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Abstract— This paper presents a feedback-control framework
for in-hand manipulation (IHM) with dexterous soft hands
that enables the acquisition of manipulation skills in the real-
world within minutes. We choose the deformation state of the
soft hand as the control variable. To control for a desired
deformation state, we use coarsely approximated Jacobians
of the actuation-deformation dynamics. These Jacobian are
obtained via explorative actions. This is enabled by the self-
stabilizing properties of compliant hands, which allow us to
use linear feedback control in the presence of complex contact
dynamics. To evaluate the effectiveness of our approach, we
show the generalization capabilities for a learned manipulation
skill to variations in object size by 100 %, 360 degree changes
in palm inclination and to disabling up to 50 % of the involved
actuators. In addition, complex manipulations can be obtained
by sequencing such feedback-skills.

I. INTRODUCTION

The inherent compliance of soft, dexterous hands con-
tributes importantly to the robustness of manipulation behav-
ior [1], [2], [3]. Yet, traditional control approaches that re-
quire accurate kinematic and/or dynamic models cannot take
advantage of this [4], [5]. If object pose or hand configuration
are controlled explicitly, as in the standard approaches that
are designed to overwrite the system dynamics, the benefits
of compliance are “controlled away.” This is because the
benefits arise exactly from the multitude of task-consistent
hand-object dynamics. Here, we develop a novel approach
to controlling soft hands, fully leveraging the advantages of
compliance.

The inherent self-stabilizing properties of soft hands re-
duce the dependence on accurate control to make progress
towards a manipulation goal [1]. This is because the set of
successful control commands is much larger for compliant
than for non-compliant systems. This is illustrated in Fig. 2
by the width of the area spanned by the blue, dashed lines.
A feedback controller based on local linear approximations
(Jacobians, red arrows) of the combined hand-object dy-
namics can perform a multitude of relatively large control
adjustments without destabilizing the system (leaving the
area between the dashed lines). Jacobians do not need to
be perfectly accurate and can be reused even if they are not
up-to-date relative to the current hand-object configuration.

In prior work [1], we demonstrated that in-hand manip-
ulation (IHM) can be structured as a sequence of robust
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Fig. 1: An illustration of the complete process of obtaining a
feedback-based manipulation primitive for a compliant hand.
The desired motion of the object is demonstrated (a). The
deformation measurement of the ring finger is recorded at the
end of the demonstration. Subsequently, this measurement is
used as a control target to replicate the motion using the
actuators of the thumb and little finger (b).
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Fig. 2: Visualization of how compliance enables the lin-
earization of feedback-control for contact-rich manipulation
tasks. Details are discussed in Sec. I.

manipulation primitives, metaphorically visualized as manip-
ulation funnels [6]. Using this metaphor for illustration, we
propose a new kind of feedback-funnel [7], defined by a
set of Jacobians that are tiling a larger funnel (see Fig. 3).
This tiling represents a piecewise linear approximation of
the nonlinear hand-object dynamics over a large number
of successful execution trajectories. Sensor feedback ob-
tained during execution enables the continuous refinement
of the funnel’s structure, correction of individual tiles, and
expansion of the funnel into new parts of the state space.
This means that there is no distinction between learning
and execution any longer: the controller is built and refined
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during every successful or unsuccessful execution.
To realize such feedback-funnels, we need a representation

of hand-object state that allows taking advantage of compli-
ance. It must accommodate variability in the way the control
goal is achieved and it should be easily measurable in spite
of the many inherent degrees of freedom of compliant hands.
This state must provide rich information about the state of
the hand, the object, and the contact forces between them to
support diverse manipulation tasks. Furthermore, it must en-
able the efficient determination of the Jacobians and control
commands that lead to reduction of error with respect to a
specified control goal, enabling the traversal and refinement
of the funnel during execution. We will show in Sec. III that
the deformation state of the hand provides exactly such a
representation. Measurements of the soft hands shape can
easily be obtained (see Sect. V-C). Deformation is defined
as the difference in these measurements when the object is
present and when it is not.

In Sect. IV, we define a simple notion of continuously-
adapting feedback-funnels that are based on Jacobians of
the hand-object system. They relate changes in actuation to
changes in deformation state. Since deformation can easily
be measured, control targets can be extracted from human
demonstrations of the desired deformation state: simply
move the object the way you want the hand to move it!
See Fig. 1 for an illustration. The method presented in this
paper then autonomously builds a tiled funnel of Jacobians
to reach this goal state. We show that the resulting IHM
skills generalize for object size and palm inclination; they
also remain robust under actuator failures (see Sec. V).

The proposed approach to control does not depend on large
amounts of data, it does not require physical simulations, it
can be computed with negligible computational resources,
generates robust and general behavior within seconds based
on autonomously gathered real-world experience and does
not depend on accurate models of the hand or the world. It
can thus be considered a promising alternative to reinforce-
ment learning [8], [9], [10] and model-based approaches [4],
[5] to IHM. Interestingly, our approach shares important
aspects with biological motor control (see Sec. VII).

II. RELATED WORK

The related work is organized into three main aspects,
which are the foundation of the method presented in this
work. First, we review the role of deformation in robotic ma-
nipulation, which motivates our choice of state. Second, we
discuss linear feedback control approaches for deformable
systems, because our control approach relies on linearized
system dynamics. Third, we summarize existing work on
obtaining IHM control goals from demonstration.

A. The Role of Deformation in Robotic Manipulation

The deformation state of soft actuators interacting with
the environment has been used for a variety of different
applications, e.g. the computation of contact forces [11],
[12], hand design via the soft synergy model [13] as well
as quantifying and ranking Morphological Computation for
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Fig. 3: A manipulation primitive illustrated as a funnel (a):
Jacobians (J), representing local linearizations, tile the vol-
ume of the funnel. Several of these funnels can be sequenced
(b) to represent manipulation plans. The focus of this paper
lies on obtaining single funnels.

robot grasping [14]. Deformation has also been applied to
IHM with a model-based notion of energy fields that are
derived from the deformation of the actuators [15]. In com-
parison, our representation is based on sensor measurements
and does not require any kinematic or dynamic models. In
addition, recent reinforcement learning approaches to IHM
using rigid hands have shown that by incorporating joint-
level deformation of an impedance-controller into the state,
the agent can learn to “feel” [9], [16], [17]. Thereby, the
dependence on visual feedback is reduced. Overall, the de-
formation of a compliant system entails a lot of task-relevant
information of the combined hand-object system. Therefore,
we investigate deformation as the underlying representation
to generate IHM behavior with compliant hands.

B. Linearized Feedback-Control of Soft Robots and Objects

The control of deformable objects [18] and the control
of soft actuators [19] share important properties. Since soft
systems are notoriously difficult to model, Jacobian-based
methods have been proposed that rely on local linearizations
based on measurements of the quantity of interest. For soft
actuators model-less control approaches have been proposed
that rely on an approximation of the Jacobian that relates ac-
tuation and actuator-tip-configuration [20], [21], [22]. Similar
methods have been applied to control the deformation of a
soft object [23], [24], [25]. Our control algorithm is most
closely related to [20]. We generalize this model-less control
paradigm to systems composed of multiple independent soft
actuators that interact with one another through an object
held in-hand and apply it to IHM tasks. In addition, we
are moving away from controlling the usual end-effector-
configuration to a hand-object representation of deformation,
as inspired by approaches to deformable object control. Our
approach is simpler than previous approaches. We drop the
requirement to estimate the Jacobian as accurate as possible,
because we keep the same Jacobians even if the hand-object



configuration changes. This is enabled by the compliance of
the hand.

C. Extracting IHM Control Goals from Demonstration

Formalizing subgoals for complex IHM tasks to be per-
formed by a robot agent is difficult. Therefore, demonstra-
tions are used to direct behavior generation to regions of
the relevant regions of the state-action space. This has been
shown for reinforcement learning combined with demon-
strated state-action trajectories [26], [27]. In [28], visual
demonstrations are mapped into a low-dimensional latent
space in which a simple Nearest-Neighbor approach is rep-
resenting the policy. In [29], a Dynamic Movement Primitive
is learned from a single kinesthetic demonstration to perform
within-grasp manipulation. In this work, we only extract the
final time step from a demonstrated deformation trajectory
that is used as a control target for our Jacobian feedback-
controller to reproduce the desired behavior. Our approach
is conceptually related to learning from demonstration (LfD)
methods based on higher-level intermediate goals [30], [31].

III. DEFORMATION—A HAND-OBJECT
REPRESENTATION

Deformation: Soft hands are capable of handling complex
contact dynamics by automatically balancing contact forces,
dampening impacts, and providing stable grasps through
large contact patches. This is enabled by the passive deforma-
tion of a soft hand to the shape of the object. The deformation
state of the hand can be considered a representation of the
combined hand-object system. In general, the deformation is
defined as the difference between the hands actual configura-
tion when it is in contact with an object and its configuration
during free-motion. Instead of only considering the current
position of the hand, the deformation provides information
about both the movement of the actuators and additionally
the forces that are acting during contact. Furthermore, if
multiple actuators are in contact with an object, the change in
deformation over time implicitly captures information about
the configuration and motion of the object. This renders the
deformation an interesting quantity for control. Representing
the deformation of compliant hands comes with some chal-
lenges. Sensing the deformation state of every particle a soft
hand is composed of is impossible. In addition, modeling the
behavior of multiple soft actuators in contact is intractable.
Therefore, we will approximate the deformation based on
measurements of the shape of the soft actuators that are
readily available (see Sec. V-A).

Deformation Approximation: We consider a single soft
actuator with a single degree of actuation a ∈R and assume
that we are given a n-dimensional sensory modality s ∈
Rn that responds to changes of the actuators shape. First,
we compute a representation of the actuator’s behavior for
various actuation states when no contact is present. This
is done in a data-driven manner, by densely sampling the
actuation-measurement relationship in free-motion. After-
wards, a parameterized model fΘ f ree is learned that maps

actuation a to measurements s:

fΘ f ree : a ∈ R→ s ∈ Rn. (1)

The measurement s depends on a as well as external forces
Fext that deform the actuator. Therefore, we can compute an
approximation of the deformation state ∆⃗s by evaluating:

∆⃗s = st(a,Fext)− fΘ f ree(a). (2)

From now on we will refer to ∆⃗s as the deformation state of
a soft actuator. Of course, the chosen sensory modality must
allow subtraction and should be proportional to the actual
deformation to be applicable to the controller presented in
the next section. In addition, we require a low-level actuation
scheme that is independent of the compliant interactions of
the actuator. Air-mass control [32] fulfils this requirement as
we will explain in Sec. V-B. In general, this definition of
deformation does not impose strict requirements. Therefore,
various sensor modalities could be investigated within this
framework.

IV. JACOBIAN-BASED DEFORMATION CONTROL

In Sec. I, we discussed how the self-stabilizing properties
of soft hands allow us to control the complex hand-object
dynamics using coarse local linearizations of these dynamics.
In the previous section, we motivated that the deformation
state of the hand can be used as a representation of the
hand-object system. Here, we derive a deformation controller
based on Deformation Jacobians that can be reused and
updated continuously. In Sec. I, we referred to this controller
as a continuously-adapting feedback-funnel.

For simplicity, we consider a compliant hand consisting
of two continuum actuators A1 and A2, each with one degree
of actuation. We assume that both actuators grasp an object
in force-closure and that the deformation state (Eq. 2) of the
two actuators ∆⃗s1 and ∆⃗s2 can be measured in the available
sensory modalities. We do not consider any external forces,
like gravity.

Now, we are given a deformation target ∆⃗s
target
1 in the

deformation state of A1. This target could have been chosen
to modulate the contact force or to move the object within
the grasp as described in Sec. V-D. We can define an error
vector based on the current deformation state ∆⃗s1 (Eq. 2):

e⃗ = ∆⃗s1 − ∆⃗s
target
1 . (3)

This error can be minimized in two ways, by changing the
actuation a1 of the target actuator A1 or by changing the
actuation a2 of the second actuator A2. In the following, we
derive the actuation update rules for both cases.

A. Derivation of the Deformation Jacobian

For our two actuator setup, the deformation state of A1
takes the following form:

∆⃗s1 = s1(a1,a2)− f 1
Θ f ree

(a1). (4)

Note that a2 takes the role of the external forces Fext in Eq. 2.
Therefore, we can change the external forces acting on A1



by changing a2. We can now formulate an objective function
to be minimized:

C(a1,a2) =
1
2

e⃗ t e⃗. (5)

First, we compute the partial derivative of C w.r.t. a1. The
corresponding Jacobian of Eq. 4 evaluates to:

Ja1 =
∂ s1

∂a1
−

∂ f 1
Θ f ree

∂a1
. (6)

The partial derivative of C w.r.t. a2 takes a similar form but
without the f 1

Θ f ree
component. The corresponding Jacobian

of Eq. 4 evaluates to:

Ja2 =
∂ s1

∂a2
. (7)

Given the Jacobians defined in Eq. 6 and Eq. 7, the objective
function (Eq. 5) can be minimized via gradient descent to
update a1 and a2 with learning rate α:

anew
1 = a1 −α Jt

a1
e⃗ (8)

anew
2 = a2 −α Jt

a2
e⃗. (9)

The expression
∂ f 1

Θ f ree
∂a1

can be obtained via auto-
differentiation of the learned smooth model f 1

Θ f ree
. We

assume that no model of s1(a1,a2) is given. Therefore, ∂ s1
∂a1

and ∂ s1
∂a2

can not be obtained analytically. To approximate
these quantities we iteratively execute small actuation
changes ∆a1 and ∆a2 and collect the sensory response.
Afterwards, we can compute the Jacobians based on finite
differences. This exploratory process is supported by the
self-stabilizing properties of the compliant morphology. In
general, we can approximate the partial derivative ∂ s

∂a using
the following formula:

∂ s
∂a

≈ 2s2 − s1 − s3

2∆a
. (10)

Here, s1 represents the initial sensor state before the small
actuation change, s2 represents the sensor state after ∆a has
been applied, and s3 represents the sensor state after ∆a has
been inverted to return to the initial state.

The Jacobians of the deformation states for A1 and A2
can be computed simultaneously. This allows us to reuse the
computed Jacobians in case we want to control for a target
specified in the deformation state of A2 or in the combined
deformation space of both actuators. The full approximated
Deformation Jacobian J w.r.t. the deformation states of both
actuators ∆⃗s

f ull
= (∆⃗s1, ∆⃗s2)

t takes the form:

J =


a1 a2

∂ s1
∂a1

−
∂ f 1

Θ f ree
∂a1

∂ s1
∂a2

∆⃗s
1

∂ s2
∂a1

∂ s2
∂a2

−
∂ f 2

Θ f ree
∂a2

∆⃗s
2

 . (11)

The Deformation Jacobian can be easily extended to multiple
actuators with potentially multiple degrees of actuation,
which increases the column dimensionality of the Jacobian.

Different sensory modalities associated with a single actuator
can also be accounted for by capturing these measurements in
the finite difference computation. This results in an increase
of the row dimensionality of the Jacobian.

B. Updating the Deformation Jacobian

After the actuation values are updated (Eq. 8, 9) based on
the relevant entries of the Deformation Jacobian (Eq. 11),
the hand-object configuration will have changed. Therefore,
the current estimate of J might not be valid anymore. Our
primary objective is to achieve our control target, rather than
computing J accurately. We apply the same J as long as the
task error (Eq. 5) is reduced. If this is not the case anymore,
we query a new Jacobian via finite-differences based on
explorative actuations. This approach is justified by the self-
stabilizing properties of the soft-hand, that enables progress
towards the goal despite inaccurate Jacobians, see Fig. 2.
Nevertheless, we plan to explore different techniques for
updating the Jacobian matrix in the future. We can utilize
the data generated at each update step, which comes for
free. These techniques may include Broyden’s method [24],
convex optimization [20], or Kalman Filters [21].

C. Storing and Reusing Deformation Jacobians

We want to reuse already computed Jacobians. Whenever
a new Jacobian Ji is computed or updated the corresponding
absolute sensor state si and deformation state ∆ s⃗i are added
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Fig. 4: Flowchart of the full Jacobian-based deformation
control algorithm. In case no data-set D is available yet,
the algorithm can be executed only with Jacobians that are
computed from finite-differences. The generated Jacobians
with corresponding sensor and deformation state are used to
populate D .



to a data-set D s.t. D = (si,∆ s⃗i,Ji)i,...,N with N the number
of saved tuples. D represents the Jacobian tiled feedback-
funnel, see Fig. 3. To reuse the collected Jacobians online,
the current absolute sensor state s and deformation state ∆ s⃗
are queried and the Nearest-Neighbor (NN) in D is obtained.
The associated Jacobian JNN is then applied to optimize for
the current control target. In Fig. 4 the complete algorithm
is depicted, which flexibly adds new tuples to D if the error
is not reduced anymore.

V. EXPERIMENTAL VALIDATION

We will structure the experimental section in the fol-
lowing way: First, the robotic platform composed of hand
design, low-level control and employed sensory modalities
is introduced. Afterwards, we describe how to obtain the
deformation state as well as control targets for the available
sensory modalities. Based on the derived deformation state,
the control and learning pipeline is applied to obtain an in-
hand manipulation skill within minutes that requires multiple
degrees of actuation and varying contact conditions. In
addition, the generalization capabilities of this skill are eval-
uated. Furthermore, we show how a complex manipulation
sequence can be programmed by sequencing various learned
feedback-skills. Finally, we apply deformation control to
enable table-top sliding of various objects.

A. Sensorized RBO Hand 3

(a)

(b)

(c)

Rightfull

Righthalf

Lefttfull

Twist

Bend-Sensor

Fig. 5: The RBO Hand 3 (a) with corresponding four-
dimensional strain sensor layout on a two-compartment fin-
ger (b) and bend-sensor placement on thumb-scaffold (c).

The RBO Hand 3 (RH3) [3] is an anthropomorphic, soft
robotic hand. In total, the hand consists of 16 independent
pneumatic actuators. The fingers are made of silicon and
have two air chambers each, while the thumb-tip is a single-
chamber actuator. In addition, the hand has an opposable
thumb mechanism with three joints that are moved via soft
bellows actuators made of coated nylon fabric. Another
bellow actuator is placed inside the palm for better opposition
of thumb and little finger. Three more bellows are between
the fingers for abduction and adduction, but these are not
used in this work.

We extend the RH3 with two different sensory modalities.
First, liquid metal strain sensors [33] wrapped around the
silicon fingers. Second, commercially available bend sensors

(1-Axis Bendlabs Soft Flex Sensor) placed in the compliant
joints of the thumb, see Fig. 5.

B. Equilibrium Point Control Through Air-Mass Control

We control our soft actuators [3] by changing the enclosed
air-mass in each actuator [32]. This low-level control scheme
is of great importance for our proposed approach. As men-
tioned in Sec. III, to compute the deformation state (Eq. 2)
we need an actuation quantity that is not influenced by the
compliant interactions of the hand with the environment. Air-
mass as opposed to commonly used quantities for control like
pressure, position or force fulfills this requirement. The air-
mass enclosed in an actuator uniquely defines its equilibrium
position that it would attain if no external forces are present.

C. Implementation of the Deformation State

We consider a two-compartment pneuflex actuator aug-
mented with a strain sensor layout consisting of four sen-
sors, see Fig. 5b. First, the maximum air-mass for each
compartment is specified by increasing the air-mass in free-
motion until 250 kPa are reached. At this pressure value,
the actuator movement is maximum. Afterwards, we iter-
ate through combinations of the two air-mass values for
both compartments to compute the free-motion mapping
fΘ f ree (Eq. 1) for the four strain sensors. This mapping is
represented as a two-layer neural network with 5 and 3
neurons and tanh activation functions. Now, the deformation
state can simply be computed by reading the current strain
sensor value and subtracting fΘ f ree evaluated at the current
actuation state. The same procedure is applied to compute
the deformation state of the bend sensors for the three joints
of the thumb-scaffold, see Fig. 5c.

D. Obtaining IHM Control Targets Through Demonstration

We assume that the object that should be manipulated is
already in contact with the soft hand. Now, the operator can
demonstrate a desired object motion by manually moving
the object. This process deforms the actuators which is
recognized by the sensors. Throughout the demonstration
the actuation values of the actuators remain fixed and the
available deformation state (Eq. 2) is collected. Afterwards,
the operator needs to decide for the deformation dimensions
that should represent the manipulation goal. If this is decided,
the relevant entries are selected from the last time-step of the
demonstrated deformation trajectory. Finally, the demonstra-
tor chooses a set of actuators that should be adjusted to reach
the desired control target. The actuators should be selected
in a way s.t. they are able to replicate the external forces
exerted by the operator during the demonstration, thereby
reproducing the motion of the object.

E. Rapid Learning of a Robust Manipulation Skill

In this section, we demonstrate the application of the
Jacobian-based deformation control framework presented in
Sec. IV and evaluate the continuous adaptation capabilities
of the system to changes in the task. First, the hand is
inflated to an initial position depicted in Fig. 1a. From



this position a demonstration to shift the object towards the
little finger is provided, see Fig. 1b. The control target is
represented in the four-dimensional strain deformation state
of the ring finger. A total of six degrees of actuation are
controlled to reach the task, four related to the thumb and
two related to the little finger. The controller runs at 5 Hz.
The first Jacobians are collected for a cube of size 4.5 cm.
All sensory dimensions are normalized using empirically
determined minimum and maximum values. We apply the
automatic learning rate computation based on the current
error e as presented in [34] for Jacobian transposed inverse-
kinematics. Three Jacobian/measurement pairs are collected.
The measurements consist of absolute and deformation data
for T2, T3 bend-sensors as well as ring and thumb strain
sensors (Video: https://youtu.be/nTtkNW59dgk).

The subsequent generalization experiments always start
off with the stored data (Sec. IV-C) and new Jacobians are
obtained if no progress towards the goal is obtained. We
terminate the execution after five different Jacobians have
been applied to reach the goal.

Object Properties: The manipulation skill learned for one
object can be applied successfully to objects ranging in width
from 2.8 cm to 6 cm, as shown in Fig. 6a, which illustrates
the deformation error over time per iteration. If the object
width decreases, the thumb may slip, but a new Jacobian can
account for the change and allow the system to recover, as
seen with object 2 in Fig. 6a. (Video: https://youtu.
be/UWABG_5sLT8)

Disabled Actuators: This experiment simulates a scenario
where an actuator can no longer be inflated. In response,
the controller can acquire new Jacobians to deal with the
change of available degrees of actuation. Fig. 6b depicts the
deformation evolution towards the goal. The results indicate
that the thumb-tip (TT) is the most important actuator for
this skill. (Video: https://youtu.be/HuL7M4LQwWE)

Palm Inclination: The controller can handle changes in
palm inclination by 360 degree, see Fig. 6c. If gravity points
towards the ring finger, the controller needs to perform less
adjustments because gravity supports the motion. When grav-
ity points in the opposite direction, more Jacobian updates
are required. This is apparent in the two clusters that form in
Fig. 6c (Video: https://youtu.be/ZR6H8GZocbc).
The results motivate to consider wrist motions as additional
degrees of actuation to be integrated into the Deformation
Jacobians.

F. Cube Reconfiguration by Sequencing Feedback-Funnels

To showcase the capabilities of our proposed approach,
we teach the RH3 three feedback-skills to shift and rotate
a cube. We program the manipulation skills by demonstra-
tion as presented in Sec. V-D. The following skills with
corresponding effect are obtained: Clamp (Squeezing the
cube between thumb and middle and ring finger), Spin
(Counter-clockwise rotation by 90 degree), Shift (Translate
object towards little finger). In addition, we add one open-
loop skills to gait the object over to the little finger by
simply deflating both compartments of the ring-finger. The
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Fig. 6: Generalization of the shift skill to variations in object
size by 100 %, 360 degree changes in palm inclination and
to disabling up to 50 % of the involved actuators. All plots
show the evolution of the most variable strain deformation
dimension (twist, see Fig. 5). The red line indicates the
control target while the dotted red line indicates the threshold
for a successful execution. The variation the deformation at
the beginning could be interpreted as being at the funnel
entrance, while ending up in the area between target and
threshold indicates the funnel exit, see Fig. 3

.

sequence of the skills is specified offline, see Fig. 7. In the
following video, the full skill acquisition and execution of
the sequenced feedback-primitives for cubes of different size
are presented: https://youtu.be/Y7Pl_ZCV1bo.

G. Table-Top Object Sliding Through Deformation Control

Our method is not specifically tailored to in-hand manip-
ulation tasks but can also be applied to any contact-rich
manipulation task in which a deformation state of a soft
manipulator can be identified that characterizes the required
hand-object interactions to successfully complete the task.
In this experiment, we control the downward and upward
motion of a Franka Panda to achieve and maintain a desired
hand deformation, allowing for sliding an object across a
table. First, the desired deformation of the ring-finger is
demonstrated (Sec. V-D). Second, a single Jacobian that

https://youtu.be/nTtkNW59dgk
https://youtu.be/UWABG_5sLT8
https://youtu.be/UWABG_5sLT8
https://youtu.be/HuL7M4LQwWE
https://youtu.be/ZR6H8GZocbc
https://youtu.be/Y7Pl_ZCV1bo
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Fig. 7: Sequencing of three feedback skills and one open-
loop skill to clamp, rotate and translate a cube.

represents the effect of Panda motion on the ring-finger
deformation is estimated and applied to reach the target
deformation (Sec. IV). Third, a predefined up- and sideward
trajectory is executed once the desired deformation state is
reached, potentially causing the hand to lose contact with
the object. However, using the deformation feedback and
the estimated Jacobian, the trajectory is adjusted online to
maintain a constant hand-object interaction. This enables
robust sliding of various objects across a table (Video:
https://youtu.be/H6BvXXB-mZ8). This is by far
not a general solution for sliding objects across a wide
range of different surfaces, but rather a demonstration of
the potential applications of our simple and computational
cheap approach. The compliant hand’s deformation state
implicitly captures the total contact force between hand and
environment - Fig. 8.

Time (s)

Fig. 8: Generated force between RBO Hand 3 and object
while sliding objects of different heights 50 cm along a
table. The force generated through the deformation of the
soft hand is measured with a Schunk FTN-Mini-40 mounted
between hand and arm. The amount of force applied depends
on how many and how fingers are deformed when getting
into contact with the object and potentially the table. The
force remains within a margin of 1N.

VI. LIMITATIONS

The Jacobian acquisition based on finite differences can
fail if the actuators start to slip, as explorative motions can
accelerate this effect. In addition, the deformation dimen-
sions that the controller should optimize for need to be
specified manually. The same applies for the actuators that
should be controlled to reach the goal. Also, the acquired
control target through demonstration might not be reachable

by controlling the actuators. This requires tuning of the
success threshold in the context of the skills that should be
executed afterwards. Again, the intrinsic compliance of soft
hands reduces the need for precisely reaching the control
goal to proceed, as demonstrated in [35] where the concept
of inflated switching regions is introduced. The controller
requires the actuators of interest to be in contact to obtain
deformation feedback. Therefore, the initial configuration of
the hand-object system still needs to be manually designed.
This motivates investigation of planning algorithms to reason
about possibilities to release and establish contact after a
control target has been reached.

VII. SIMILARITY TO BIOLOGICAL CONTROL

Our approach shares conceptual similarities to the Equi-
librium Point (EP) Hypothesis also called Threshold Control
Theory (TCT) [36], an established theory for biological motor
control. The EP Hypothesis proposes that the equilibrium
configuration of the arm/hand is the control variable modu-
lated by the central nervous system as opposed to the actual
torques/forces that are generated in the interaction. For our
synthetic system we realize this with air-mass control, see
Sec. V-B. Furthermore, the EP Hypothesis relies on the
perception of the difference between equilibrium configu-
ration and the actual configuration of the body to reason
about and control contact with the environment. We call this
deformation state, see Sec. III. The EP Hypothesis suggests
that the body’s natural dynamics can take over predictive
and anticipatory functions in this process. Similarly, we
can interpret the self-stabilizing properties of soft hands
as computational resources of the body that can simplify
the control of the deformation state via a linear feedback-
controller, see Fig. 2.

The concept of using roughly approximated Jacobians
for control also bears similarity to another theory in motor
control [37]. In this work, the authors propose that humans
solve control problems with inaccurate Jacobians of the
relevant target quantities. In our approach, we achieve robust
manipulation behavior with good enough Jacobians because
the compliance of the hand can account for the remaining
uncertainty. The ”Act on the most nimble” (AMN) rule pre-
sented in [37] offers interesting ideas for stabilizing rapidly
changing sub-spaces in the deformation space, which could
be used to update the Jacobian online to prevent slippage.

Overall, the observed biological similarities provide us
with interesting algorithmic ideas on how to effectively use
the natural dynamics of the body for robotic manipulation.
This could potentially allow robots to come closer to humans
in terms of data efficiency when refining and acquiring new
skills in the real world

VIII. CONCLUSION

We have introduced a feedback-control framework for soft
hands that takes full advantage of their compliance. We
represent the combined hand-object system implicitly in the
deformation state of the soft hand. This definition of state
is well-suited to leverage the self-stabilizing properties of

https://youtu.be/H6BvXXB-mZ8


soft hands, which enable control of the complex hand-object
dynamics by locally linearizing the deformation dynamics.
Our approach can generate in-hand manipulation skills in the
real world within minutes. These skills can be interpreted as
feedback-funnels, which are defined by a set of Deformation
Jacobians. The skills can be continuously adapted by query-
ing new Jacobians on the fly, which refines the feedback-
funnel. This property allows for strong generalization to
changing object properties, palm inclinations, and disabled
actuators. We hope our findings will inspire further research
into how compliance can be used to develop data-efficient
methods for obtaining generalizable and reusable in-hand
manipulation behavior in the real world.
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