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Abstract

Robotic motion planning requires configuration space egpion. In high-dimensional configuration
spaces, a complete exploration is computationally indtzlet To devise practical motion planning al-
gorithms in such high-dimensional spaces, computatiesaurces have to be expended in proportion
to the local complexity of a configuration space region. Weppise a novel motion planning approach
that addresses this problem by building an incrementatcqapate model of configuration space. The
information contained in this model is used to direct corafiahal resources to difficult regions. This
effectively addresses the narrow passage problem by adaghi sampling density to the complexity
of that region. Each sample of configuration space is gueeanto maximally improve the accuracy
of the model, given the available information. Experiméngaults indicate that this approach to mo-
tion planning results in a significant decrease in the coatpral time necessary for successful motion
planning.

1 Introduction

Complete motion planning requires understanding a rolmotdiguration space. The acquisition of such
an understanding is computationally challenging. The ggmaotion planning problem has been shown
to be PSPACE complete [32]. Sampling-based motion planmiathods [21, 25] address this difficulty by
constructing a connectivity graph which implicitly apprmates the structure of the configuration space,
thus minimizing exploration. However, even sampling-lbasethods can require an exponential number of
uniformly placed samples [36] to build a successful reprizden of configuration space.

Uniform sampling, which forms the basis of almost all mgjtiery sampling-based motion planning
approaches, makes the implicit assumption that configuragpace is uniformly complex. This forces a
motion planner to expend the amount of computation requigethe most complex area of configuration
space on all areas of configuration space. This shortconfimgitorm sampling is generally referred to
as the “narrow passage problem” [18]. A great deal of researcsampling-based motion planning is
concerned with the resolution of this problem [2, 6, 17, IBhe approaches proposed in the literature so
far use heuristics to filter configurations after, compotaily expensive, examination in the configuration
space but prior to insertion into the roadmap. We proposdtamate adaptive approach which actively
selects configurations before examination.



A practical motion planner has to exploit the structure nehé in a particular instance of the motion
planning problem to avoid the computational complexity sl of the general motion planning problem.
This can be achieved by expending computation on each regipnoportion to the complexity of that
region. For sampling-based motion planning, this corradpdo adapting the planner's sampling density
to match the complexity of the configuration space. More dasngre drawn from complex areas of con-
figuration space, constructing the detailed roadmap reduior motion planning in those areas. Simple
regions of configuration space receive minimal samplingam$equently, a simple representation. Adapt-
ing sampling this way greatly reduces the computation reergdo construct a roadmap for practical motion
planning problems. Redundant exploration in simple areavaoided, saving computation on unnecessary
collision and edge checks. The collision and edge checkslthaccur are necessary. Computational effort
is directed to regions where detailed information is resglito solve the problem.

In the following we introduce a novel motion planning teaue which directs computational resources
in this manner. This new approach incrementally constrastsrefines an approximate statistical model of
the entire configuration space. The model indicates thesarfeeonfiguration space which are complex and
the areas which are simple. The model acts as a guide for mplisgy strategy. Sampling is performed in
proportion to the model’s estimate of complexity. As arefsomfiguration space become understood, i.e.,
the model represents them accurately, they receive naesfustimpling.

All sampling-based motion planners construct an approt@maodel of the configuration space from
which paths may be derived. The proposed motion plannerwsss its model to guide the sampling of
configuration space. To do this, the model used by the plamist provide an approximate picture of the
entire configuration space, enabling predictions of unafeskregions of the space. It should also provide a
confidence value for those predictions, indicating aredshwdire poorly understood. The traditional model,
a connectivity graph or roadmap, is built from path-segmemtd configurations. Consequently, it cannot
provide these capabilities. A more expressive approxinmaddel is required.

For such a model, we use locally weighted regression [3ltstital approach from machine learning.
This model provides a computationally efficient represimnaof the configuration space. The model pro-
vides efficient predictions about the state of unseen regibnonfiguration space and its confidence in these
predictions. Sampling is directed to regions of uncenjaiotmaximally improve the accuracy of the model.
In addition, the proposed motion planning approach explbie efficient predictions provided by the model
to avoid invocations of a costly collision checker. Usingdtly weighted regression we have developed a
practical implementation of a model-based motion planB&perimental results indicate that model-based
motion planning is capable of significantly reducing the ant®f exploration required to build an accurate
model of relatively high-dimensional configuration spaces

2 Reated Work

2.1 Motion Planning

All complete motion planners build a model of configuratiggase. Depending on the motion planning
algorithm, different types of models are constructed. Detd a number of approaches, with a particular
focus on sampling-based methods that most directly redabeit work, are given in the following.

For cell decomposition planners [24], the model is a cdlbecof labeled cells and a connectivity graph
connecting them. Exact cell decomposition methods pamtitonfiguration space into non-overlapping
regions that either contain obstacle or free space. Fooajppate cell decomposition [1, 27], the cells are
labeled as free, obstructed, or mixed. These methods digngraceed by recursively subdividing mixed



cells until a pre-determined minimal cell size is reachedhevéas cell decomposition methods are complete,
approximate cell decomposition methods are only comptetld resolution of the smallest allowed cell.
This notion of completeness is referred to as resolutionpteraness.

Artificial potential field methods [22] model configuratiopase as a potential function which gives a
numeric value to a particular configuration. Descendingpbiential function via gradient descent gives
a path from start to goal configurations. Because they ddsagmadient, potential field methods are sus-
ceptible to getting stuck in local minima which are not thalgocation. Consequently, motion planners
based on artificial potential fields are incomplete. Navigafunctions [4, 11, 23] address this problem by
providing local minima-free artificial potentials. The cpuatation of such navigation functions, however, is
difficult in the general case.

The silhouette method [8] builds an exact roadmap of the gardtion space by incrementally sweeping
a plane along each dimension of the configuration space dratérg the curves which connect locally ex-
tremal points. These curves form the basis for the roadmaghvidithen used for motion planning. Because
the method requires sweeping along every dimension in amafign space, the method is exponential in
the degrees of freedom of the robot.

Due to the computational complexity of exact modeling offiguration space obstacles, the most ef-
ficient techniques for motion planning for robots with marggrees of freedom construct approximate
models by sampling configuration space. The probabilise@dmap (PRM) method [21] uses a connectivity
graph as its model of configuration space. This graph, catladmap, consists of milestones (vertices) and
collision-free paths (edges), implicitly captures theefspace connectivity of the configuration space. PRM
methods derive their computational efficiency from the theit the roadmap can be constructed through
the examination of only a small fraction of the configurat&pace. This gain in computational efficiency
comes at the cost of replacing the notion of completeneds pviitbabilistic completeness. Probabilistic
completeness guarantees that any given path in a configuisgiace will be found with a probability which
increases as sampling increases.

The uniform sampling strategy used by the original PRM atgor makes the implicit assumption that
all areas of configuration space are equally complex. Foipaagtical motion planning problem, however,
some regions require a high density of samples to explorepletaty, while others only require a few sam-
ples. Uniform sampling is forced to sample everywhere withhigh density required by the most complex
area of configuration space. This presents a serious cotigmatichallenge when the configuration space
contains small regions of free space that are surrounded$tades. Such a structure is often referred to
as a “narrow passage” [18]. Much of the research in samdasped motion planning over the last decade
has focused on the design of sampling strategies to addressmtrow passage problem. A survey several
of these methods follows.

In the traditional PRM algorithm, samples that are foundddrside of configuration space obstacles
are discarded. Some heuristic sampling strategies atttmyge these obstructed samples to find nearby
free points, assuming that points near obstacles are ni@ly lio be important than more distant free
points. These methods use heuristics based on obstackeesyfoperties [2] or shrinking and growing
obstacles [18] to modify colliding samples into free onesthdugh modifying obstructed samples can
discover free points near obstacles, it often requires timepeitationally expensive examination of a large
number of additional obstructed configurations before a @renfiguration is found. Furthermore, not all
points near obstacles are critical to the development oteessful roadmap.

Other approaches address the problem of obstructed caatiigus by minimizing the probability that an
obstructed configuration will be examined. The medial-axiategy [14, 16, 26, 38] selects configurations
near to the medial axis of the work space [14, 16, 38] or cordiipn space [26], since these configura-



tions are less likely to be obstructed. A significant chalkeno this approach is the difficulty of finding
configurations near the medial axis for articulated robots.

The computational cost of edge validation in large roadniegsslead to the development of sampling
strategies that attempt to minimize unnecessary samplesGaussian sampling strategy [6] and the bridge
test [17] ensure that most configurations in the roadmaplase ¢o obstacles or lie inside a narrow passages,
respectively. These configurations are presumed to be rmtpftihin capturing the free space connectivity.
Visibility-based PRM planners [35] specify nodes in confajion space which act as “guards.” These nodes
capture a region of configuration space containing everfigaration for which a collision-free, straight-
line path exists to to the guard (the configuration is “visitib the guard). Nodes are only inserted into the
roadmap if they are not in a guard’s captured region, or if #re “connection” nodes which permit indirect
paths between two previously disconnected guards. Thidtses a smaller roadmap without redundant
nodes or connections but it requires the expensive comgput#te guard’s visibility, which in effect is
determined by performing an edge validation. In a diffe@mproach, Fuzzy PRM planners [29] address
the costs of edge checking by incrementally validating edgesed upon an estimate of their probability of
being free. The probability that an edge is collision-freestimated by a calculation based upon the length
of the edge.

The methods discussed so far perform preprocessing byraotisyy a roadmap for the entire configu-
ration space. Any subsequent motion planning query cantibemswered efficiently by performing graph
search in the roadmap. Due to this property, they are calldtd-gquery methods. To avoid the exploration
of the entire configuration space, so-called single-queeghods end exploration upon the solution of a
particular motion planning problem. The selection of regito explore during the planning process is per-
formed using heuristics. Lazy PRM planners [5], for examplases exploration toward those regions close
the the initial and final configuration. Rapidly-explorirgndom trees (RRTS) [25] are another single-query
approach to sampling-based motion planning. They use ateulidiffusion to build a connectivity tree in
configuration space. RRTs are often used for single querjomgtanning when the start and end config-
urations are known. In these situations, trees are rootbdthtthe start and end configurations and grown
until they intersect. The approach of diffusion is also takg expansive spaces [19], an approach quite
similar to RRTSs.

Recent work in sampling-based motion planning has exantimedse of more expressive approximate
models of configuration space. The entropy-guided motiannihg approach [7] maintains a bounding box
around connected components of the roadmap and uses thesetbanfluence the selection of configu-
rations lying between these components. Entropy-guidetiomplanners demonstrate that exploiting the
information represented in more expressive models allbigsapproach to obtain significant improvements
other planners.

Other work [28] uses machine learning to choose which magilanner should be applied to different
regions of configuration space. The approach constructsisidke tree [31] from hand selected attributes of
prior planning experience. This decision tree is used tecsel motion planning approach which is thought
to be suited to a particular region of configuration space.

Hsu [20] also proposes an adaptive sampling method. The asskmbles a weighted collection of
different sampling strategies. Each sampling strategysésiuo choose a configuration with a probability
proportional to its weight. The weights are adapted in raspao the samplers performance. Several
strategies for weight updating are proposed. While Hsu’skwean adapt to a changing understanding of
the configuration space, it does not adapt to different regad the configuration space. Different sampling
strategies may become weighted more heavily, but they gleedpuniformly across the configuration space.



2.2 MachineLearning

In this work, we view the construction of an approximate mddeconfiguration space as a classification
task that can be solved using machine learning techniquegerieral, a classification can be seen as a
mapping of some input to an output label;. For configuration space, this mapping is described in detai
in Section 3.1.

Locally weighted regression [3] is an efficient approach taleling arbitrary functions based on sam-
ples. This approach possesses a number of attractive tdrdgtics, making it well-suited to the task of
modeling configuration spaces in motion planning problekigdels based on locally weighted regression
are locally adaptive to the structure of the underlying finrg their training cost is constant, regardless of
the number of training examples, and an efficiently comgatalosed form derivation of an active learning
strategy [10] exists.

In contrast to traditional machine learning, active leagnconsiders the task of learning from examples
when the learner has control over the selection of exampten fvhich it learns. In particular, active
learning focuses on selecting examples which maximize toaracy of the learner using a minimum of
training examples. Approximating configuration space iactive learning situation since we can choose to
examine any configuration with the collision checker. We thigederivation of an active learner for locally
weighted regression presented by Cohn et al. [10]. Furtb&ild concerning locally weighted regression
and active learning are in Section 3.1.

Decision tree algorithms, such as C4.5 [30], perform di&sgion by constructing a tree where each
branch represents partitioning on a particular input vaiiech leaf of the tree corresponds to a classification.
Others [28] have chosen to use decision trees to aid moteomplg. Decision trees are often prone to over-
fitting training data and can have difficulty adapting to nuoos local features of a space.

Support vector machines [34] map input values into a highetiisional space. In this high-dimensional
space, a number of linear separations is used to modelefiffeategories. One of the challenges of support
vector machines is the design of a customized kernel fumctioted to the particular classification task.
Designing this kernel function for configuration space sifasation is still an open problem. Active learning
with support vector machines has also been explored [37].

Mixture models [13] approximate a complicated surfaceubtothe mixture of a number of simpler dis-
tributions. Gaussian distributions are a popular choicetfe mixture distributions. These distributions are
fit to training data using the expectation maximization (Ejorithm [12]. Several choices in constructing
the model such as the type of distribution and the numberstfiblitions to mix are critical to the success
of the model. Additionally, the EM algorithm can be quite qortationally expensive. Cohn et al. [10] also
provide an active learning formulation for Gaussian migtorodels.

Neural networks [33] can be used to approximate a classdicétinction. Neural networks consist a
number of layers connected together by weighted links. mpativalue enters through the input node and
is propagated forward through the network resulting in tresentation of values on the output nodes. A
number of different structures for the nodes and method&rdéiming the weights of the links exist. Like
mixture models, the choice of structure and training for rleeiral network play a significant role in its
success. Training times for the neural networks can be Ipitot.

3 Model-Based Motion Planning

To build a computationally efficient, sampling-based moftanner we propose the use of an approximate
model of the entire configuration space. This approximatdehis constructed incrementally, as a solution



to the motion planning problem is computed. It providesiinfation about which areas of the configuration
space are well understood and which are understood podnly.s@mpling strategy associated with such a
model uses this information to adapt sampling densitieba@ereas receive sampling in proportion to their
complexity. Regions that remain poorly understood due ¢ir inherent complexity will be sampled more
densely. Regions which are accurately represented by tdelrace not sampled further.

In addition to exploiting the information contained in thede! to adapt the sampling density, the model
can also generate predictions about unexplored regiongrdfguration space. If the model is capable
of making a prediction with high confidence, a planning mdtsbould choose to accept the prediction,
thereby reducing the number of required collision checgsiicantly. Only uncertain paths should be
explored. Neither paths which are likely to be obstructedpaths which are likely to be free are worth the
computation required to explore them. If a path is likely ¢dtee, exhaustively checking it represents excess
computation for information already obtained from the modfea path is likely obstructed, verifying that
it is obstructed is likewise a waste of computation. Inténgdy, by far the greater savings in computation
comes from not verifying free paths since the computatiaquired to verify a path is unobstructed is
generally greater than the computation required to determipath is obstructed.

The graph-based models underlying current sampling-bassabn planners only contain information
about free configurations and free path segments connetiing. Because of this, graph-based models do
not allow predictions about unexplored space. To find a Bigtenodel for such predictions, we view the
approximation of configuration space as a classificatioflpro and choose from methods developed in
the field of machine learning (see Section 2.2). The regukBmpling strategy is fundamentally different
from those of previous sampling-based planners. The peapasodel-based planner shares two charac-
teristics with current sampling-based techniques: it damponfiguration space and the resulting path is
based on path segments. As we will see in this section, etbey aspect of model-based planning differs
significantly from previous sampling-based planning mdtho

We now present the algorithmic details of the proposed mbdséd motion planning approach. First,
we present the model used to approximate configuration sgdde model consists of an underlying rep-
resentation based on locally weighted regression [3] arairgpkng strategy based on active learning [10].
Subsequently, we present a model-based motion plannesxtphtits the predictive power of this model to
avoid edge validations when finding a collision-free path.

3.1 Underlying Representation

Machine learning traditionally concerns itself with thepagximation of a functiory (x) — y wherex is the
(possibly multi-dimensional) input, angis the (possibly multi-dimensional) prediction. For configtion
space approximation, the input to the function is a locaiticronfiguration space. In practice, we normalize
this configuration space input to a unit hyper-cube. Thewdpthe approximating function is a continuous
value in the rangeé—1,1]. Training configurations are labeled with a negative onéné ¢onfiguration

is obstructed and a positive one if the configuration is frEeis choice of values is arbitrary. It could be
modified to ensure that the mean of the distribution of valu@s zero, an attractive feature for some machine
learning algorithms. When predicting the state of a locatibhe continuous output of the approximate
function is rounded up or down to create the discrete priedicif obstructed or free.

Locally weighted regression (LWR) [3] is a lazy, supervidedrner. Supervised learning algorithms
build approximate models from labeled examples or trainiata. In the case of configuration-space mod-
eling, the training data is configurations labeled with algatorresponding to their obstructed or free state.
Lazy learners delay the examination of training data unpiteadiction needs to be made. These characteris-
tics make LWR a computationally efficient choice for our miodeneeds since the time to add data to the



model is constant and querying is at most linear in the nurabpoints contained by the model.

Locally weighted regression makes predictions by fittingaal surface to nearby training points. The
critical element in this fitting is the distance weightingiéion, which calculates the influence that a par-
ticular observed location will have on the prediction of sonmobserved location. We have chosen to use a
Gaussian function for distance weighting:

w(ac,a:/) _ e—k(:v—z’)2
In this equation, a smoothing parameteadjusts the spread of the Gaussian. A larger spread in@igsor
information from more distant configurations. In the foliogy equations;z may be a multi-dimensional
vector. In these casey — /)2 is computed as the dot-product of the difference of the twiatpo To
perform the regression we use the LOESS technique propgsétleeland and Devlin [9]. Following
Cohn et al. [10], we fit a Gaussian distribution to the regiarr@unding our query point. A Gaussian
distribution is a statistical model which provides a dmaition of outputsy for some inputz. For the
purpose of approximating the configuration spaces a vector whose value is a point in configuration
space ang is a value classifying the state (obstructed or free) of thiatp The parameters of the Gaussian
distribution fit to the local region are derived below, wheres the query point whose classification we are
interested in and;,y; are members of the sets of input and output training datH.

The means of the Gaussian are calculated as follows:
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Using this parameterization, we can then calculate theat®gdevalue of the outpuj. This value is the
prediction for our query point.
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So far we have shown how to use a collection of samples tomramistn approximate model of configuration
space. Because the model is fit locally to a particular quemtpit is only computed to answer a particular
guery. This means that the addition of data to the model @guyires constant computation. We next discuss
how this model can be constructed incrementally by placargmies that maximally improve the model.

3.2 Sampling Strategy

The task of modeling configuration spaces differs in one ifgod way from many traditional machine
learning tasks. While a learner can not generally selectrdiring data available to it, a sampling-based
motion planner has the ability to query any location in camfagion space. The information obtained
from this query is then added to the model. Because the plarameselect configurations to explore and
explorations are costly, each exploration should be chyaftiosen to maximize the resulting improvement
of the model. The subfield of active learning concerns itaélh precisely these sorts of situations where
a machine learning algorithm is empowered to select fonitngi data for itself. A variety of methods for
selecting a next query have been suggested. We use a metiabdswtatistically near-optimal at improving
locally weighted regression models [10]. This approachdsiconfigurations in an attempt to minimize the
variance of the resulting statistical model.

The variance in a model can be seen as the sum of three teringh&5variance of the output given
identical inputs (i.e. the “noise” in the data); the biastef model toward particular outputs; and the variance
of the model. In general, we have no control over the noiskérdiata, and in the particular case of motion
planning there is no noise (although one imagines this iseepin which sensor error could be taken into
account). Since the model is assumed to be unbiased, eroor iprediction is due solely to the variance
in the model. A strategy which examines configurations inféorteto reduce this variance is assured that
from its current perspective, the configuration it selesthé one that leads to the greatest improvement in
model accuracy.

Cohn et al. [10] provide the derivation used to estimate ’¥peeted variance of a learner resulting from
the selection and examination of a particular configuraiion

The new mean of the Gaussian fit to the local region is given by:
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The expected conditional variance is calculated from theses:
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As previously, we can put these terms together to calcutaedriance, this time expected, of the model’s
prediction:
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This equation gives us the expected variance of the predid¢tir a particular configuratiom. To obtain
an estimate of the variance of the model in general, we cleuhe variance for a set of reference points
distributed throughout the configuration space.

The proposed sampling strategy then consists of selectoanfigurationz which maximizes the ex-
pected reduction in variance of the model. In practice;itieselected by evaluating the expected reduction
in variance of a number of candidate points selected at ran@whn et al. [10] note that hill-climbing may
also be used to fin@d, but we have not found this to be necessary. The result is alsagrstrategy that
only queries sample points at which the model has high vegiai large reduction in variance translates
into a large improvement of the model as a consequence ofieikagra sample. Since the variance of the
model will be low in regions that are well understood, thisyping strategy naturally directs computational
resources to complex regions of configuration space.

The combination of locally weighted regression and itsvaclkéarning method give a practical manner
for the approximate model to guide the sampling of configonat Whenever a configuration space sample
is required by the motion planner, the sampling strategynixas the state the locally weighted regression
of configuration space. A configuration which minimizes tRpaxted variance of the model is selected. The
configuration is observed to see if it is obstructed or free this information is added to the approximate
model of the configuration space. If the configuration is fteéeadded to the roadmap.

The proposed approach of representing configuration spam&luated experimentally in Section 4.1.

3.3 A Modd-Based Motion Planner

We can devise a model-based motion planner by replacingrtierlying model and sampling strategy in
the traditional PRM approach. The resulting motion plardiffers as follows. Before roadmap construc-
tion begins, an initial approximate model is constructemnfra small number of configurations selected
uniformly at random. These initial configurations are nadedito the roadmap. Since they are drawn uni-
formly at random, they are less likely to be useful to the rmad and would result in an increased number
of edge validations. Once the initial model has been bi#,algorithm proceeds in the traditional manner,
but using the model-based sampling strategy, as describ®8ddtion 3.2. This strategy selects a configura-
tion with maximum expected improvement to the model. Thisfiguration is checked for collision and, if
free, is incorporated into the roadmap. Here, another itapodifference to traditional PRM planners has
to be noted: the configuration is added to the model, irrdsmeof whether it is free or obstructed. The
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MODELBASEDMOTIONPLAN (INIT, ITERATION) : ROADMAP
do init times
Select a random configuratian
Add z to the initial data seD
Construct a moded from D
do iteration times
Select a configuratiom based upon active learning
Add z to the modelM/
if x is free
Add zx to the roadmag
foreach x; in the set ofn configurations nearest to
Connectr to z; if the path is possible.

Figure 1: A model-based motion planner

traditional PRM framework discards obstructed samples fBsulting algorithm is given in Figure 1. In
Section 4.2 experimental results for this model-basedngaare presented.

This version of a model-based planner does not take full rddge of the information available in
the model. The sampling strategy exploits the model to gsatapling, but the planner does not use the
predictive power of the model. A better model-based motianming algorithm also exploits the predictive
power to reduce the overall computational requirementslefriy a particular motion planning problem.

3.4 Predictive Edge Validations

Edge validation is one of the most expensive parts of thetageton of a traditional roadmap [17] (cf. Fig-
ure 4.2). The approximate model presented in Section 3dlpats/ides an opportunity to ease this com-
putational cost. The ability of the model to efficiently pi@dhe state of unexplored space can be used
to predict if an edge is collision-free. The outcome of thiediction is used to determine if the computa-
tionally expensive examination of the edge using a colisibecker is warranted. We show how locally
weighted regression presented above can be augmentedvopabdictive edge validations. We also de-
velop a model-based motion planner that uses this capabilit

We first modify the locally weighted regression algorithmgige predictions for a line rather than a
point. When predicting if an edge is free or obstructed, thatribution of a particular sample in the model
is determined by the distance to the nearest point on tha&t dely some edge and a training point; the
weight is given by:

w'(e,xi) _ e—k(NearestPoir(te@i)—:cz-)2

This weight function,«’, is substituted for the weight functiony, in the derivation of the Gaussian’s
parameters detailed earlier in Section 3.1. In order toutatle the predictiong) for the edge, the distance
between the edge and the mean of the regressed Gaussiadésin®¥ée use the point on the edge nearest
to the Gaussian’s mean (NearestP@int.,, ) — p..)) and calculate the prediction ¢fas follows:

=y + %(Nearestpoir(re, fa) — i)

T

Now that locally weighted regression can give predictiamrsafline, we might simply use a single prediction
for an edge. However, this may result in false predictiom&éiyes that are split between free and obstructed
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PREDICTIVEEDGECHECK(E, MODEL) : BOOLEAN
obsProb := obstructedProbability(e,model)
if (obsProb> minObstructedProbability)
return false
elseif (1-obsProlx> minFreeProbability)
return true
else
e’ = firstHalf(e)
if (PredictiveEdgeCheck(e’, model))
e" = secondHalf(e)
return PredictiveEdgeCheck(e”, model)
else
return false

Figure 2: The predictive edge checking algorithm

space. Because prediction averages over the entire edgeeghiting prediction is uncertain (as it should
be).

To address this, and adapt our line prediction to the task@é ehecking, we first calculate a prediction
for the entire line. If the probability of the edge being frmeobstructed is above a threshold, that prediction
is taken for the entire edge. If the prediction is uncertdiire edge is divided in half, and each half is
recursively tested. If either half is predicted obstructibé entire edge is predicted obstructed, otherwise
the entire edge is predicted free. This algorithm is giveFkigure 2. Section 4.1 provides experimental
evidence that this method can achieve satisfactory acguvhie at the same time significantly reducing
the computational cost of edge validation.

3.5 A Mode-Based Motion Planner with Predictive Edge Validation

As mentioned previously, edge validation is the predontim@mputational cost in the construction of a
traditional probabilistic roadmap. This fact can readibydeen in the experimental results shown in Figure
4.2. For the traditional PRM planner, more than three-guardf the time is spent validating edges. This
computational cost is often unnecessary. Many edges arallgctedundant. They could be removed from
the final roadmap without affecting the completeness of dalmap. Computation used to check such
redundant edges is wasted since a path along another edgédready possible.

We have shown that the approximate model used to guide sagngdin provide predictions about the
state of unobserved edges (Section 3.4). This enablesaznatit’e to the expensive construction a roadmap
in the traditional sense. We can construct a predictiven@guin which certain edges have been validated
using the model without invoking a collision checker. Liké&raditional roadmap, graph search is used to
find a path in the predictive roadmap from start to goal laratiHowever, since the path has only been
predictively validated, it is necessary to verify the patltollision free. When edges are verified they are
marked as such so that they are only checked once. Grapthsediwe predictive roadmap is is biased
toward verified edges. This ensures that redundant edgbe mv&admap are never examined.

For most edges in a potential path, the prediction that i&is fs correct and the edge is retained as part
of the path. Occasionally, edges classified as collisier-fry the model are found to be obstructed when
validated with a collision checker. On such occasions, ffending edge is removed from the predictive
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PREDICTIVEMODELBASEDMOTIONPLAN (INIT, ITERATION, START, END) : PATH
do init times
Select a random configuratian
Add z to the initial data seD
Construct a moded from D
do iterationtimes
Use active sampling to determine configuration
Add z to model M
if x is free according to modell
Add zx to the roadmagR
foreach x; in the set of its» neighbors
if path betweenr andzx; is free inM
Connectr to x;
return EXTRACTPATH(START, END, R)

EXTRACTPATH (START, END, ROADMAP) : PATH
do
p .= DykstraPathPlan(start, end, roadmap)
for each edge(x;, z;) inp
if e is in collision
resample between; andz;
and add configurations to roadmap
else
marke validated
while p is not a valid path
return p

Figure 3: A predictive model-based motion planner

roadmap and repair to the path is attempted. Repair corfisessampling configurations in the vicinity
of the removed edge and attempting to reconnect the graptghrthe newly sampled configurations. The
repair process is similar to those used by others [5, 29, [l®jequently, the repair process fails. In such
a case, roadmap construction is resumed until a new cardiddlh between start and goal is found. This
process repeats until a path is found (see Figure 3).

The predictive roadmap algorithm marks a middle ground betwmulti-query motion planners and
single-query motion planners. The predictive roadmapainstgeneral but incomplete information relevant
to the construction of any possible path. The verificatioth mpair of edges in the roadmap as a result of a
particular planning query focuses computation on thosasameost relevant to the solution of that query. As
a consequence, the predictive model-based motion plamppgach is ideally suited for dynamic environ-
ments. In the absence of a particular motion planning quenyputational resources are directed toward
improvement of the overall configuration space model. Aipaldr query can exploit this information to
quickly find a collision free path. Such a planner is expettegutperform single-query methods presented
in the literature since they do not have such initial infotioraavailable to them.

The predictive model-based motion planner presented Inveres some characteristics with traditional
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sampling-based motion planners, but also distinguisise#f irom them in several important aspects. Simi-
larly to traditional approaches, it obtains informatioroabthe configuration space by sampling. By doing
so, it takes advantage of the computational gains achieyedmpling-based methods over complete mo-
tion planners. Like traditional sampling-based approachiee solution to the motion planning problem
is ultimately found by building a graph-based represemtator roadmap. Model-based motion planners,
however, build a more expressive underlying model of condition space information. The information
contained in this model is exploited to adapt the local samgpdlensity to the complexity of the configu-
ration space region. This adaptation effectively addsesise narrow passage problem. The model is also
used to make predictions about unexplored regions. Thdéfseatices permit the motion planner to make
maximum expected progress toward finding a solution to thigomg@lanning problem, given the informa-
tion represented in the model. Due to this important con@@nd algorithmic distinction, we consider
model-based motion planning to be a novel category of sagmilased motion planners.

4 Experimental Validation

To provide empirical evidence in support of the proposed@gh, we perform a number of experiments.
We evaluate the accuracy of the proposed model for repliagastnfiguration space and for edge prediction
(see Section 4.1). The performance of the two model-basdtmplanners introduced in Sections 3.3
and 3.5 is compared with the traditional PRM approach [2H ammotion planner based on the hybrid
bridge test [17] (see Section 4.2).

4.1 Validation of Proposed M odel

To assess locally weighted regression’s ability to be anrate approximate representation of the configura-
tion space empirically, we build an approximate model basea selection of labeled training configurations

and then test it on a test set of previously unseen configmstiTraining configurations are chosen using
active learning (Section 3.2), and test configurations hosen uniformly at random. The accuracy of the
resulting models as a function of the number of configuratiosed to train them is given in Figure 4. The

experimental environment is shown in Figure 8. Environmeamntaining arms with three, four, and six

degrees of freedom are used for testing. The results arageeover ten experimental runs.

We also evaluate the accuracy of the predictive edge chéBlketion 3.4). The model is trained using
a number of labeled training configurations chosen by atd@ming. It is then tested on a number of test
edges. The test edges are randomly selected, straighitdjeetories between two free configurations whose
distance is less than the threshold used for connectingpibeig in the roadmap construction algorithm. This
experimental scenario approximates the situation in amedilon planner as closely as possible. All results
shown are averages over ten runs of the algorithm.

The results indicate that locally weighted regression camii@tely estimate the state of unseen regions
of configuration space. Even with only two or three hundraghing configurations, the approximate model
is capable of predicting the state of both edges and confignsawith sufficient accuracy.

We are also interested in the time that the approximate matlet to predict a particular configuration
or edge, since one of the uses of the approximate model islgpstimations of the state of a configuration
or edge. These results are shown in Figures 5 and 7. From sh#srét is clear that the computational
cost of predictive configuration checking or predictive edglidation is linear in the number of configu-
rations used to build the model. This is consistent with thieutational complexity of locally weighted
regression. Itis also our judgment from the accuracy versustrade-off that predictions about individual
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Figure 5: Execution time of predictive collision checkingafunction of the number of training configura-
tions for three, four and six degrees of freedom

14



> -
(&]
©
5
2t
& 04F |
. Three DOF ——— |
Four DOF - N
0 s , Six DOF =
0 500 1000 1500 2000

samples

Figure 6: Accuracy of predictive edge validation as a funcidf the number of training configurations for
three, four and six degrees of freedom

1 1 1
o o o
E os8 E o8 E o8
g 8 g
= > =
@’ 0.6 @’ 0.6 @’ 0.6
S S S
5 04 § oaf 5 04
kst S kst
g s g
T 02 T o2t T 02
Predictive Edge Validation —— Predictive Edge Validation —— ictive Edge Validation ——
o Regular Edge Validation -~ 0 Regular Edge Validation - o Regular Edge Validation ———
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
samples samples samples
(a) 3 DOF (b) 4 DOF (c) 6 DOF

Figure 7: Execution time of predictive edge validation asracfion of the number of training configurations
for three, four and six degrees of freedom

15



Figure 8: The initial (transparent) and final (solid) confafion of a twelve degree of freedom arm in the
experimental environment.

configurations are not worthwhile. Even though a two timesespup with predictive collision checking is
possible, the absolute time gain does not outweigh the tiethuinn accuracy. In our experience, successful
roadmaps generated with the proposed active learning sagngtrategy contain relatively few configu-
rations or milestones (fewer than a thousand for all of théiangplanning experiments we performed).
Therefore, the overall gain in computation time offered bgdictive collision checking is less than half a
second. However, the detrimental effect of mis-predictiarthe construction of a roadmap is large.

Predictive edge validation, on the other hand, can offegrifstant reduction of computational cost with
a limited detrimental effect. Since an edge prediction cawolitained with good accuracy at a tenth of the
computational expense of performing an edge validatioh witollision checker, its use in motion planning
is more compelling. In addition, the misprediction of anedlgless damaging to roadmap construction than
the misprediction of a milestone. This is especially trug¢hia case of edges thought to be free that later
prove to be obstructed. Often, they are repaired to prodale paths.

4.2 Evaluation of Model-Based Motion Planning

To evaluate the proposed model-based planning approachesig@m path planning experiments with two
simulated arms with nine and twelve degrees of freedom (DDI® twelve degree-of-freedom version of
the arm with its initial and final configuration are shown igliie 8. Note that the final configuration of the
robot is inside the most confined region of the workspace. \&kenthe assumption that the corresponding
configuration space region exhibits very high complexitpn€equently, even the predictive model-based
motion planner presented in Section 3.5 will build a rekgyivdetailed model of the entire configuration
space before finding a solution. In other words, any plantcincan successfully plan for the experimental
scenario, is likely to have explored the entire configuraspace and will be able to answer subsequent
gueries in constant time. By choosing the experimental ag@rin this manner, the difference between
the multi-query approach to motion planning and the hybridtirguery/single-query nature of predictive
model-based motion planning is minimized. The experimawrtults given here therefore represent a fair
comparison.
In our experimental evaluation we compare the performarice BRM planner with uniform sam-

pling [21], a PRM implementation using hybrid bridge samgli{17], the model-based motion planner
described in Section 3.3, and the predictive model-basetibmplanner described in Section 3.5. Each
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Figure 9: Time to find a successful path for a nine and twelggakeof freedom arm as a percentage of the
PRM planner with uniform sampling and the percentage ofithe taken by each algorithmic component
of sampling-based motion planning.

algorithm runs until a successful path between the stargaatipositions is found. In the case of the pre-
dictive roadmap, the time to verify and repair (if neceskding candidate path in the predictive roadmap
was included in the overall time. Verification and repairdiia labeled “Path Extraction” in the bar graphs
in Figure 4.2. The times given represent the average pedioceover ten runs of each algorithm. They
are reported as fractions of the time that it took the tradidl PRM planner with uniform sampling to solve

the problem. We performed experiments for nine and twehgredeof freedom arms. The nine degree
of freedom arm consisted of three links connected by spllgomts. The twelve degree of freedom arm

consisted of four links also connected spherical joints {Sgure 8).

From the results in Figure 4.2, it can be readily seen thateasampling is an improved sampling
technique over hybrid bridge sampling and uniform sampliitg) choice of points results in faster motion
planning even though querying the model to determine thesa®rple imposes an additional computational
cost. Further, the amount of improvement (around a 40% deer@ time) appears constant as the degree
of freedom increases, suggesting that the performancesddproach may degrade gracefully for motion
planning in very high-dimensional configuration spaces.

The use of the predictive roadmap results in even greatezases in performance (nearly a three times
speed-up). It is interesting to contrast where computati@pent in the three traditional roadmap methods
versus the predictive roadmap. In each of the three traditimadmap methods at least a third of the time
(much more in the case of uniform sampling) is spent checkihges for validity. Since the predictive
roadmap does its edge checking in the model, the amount efitispends checking edges is significantly
less (less than ten percent). Of course, the predictivemapdoays a price for the potential inaccuracy of
its roadmap, using a third of its computational time to perfgath verification and repair, but this cost is
clearly offset by the computational savings from predetdge checking.

Lastly, it should be noted that the performance of the PRNiea with hybrid bridge sampling de-
grades with respect to the PRM planner with uniform samgfiam the nine degree-of-freedom example to
the twelve degree-of-freedom example. This observatiostibtes one of the shortcomings of existing sam-
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pling strategies: they are dependent upon the environnmelparameter settings. In our example, the bridge
sampling techniques falsely identifies many configurat@mmportant and enters them into the roadmap.
These false classifications introduce a number of unnergesdges into the roadmap. The time required to
validate these unnecessary edges results in an overaflagecin performance. Since model-based motion
planning is inherently adaptive to the environment, sudblgms cannot arise.

5 Conclusion

We have proposed a novel sampling-based motion planningpagip. Its main distinguishing feature is
the underlying representation of configuration space médion used for path planning. We refer to this
representation as a model of configuration space. The pedposdel differs from the graph-based repre-
sentations of previous sampling-based approaches inttgateralizes across information obtained from
our exploration of the configuration space and allows ptamtis about unexplored parts of configuration
space. The model also provides a measure of confidence & gedictions. A model-based motion plan-
ner exploits the information from the model to provide a #igant reduction in computational requirements
for solving high-dimensional motion planning problems.

Model-based motion planning adapts the sampling densthettocal complexity of configuration space
regions. As a result, computational resources are expandaaoportion to the local difficulty of a config-
uration space region. This effectively addresses the wapassage problem of sampling-based motion
planning techniques that has been the focus of much resewaettihe past decade. The adaptation of the
sampling density is achieved by incrementally samplingé¢hegions of configuration space for which the
model is least certain of its predictions. By proceedinghis fashion, every additional sample ensures
maximum expected improvement for the model. Adapting sargph this manner results in a necessarily
detailed roadmap in complex regions and a simple roadmamiple regions.

Model-based motion planning is capable of avoiding mucHigaration space exploration by exploit-
ing the predictive power of the underlying model. Rathentparforming edge validations by repeatedly
invoking a computationally costly collision checker, thedrl can be efficiently queried to predict whether
an edge is free or obstructed. This prediction is based owkrsample points in proximity to the edge in
guestion. Since in the traditional PRM framework edge \aia@hs are the most costly operation, this results
in a substantial increase in computational efficiency.

Model-based motion planning provides a novel approach titlom@lanning, since it combines charac-
teristics of multi-query and single-query approaches.sThiaracteristic makes it ideally suited for motion
planning in dynamic environments, where parts of the moodelepeatedly invalidated and require updat-
ing. This interesting property is also a consequence of thdigtive capabilities of the underlying model.
The model provides an approximate global understandingoofiguration space that allows to answer a
specific query efficiently by directing computational resms to those regions most likely to contain the
required solution.

We present experiments demonstrating that the underlywdgins indeed capable of representing con-
figuration space accurately and that it is capable of progidiccurate and efficient predictive edge valida-
tions. We also compare the performance of model-based mpltamning to other sampling-based motion
planning techniques. Our experiments show that the egpioit of information represented in the model, as
performed by the proposed method, results in a dramatictiesuof the the computational cost of motion
planning in high-dimensional configuration spaces.

18



References

[1] N. Ahuja, R. T. C. dn R. Yen, and N. Bridwell. Interferendetection and collision avoidance among
three dimensional objects. Proceedings of the First AAAI Conferengages 44-48, 1980.

[2] N. Amato, B. Bayazid, L. Dale, C. Jones, and D. Vallejo. BEM: An obstacle-based PRM for 3D
workspaces. IfiRobotics: The Algorithmic PerspectiveK Peters, 1998.

[3] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighligarning.Atrtificial Intelligence Review
11(1-5):11-73, 1997.

[4] J. Barraquand and J.-C. Latombe. Robot motion plannifigdistributed representation approach.
International Journal of Robotics Reseayd(6):628-649, 1991.

[5] R. Bohlin and L. E. Kavraki. Path planning using lazy PRNh Proceedings of the International
Conference on Robotics and Automatigalume 1, pages 521-528, San Francisco, USA, 2000.

[6] V. Boor, M. Overmars, and F. van der Stappen. The gausssamnpling strategy for probabilistic
roadmap planners. IAroceedings of the International Conference on RoboticsAutomation 1999.

[7] B. Burns and O. Brock. Information theoretic constrantiof probabilistic roadmaps. Rroceedings
of the International Conference on Intelligent Robots agst@nspages 650-655, Las Vegas, 2003.

[8] J. F. Canny.The Complexity of Robot Motion PlanninilIT Press, 1988.

[9] W. Cleveland and S. Devlin. Locally weighted regressiAn approach to regression analysis by local
fitting. Journal of the American Statistical Associati@3:596—610, 1988.

[10] D. A. Cohn, Z. Ghahramani, and M. I|. Jordan. Active léagnwith statistical methodsJournal of
Artificial Intelligence Researgh#:129-145, 1996.

[11] C.I. Connolly and R. A. Grupen. One the applications afrhonic functions to roboticsJournal of
Robotic Systemd0(7):931-946, 1993.

[12] A.Dempster, N. Laird, and D. Rubin. Maximum likelihofr@m incomplete data via theem algorithm.
Journal of the Royal Statistical Socie89(1):1-38, 1977.

[13] R. O. Duda, P. E. Hart, and D. G. StorRattern Classification Wiley-Interscience, second edition,
2001.

[14] M. Foskey, M. Garber, M. C. Lin, and D. Manocha. A Voroil@sed hybrid motion planner. In
Proceedings of the International Conference on Intelligenbots and Systemglume 1, pages 55—
60, Maui, USA, 2001.

[15] S. Geman, E. Bienenstock, and R. Doursat. Neural n&svaind the bias/variance dilemmiseural
Computation4:1-58, 1992.

[16] C. Holleman and L. E. Kavraki. A framework for using themkspace medial axis in PRM planners.
In Proceedings of the International Conference on RobotiackAmomation volume 2, pages 1408—
1413, San Francisco, USA, 2000.

19



[17] D. Hsu, T. Jiang, J. Reif, and Z. Sun. The bridge test &ngling narrow passages with probabilistic
roadmap planners. IRroceedings of the International Conference on RobotickAutomation2003.

[18] D. Hsu, L. E. Kavraki, J.-C. Latombe, R. Motwani, and 8ri8n. On finding narrow passages with
probabilistic roadmap planners. Rroceedings of the Workshop on the Algorithmic Foundatioins
Robotics pages 141-154. A K Peters, 1998.

[19] D. Hsu, J.-C. Latombe, and R. Motwani. Path planningXpamsive configuration spaces. Mmo-
ceedings of the International Conference on Robotics artdration volume 3, pages 2719-2726,
1997.

[20] D. Hsu and Z. Sun. Adaptive hybrid sampling for probtit roadmap planning. Technical Report
TRAS5/04, National University of Singapore, 2004.

[21] L. E. Kavraki, P.Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistadmaps for path
planning in high-dimensional configuration spacHsEE Transactions on Robotics and Automation
12(4):566-580, 1996.

[22] O. Khatib. Real-time obstacle avoidance for manipaiseind mobile robotdnternational Journal of
Robotics Resear¢hb(1):90-98, 1986.

[23] D. E. Koditschek. Exact robot navigation by means ofegpdial functions: Some topological con-
siderations. IrProceedings of the International Conference on RobotiakAmomation pages 1-6,
1987.

[24] J.-C. LatombeRobot Motion PlanningKluwer Academic Publishers, Boston, 1991.

[25] S. M. LaValle. Rapidly-exploring random trees: A newokdor path planning. Technical Report TR
98-11, lowa State University, 1998.

[26] J.-M. Lien, S. L. Thomas, and N. M. Amato. A general framoek for sampling on the medial axis of
the free space. IRroceedings of the International Conference on Robotias Amtomation Taipei,
Taiwan, 2003.

[27] T. Lozano-Pérez. Automatic planning of manipulat@nisfer movementsIEEE Transactions on
Systems, Man, and Cybernefi@&C-11(10):681-698, 1981.

[28] M. Morales, L. Tapia, R. Pearce, S. Rodriguez, and N. fimaA machine learning approach for
feature-sensitive motion planning. Rroceedings of the Workshop on the Algorithmic Foundatafns
Robotics 2004.

[29] C. L. Nielsen and L. E. Kavraki. A two level fuzzy PRM foramipulation planning. IfProceedings of
the International Conference on Intelligent Robots and&ys pages 1716-1722, Takamatsu, Japan,
2000.

[30] J. Quinlan.C4.5: Programs for Machine LearnindMlorgan Kaufman, 1993.

[31] S. Quinlan and O. Khatib. Elastic bands: Connectindp pe&inning and control. IRroceedings of the
International Conference on Robotics and Automatiamume 2, pages 802-807, 1993.

20



[32] J. H. Reif. Complexity of the mover’s problem and gefieedions. InProceedings of the Symposium
on Foundations of Computer Scienpages 421-427, 1979.

[33] D. Rumelhart and J. McClelland, editoiBarallel Distributed ProcessingMIT Press, 1986.

[34] B. Scholkopf and A. J. SmolalLearning with Kernels — Support Vector Machines, Reguddidn,
Optimization, and BeyondAdaptive Computation and Machine Learning. MIT Press,2200

[35] T. Siméon, J.-P. Laumond, and C. Nissoux. Visibiligzsed probabilistic roadmaps for motion plan-
ning. Journal of Advanced Robotic$4(6):477—-494, 2000.

[36] A. G. Sukharev. Optimal strategies of the search fondreenum.U.S.S.R. Computational Mathemat-
ics and Mathematical Physic$1(4):119-137, 1971. Translated from Russim, Vychisl. Mt. i Mat.
Fiz., 11(4):910-924.

[37] S. Tong and D. Koller. Support vector machine activeriesy with applications to text classifiction.
Journal of Machine Learning Researcti45-66, 2001.

[38] Y. Yang and O. Brock. Adapting the sampling distributim prm planners based on an approximated
medial axis. IlProceedings of the International Conference on RoboticsAutomationpages 4405—
4410, New Orleans, USA, April 2004.

21



