takes place, hinting at, for example, clustering of BCs. To build
the most expressive ENMs, it is not only important to predict which contacts will
break, but also what characteristics make them important and which BCs are most
important, in order to prioritize their removal. This is only very indirectly reflected
in the SVM and CNN probabilities (see also Section 7.4).

In lmcENMSVM, predicted BCs are sorted by decreasing SVM score. I hypothe-
sized that a different scoring function to sort predicted BCs not only based on the
model score could improve the resulting ENMs and maybe lead to more balanced
results over the motion types. This function should be simple, but at the same time
express something relevant for BCP contained in the apo structure. I call these
functions relevance heuristics.

5.4.1 Implementation and tested heuristics

For the two BC selection modes (argmax and top%), slightly different approaches
have to be implement. For top% mode, a L× L relevance matrix is computed and
element-wise multiplied to the model output to yield the final scores. From these, a
top percentage is selected, 16% for the final model. For argmax mode, the contacts
are, by definition, chosen solely on which output class score is higher. The resulting
contacts are then re-ranked according to the relevance heuristic. Even though both
modes use the same relevance heuristic, the effects are very different. While the
top% ENM results can be dramatically changed, the argmax results are affected
only to a small degree. This is because in top% mode, a completely different set
of predicted BCs can be selected, while, in argmax mode, only the internal order
of already selected BCs is changed, resulting in smaller changes. This means that
although the isolated effect of changing the internal order of BCs might on average
be small, it very much supports the idea of more deeply and explicitly integrating
relevance into the learning process, as proposed in Section 7.4. Fully leveraging
relevance heuristics in an “argmax”-like mode would be possible by means of a
custom threshold, sensibly defined per relevance heuristic.

The relevance heuristics I tested are listed in the following table, 5.6, along with
the idea of relevance they reflect.

5.4.2 Relevance heuristics can improve ENM metrics

Validating runs with relevance heuristics enabled partly lead to results very different
from the baseline R0, and the individual heuristics all behaved differently from each
other. I describe the observed effects in the following paragraphs.
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5.4. Relevance heuristics

n Rn(i, j) := Idea

0 S(i, j) Baseline, model score only.

1 S(i, j) · max (|i− j| − 3, 0)
Higher sequence separation is more rele-
vant. The first considered sequence separa-
tion, four, has relevance one.

2 S(i, j) ·D(i, j) Higher apo distance is more relevant.

3 S(i, j) · (dc + 1−D(i, j))
Lower apo distance is more relevant. The
highest possible apo distance, 10Å, has rele-
vance one.

Table 5.6: List of tested relevance heuristics, where i, j are sequence positions, S(i, j)
is the model score, D(i, j) is the Euclidean apo distance of residues i, j, and Rn(i, j)
the relevance function.

Relevance heuristic R1 strongly improved NSM and IDM, lightly improved BLM
pairs, did not significantly alter CDM, ILM, and OTM pairs, and deteriorated the
∆CO(10) of CLM pairs to a heavy degree. CLM, NSM, and IDM curves are shown
in Figure 5.7. Interestingly, CLM was improving over the whole 120 epochs and was
still doing so at the end of the experiment.
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Figure 5.7: Notable ENM effects of the sequence separation based relevance heuristic
R1(i, j) := S(i, j) · max (|i− j| − 3, 0). The epochs of all three runs with and without
the relevance heuristic are displayed. Epoch 65 is marked with a dotted vertical line.
The top 16% of predicted breaking contacts are used.

Relevance heuristic R2 improved the maximum ∆CO(10) of all motion types and
the average of most, leading to a higher overall ∆CO(10). The CLM type saw the
most consistent improvement, including producing an epoch with ∆CO(10) > 0.14,
the highest seen for this motion type. Due to the uniform success of this relevance
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heuristic, it was used in the final model. The effects of R2 on the various motion
types are shown in Figure 5.9 in detail.

Relevance heuristic R3 had another curious effect on BCP, shown in Figure 5.8.
While R2 seemed to shift the ∆CO(10) curves almost uniformly upwards, its “in-
verse” R3 more or less compressed them. Learning seemed to slow almost to a halt,
and the range of values visited in the ∆CO(10) plots was reduced for all motion
types, for some drastically so. For the domain motion, OTM, and NSM types, this
was actually greatly beneficial, but the CLM and to a lesser extent ILM types were
again impacted negatively.
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Figure 5.8: Notable ENM effects of the apo distance based relevance heuristic
R3(i, j) := S(i, j) · (dc + 1 − D(i, j)) (lower apo distance ranks higher). The epochs
of all three runs with and without the relevance heuristic are displayed. Epoch 65 is
marked with a dotted vertical line. The top 16% of predicted breaking contacts are
used.

The observed drastic effects of the relevance heuristics are in dire need of an
explanation. The universally positive effects of R2 seems to indicate that contacts
with higher distance in the apo structure have a higher probability of breaking, and
seems to amplify an effect already partly learned by the network. This hypothesis
could easily be tested. I want to remind the reader of the relatively narrow range
of possible apo distances that influence the heuristic, encompassing about 3.5Å up
to dc = 10Å (pairs with apo distance > dc are ignored anyways). As the involved
distances are small, a reasonable hypothesis could be that the effect is related to
weakening electrostatic potential, increasing the chance of the distance changing as
the interactions are not very strong. Maybe a background distance distribution like
the one calculated in [102] could be of help. The background probability of a contact
breaking based on its apo distance could be used to build a more refined heuristic.

I can also see how R1 works against local motions, promoting a kind of sequential
“anti-locality” incompatible with the local motions and their clustered BCs. If R2
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5.4. Relevance heuristics

amplifies a relationship learned by the network, then R3 diminishes it, leading to
the observed compression of ∆CO(10) curves and their slower change.

Further study of the motion types and their exact definitions is needed. Theoret-
ically as well as empirically grounded explanations for the observed effects could be
greatly beneficial for improving lmcENMCNN. An “anti-R1”, i.e. “lower sequence
separation is more relevant”, would also be possible, for example by inversion, and
would be an interesting investigation. The effects of relevance heuristics on classifier
metrics also remain to be studied, and would also need an adapted cutoff.

Adding yet another dimension to the idea, relevance matrices can also be mul-
tiplied element-wise to the loss matrix prior to its mean reduction, effectively re-
weighting it. This would promote learning of relevance in the sense of the heuristic,
although in quite a crude way.
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Figure 5.9: Effect of applying an apo distance based relevance heuristic on ENM
metrics of motion types. The epochs of all three runs with and without the relevance
heuristic are displayed. Using R2(i, j) := S(i, j) ·D(i, j) as the relevance heuristic
improves ∆CO(10) values for all motion classes and leads to a significant increase in
overall ∆CO(10), over the complete training process. Epoch 65 is marked with a dotted
vertical line. The top 16% of predicted breaking contacts are used.
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5.5. Evaluation of novel features

5.5 Evaluation of novel features

I added some new fundamental features to lmcENMCNN that were not used in
lmcENMSVM. I investigated the impact of including them by performing an ablation
study of the model. While not all novel features clearly improved metrics of the
model, their impact on model balance seems to be positive.

Before presenting the results of the ablation study, I give a short description of
the novel features and why it might be useful to include them. Direct Information
(DI) was already introduced in Subsection 4.5.1.

5.5.1 Residue dihedral angles

Besides the Cartesian coordinates of atoms, their internal coordinates, i.e. dihedral
angles, are also listed in a PDB file. Including internal coordinates and therefore
relative orientation of residues could be a valuable additional data source for breaking
contact prediction. I chose to include the three backbone dihedral angles Φ, Ψ, and
ω, as well as the first side chain dihedral angle χ1 as residue-level features.

5.5.2 Atomic B-factors

In protein crystallography, the B-factor (also called Debye–Waller factor or tem-
perature factor) measures the magnitude of vibrational motion of single atoms in
the resolved structure. Concerned about certain crystallographic biases, Putz and
Brock decided not to use the B-factors stored in PDB files as classification fea-
tures [99]. Nevertheless, they proved to significantly improve model accuracy in my
case. The general acceptance of B-factors as relevant indicators of local mobility
is also reflected in the fact that ENM variants are often judged on their ability to
predict them (for example [8, 65, 112]). I chose to use the average side chain, average
all-atom and Cα B-factors of residues as novel features.

5.5.3 Results of ablation study

I performed an ablation study of the novel features on the configuration with a
dilation sequence of D = 1, 2, 4 (ERF 29) and baseline relevance heuristic (R0).
The results are shown in Table 5.7.

Based on the results of the ablation study, only the B-factors seem to provide a
clear und unambiguous advantage. Removing DI or dihedrals resulted in jumps in
the ENM metrics, as well as AUROC and F1 in the case of dihedrals. The maximum
vsCO(10) value of 0.0359 reached in the model without DI is quite impressive,
although it may be caused by lucky outliers.
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Still, none of the models with any of the novel features removed were included in
the top ranked epochs when looking for a balanced model. While the ablation study
would need to be repeated with the final model configuration (ERF 125, relevance
heuristic R2), I assume a situation similar to the investigation of varied ERF in
Section 5.3: slightly increased classifier accuracy and maximum ENM metrics, as
seen in the ablation study, are not clearly associated with increased model perfor-
mance over all motion types. This decoupling, while not completely comparable,
seems to also be the case with the results of lmcENMSVM, which achieves balanced
ENM results with quite low classifier metrics. Ultimately, this too leads back to the
central concept of relevance of predicted breaking contacts.

Values Features Loss ↓ AUROC ↑ F1 ↑ ∆CO(10) ↑ vsCO(10) ↑

Avg. best

Baseline 0.0425 0.7779 0.3200 0.0165 0.0133
w/o DI 0.0427 0.7762 0.3181 0.0199 0.0236
w/o Dihedrals 0.0421 0.7823 0.3258 0.0125 0.0205
w/o B-factors 0.0433 0.7587 0.3009 0.0152 -0.0067

Best

Baseline 0.0423 0.7796 0.3218 0.0189 0.0147
w/o DI 0.0425 0.7782 0.3200 0.0206 0.0359
w/o Dihedrals 0.0419 0.784 0.3290 0.0159 0.0276
w/o B-factors 0.0429 0.7612 0.3039 0.0169 -0.0019

Table 5.7: Ablation study of novel features DI, dihedral angles, and B-factors. The
used model configuration has an ERF of 29 and uses the baseline relevance heuristic.
The average best value over three seeds and the best overall is listed. Arrows indicate
whether best is defined as min or max.
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6 Conclusion

In this thesis, I have built a novel Deep Learning-based classifier to predict break-
ing contacts during functional protein motions, called lmcENMCNN. It builds on,
expands, and can act as a replacement for lmcENMSVM [99, 100], a recently intro-
duced Elastic Network Model (ENM) variant that promises to allow local functional
motions to be successfully captured by ENMs. Protein breaking contacts were in-
troduced along with lmcENMSVM and represent pairs of residues that are especially
flexible during functional transitions, changing their relative distance more than a
predefined percentage. The predicted breaking contacts are then removed from a
standard Anisotropic Network Model (ANM).

I have shown that lmcENMCNN reaches performance on a level comparable to
lmcENMSVM, especially for the local motion types. The Convolutional Neural
Network (CNN) at the core of lmcENMCNN shows greatly improved AUROC and
F1 scores compared to the SVM used in lmcENMSVM. The end results in evalu-
ating the ENM normal modes reveal a more mixed picture. On the validation set,
lmcENMCNN surpassed the performance of lmcENMSVM, while it didn’t do so on
the holdout set and especially struggled with nonlocal motion types. I highlighted
the difficulty of reaching balanced performance over all motion types and discussed
possible contributors to this difficulty. I believe the concept of relevance to be central
for the breaking contact prediction (BCP) problem and related back to this multiple
times in the thesis. This should also provide guidance in improving lmcENMCNN.

Besides building a novel classifier, I also proposed and tested multiple enhance-
ments of the lmcENM method itself, including the concept of relevance heuristics,
the addition of some novel fundamental features, and the inclusion of multichain
proteins, achieving promising results that invite further research.

The significant engineering effort that went into building lmcENMCNN raises the
question if it was justified. All the more so as, at the moment, lmcENMCNN is not
an uncomplicated replacement for lmcENMSVM. While it works satisfyingly for the
local motion types, lmcENMCNN is not yet as balanced and reliable in its results as
lmcENMSVM.

However, lmcENMCNN is only the first step in Deep Learning-based approaches
to BCP. Its value is further visible in the following achievements: first, opening up
the field of ENMs to Deep Learning. Second, providing a well-built and future-
proof platform to quickly iterate on and build improved and possibly much more
general and integrated ENM/DL models (see Chapter 7). Third, the improvements
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to the lmcENM method itself proposed and implemented, including the extension
to multichain proteins and the introduction of relevance heuristics (see Section 5.4),
which could also be backported to lmcENMSVM. And last, the insights gained
from the model itself, regarding usable depth, improved classifier metrics (possibly
through better prediction of clustered breaking contacts) and novel features as well
as the usefulness of Adaptive Sharpness-Aware Minimization (ASAM) in this case.

The hand-engineered graph features used in lmcENMSVM have shown great effec-
tiveness and expressiveness, leading to highly relevant predicted breaking contacts
even in the context of the low classification performance of the SVM. The implicitly
learned features of the CNN also work, but likely emphasize other breaking con-
tact patterns, including clustering. A combination of the strengths of both methods
would be desirable. The relevance heuristics discussed in Section 5.4 can already be
seen as some domain knowledge-derived “nurture” added to the freely learned CNN
features.

With many threads to follow in order to further improve lmcENMCNN, the next
iteration of DL-based BCP, likely to be a graph-based model, should be more clearly
superior not only in terms of classifier performance, but ENM end results as well. I
discuss some of the possible directions in the following chapter.
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7.1 Larger dataset

Deep Learning generally benefits from more data (see Figure 2.4). A larger validation
set would further help to stabilize its associated ENM metrics. An even bigger
dataset than the one built in this thesis (see Section 4.2) could likely be achieved
by filtering the complete PDB or using an existing database like CoDNaS [92],
Binding MOAD [51], or MolMovDB [35]. Experimental databases could be built
that include conformational change not involving ligands. It is unknown how many
more nonredundant apo-holo pairs could currently be extracted from the PDB or
other databases.

7.2 Graph-based model

A graph-based deep learning model would allow a more natural, 3D-centered repre-
sentation of contact neighbourhood and thus a more direct translation of the contact
neighbourhood graph into a DL model. This solves a limitation of the contact-map
approach used in the 2D convolutional model, which has a primarily sequential view
of the protein (see Section 4.1). Like in the ING, nodes would represent residues and
edges contacts between them. The graph could either be made sparse, with edges
only existing for apo contacts, or a full graph of order L, making even more neigh-
bourhood information available. Both node attributes (residue-level features) and
edge attributes (pairwise features) would need to be taken into account for classifi-
cation. The task is therefore one of edge classification [137]. In the world of graph
neural networks (GNNs), this seems to be a rather niche application, with most ex-
isting models and graph convolution operators focusing on node classification [137].
Edge attributes are most of the time not being sufficiently taken into account, even
for node classification [39]. Therefore, significant customization of existing graph
neural network models might be necessary for BCP using GNNs. Some promising
resources were found on the topic of edge classification [24, 39, 56, 63], including
an article on edge classification with neighbourhood sampling using the DGL deep
graph learning library.1 The line graph of the protein could also be used as input to
the GNN, resulting again in a node classification task. One issue to keep in mind is

1 See https://docs.dgl.ai/en/latest/guide/minibatch-edge.html
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that most GNNs tend to become unstable with more than a few layers. This could
nonetheless be completely sufficient in a spatially-centered representation.

7.3 Attention-based model

Deep Learning architectures involving attention have become very popular recently,
starting with the introduction of the transformer [124]. Attention mechanisms would
be interesting for BCP for two reasons: they could allow for better performance than
a CNN and be used in either a sequential protein view (transfomer) or in the context
of a graph-based model (graph attention). A full transformer would probably even
substitute for a graph model, as it can effectively attend over the complete contact
map. On the other hand, transformers are very data-hungry, and a larger dataset
(an order of magnitude at least) would realistically be needed to successfully apply
a transformer architecture. Using an attention-based model would also allow the
direct instead of only indirect investigation of the parts of the protein most relevant
to the prediction of breaking contacts.

Transformers are very expensive for vision tasks, with the cost of self-attention
growing quadratically in the number of pixels. Sub-quadratic transformer variants
like the Vision Transformer (ViT) [26] may provide an avenue for further research.

7.4 End-to-end learning of protein motion

Using the original lmcENMSVM approach as well as the model presented in this
thesis, the desired end result of improved capturing of localized functional transitions
by ENMs, or more generally protein motion in ENMs, is reflected only indirectly in
the learning process. This can be seen, especially in the case of a neural network,
in two facts: (a) validation loss does not correlate strongly with ENM performance
improvement, and (b) not even validation classifier performance directly corresponds
to ENM performance. I observed epochs with an F1 more than 0.1 smaller than
another one, but with much better ENM metrics. There were also epochs with
the same F1 but vastly different ∆CO(10). This is because the notion of relevant
breaking contacts is missing from the learning goal. For the network, each contact
is equally important, but for the ENM it is not, as shown by Putz and Brock [99].
First attempts to remediate this were made in this thesis using relevance heuristics
(see Section 5.4). Besides that, it has to be manually tested which features and
hyperparameters exactly bias the learning process towards breaking contacts that
are especially beneficial to the modified topology.
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All of this is likely the result of the fundamental gap between both parts of
the method, the neural network predicting the topology and the ANM using this
topology. Independent of the architecture used in the neural network model, a
more elegant solution would be to learn protein motion end-to-end. This could
be done with a wholly different protein motion formalism, for example considering
recent breakthrough progress in protein structure prediction [57], an extended model
becomes conceivable. This model would predict not a single conformation, but a
distribution of conformations likely to be seen in the cellular milieu, with (transition)
energies attached to them. Analogous to the popular distograms (discrete PDFs of
a pairwise distance in a single conformation), this predicted distribution could be
called a dynagram.

Second, I propose an alternative approach, called differentiable ENMs. This
approach would retain the idea of representing protein motion by a small number
of highly relevant normal modes, but modify ENMs in a way as to allow them to be
integrated into an autograd framework. The desired end result could be described,
for example, by a CO(k)-based loss, reflecting the goal of describing as much of the
deformation space as possible with as few modes as possible. This circumvents the
problem of needing examples of optimal topologies: the CO(k) is bound between 0
and 1 and has the goal “built in”, without needing to know what the goal looks like.
If the problem is too hard, follow the gradient.

First and foremost, a working gradient-based minimization of the CO(k)-loss,
which could for example be defined as LCO(k) = − ln CO(k), would enable the
study of ENM topologies that optimally cover a deformation space with a desired
number of normal modes. This would also answer the equivalent question of how
many normal modes are needed to cover the deformation space up to a certain degree
using simple ANMs, something which is principally unknown [99].

In a next step, a neural network model could be built to predict the optimal
ENM stiffness matrix K of an apo conformation directly, instead of the proxy of
breaking contacts. This is a much more general formulation of the lmcENM insight
that different motion types require different topologies to be captured well, and is
also connected to the common practice of adjusting the ANM distance cutoff on a
per-protein basis, or adjusting spring stiffness based on various sources of knowledge.

Two fundamental problems arise: first, binary topology as used in lmcENM will
hardly be possible, as the Heaviside step function Θ(x−1/2) representing the argmax
over the classes that would be used to form a binary stiffness matrix is not differen-
tiable. Either a differentiable approximation has to be used, or the idea of a binary
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topology given up altogether.2 From a learnability standpoint, the latter is likely
to be more successful, due to gradient stability. A nonbinary topology also has
other benefits and is the most general formulation possible. Either way, the BCP
classification problem is transformed into a regression problem.

And second, normal mode analysis involves solving an eigenvalue problem. Back-
propagation through an eigendecomposition is a bleeding-edge field [126], becoming
numerically unstable for singular matrices like the Hessian of protein NMA. Likely,
a specialized approach to work around this fact is needed here.

2 Of course, one could train a continuous stiffness matrix K, then round the entries to 0 or 1 and
use that while still calculating the loss on the continuous matrix. I don’t feel confident making a
prediction on the usefulness of that, however.
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