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Abstract— We present a simple approach to in-hand cube
reconfiguration. By simplifying planning, control, and per-
ception as much as possible, while maintaining robust and
general performance, we gain insights into the inherent com-
plexity of in-hand cube reconfiguration. We also demonstrate
the effectiveness of combining GOFAI-based planning with
the exploitation of environmental constraints and inherently
compliant end-effectors in the context of dexterous manipu-
lation. The proposed system outperforms a substantially more
complex system for cube reconfiguration based on deep learning
and accurate physical simulation, contributing arguments to
the discussion about what the most promising approach to
general manipulation might be. Project website: https://rbo.

gitlab-pages.tu-berlin.de/robotics/simpleIHM/

I. INTRODUCTION

In-hand cube reconfiguration has recently become a bench-

mark problem for robot manipulation [1], [2], [3] and in

particular for the application of deep learning to robot

manipulation [4], [5], [6], [7], [8]. The objective is to reorient

a cube within a robot hand to any of its 24 axis-aligned

configurations (see Fig. 1 for an example).

We investigate the intrinsic complexity of in-hand cube

reconfiguration and show that already simple algorithmic

tools suffice to solve the problem. This kind of problem

analysis, by attempting to develop the simplest possible

solution, is inspired by Kolmogorov complexity [9]. Intu-

itively, the complexity of generating a desirable behavior

corresponds to the smallest number of parameters required

to specify a program capable of generating the behavior.

Of course, in our context, simplicity cannot be defined in a

formal sense. Still, we believe our solution will be considered

very simple in terms of modeling and computational costs

involved. Concretely, we show that using only gravity as

actuation for the manipulandum and exclusively relying on

a dexterous, soft hand to produce in-hand environmental

constraints [10], we can robustly and generally solve the in-

hand cube reconfiguration problem in an open-loop manner,

i.e. without sensing.

We demonstrate the viability of defining a small, ro-

bust, and simple set of in-hand manipulation primitives

performed on a general-purpose soft anthropomorphic hand

to enable simple planning techniques for solving the cube

reconfiguration problem. The primitives consist of wrist

motions to change the direction of gravity with respect to the

hand/object system. Gravity actuates the object to perform

a motion constrained by the hand’s morphology to achieve
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Fig. 1: A simple and robust approach to in-hand cube

reconfiguration: The cube can be rotated into any of its 24

possible configurations by a sequence of simple and robust

motion primitives. These primitives allow to spin (purple),

translate (orange) and roll (green) the cube.

robustness and generality. We show experimentally that cube

reconfiguration is possible with high success rates based on

simple control and planning. We also compare our results

to the performance of OpenAI’s cube reconfiguration [4],

a deep learning approach based on a neural network with

more than one million parameters, requiring days of simula-

tion time, sophisticated sensing, and presumably consuming

energy roughly equivalent to hourly output of three nuclear

power plants [12].

Our results inform the quest for a solution for general

robot manipulation. The results support the suitability of



TABLE I: Comparison of state-of-the-art cube reconfiguring manipulation systems: The table lists sources of

complexity. The approach described in this paper does away with all of them while still solving the cube reconfiguration

problem, arguably more robustly than the other methods.

Research work Robot hand Symmetry Complex

control with DL

Feedback Prehensile
manipulationProprioceptive Vision

Andrychowicz et al. [4], OpenAI Shadow Dexterous Hand1 : 7 : 7 7

Handa et al. [11], Nvidia Allegro Hand1 : 7 7 7 7

Chen et al. [5], MIT D’Claw Hand 7 7 7 7 7

Morgan et al. [3], Yale 4 Finger Gripper 7 : : 7 7

Pitz et al. [6], DLR DLR Hand II2 7 7 7 : 7

Yin et al. [7], HKUST Allegro Hand1 : 7 7 : 7

Khandate et al. [8], Columbia 5 Finger Gripper 7 7 7 : 7

Bhatt et al. [1], TUB RBO Hand 31 : : : : 7

Ours RBO Hand 31 : : : : :

1 General purpose, dexterous, anthropomorphic hand
2 General purpose, dexterous, anthropomorphic hand with a particular symmetric finger configuration

GOFAI planning methods in manipulation—if these planning

methods can rely on a small set of robust primitives that

serve as a basis for diverse behaviors. Such primitives, we

believe, can be designed or learned and must be based on

the exploitation of environmental constraints [10] as well

as the robustness contributed by inherently compliant (soft)

end-effectors [1]. The future will tell if such a GOFAI-based

approach coupled with insights from soft robotics can prove

sufficiently powerful to address general manipulation. Given

state of the art, however, Occam’s razor might favor this

approach over much more complex alternatives.

II. RELATED WORK

A. Cube Reconfiguration

Recently, several manipulation systems have been de-

signed to solve cube reconfiguration tasks. Most of these

works use deep reinforcement learning to learn policies for

dexterous cube manipulation [4], [5], [6], [7], [8], [11]. We

would classify these systems as complex based on various

measures of complexity: They require a lot of computation

time, have a very large number of parameters, require so-

phisticated sensing, and depend on complex and accurate

dynamic simulators, to name a few.

Approaches we would classify as simpler rely on designed

motion primitives. Bhatt et al. [1] also use motion primitives

for planning, sequencing them in an open-loop manner. This

approach is probably the simplest approach found in the

literature. Morgan et al. [3], in addition to primitives, uses

object pose feedback at smaller time steps for executing the

primitives, adding some complexity.

Interestingly, only few researchers [1], [4], [11], solve

the cube reconfiguration task on a general-purpose, an-

thropomorphic hand. In these approaches, the palm of the

hand is facing upwards. In contrast, others manipulate the

cube with the palm facing downwards [3], [5], [6] but not

with general-purpose hands. Instead, they rely on hands in

which the fingers are arranged symmetrically. This particular

arrangement simplifies the learning problem but will prove

disadvantageous for other manipulation tasks. The need to

counteract the effects of gravity also necessitates object-level

sensing in these approaches.

So far, none of the approaches leverage the full potential

of wrist movements to generate robust dexterous behavior.

They all rely on the intrinsic degrees of freedom the hand

offers to solve in-hand manipulation tasks. Therefore, all

these works require, in contrast to our work, an object to

be firmly grasped.

We summarize the cube manipulation works in Table I.

Symmetry refers to the reliance of a system on a particular

symmetric finger configuration. We view this symmetric

arrangement as a form of complexity as the finger con-

figuration tends to be carefully chosen in these examples.

Using deep learning (DL) for control and perception also

adds complexity, as it requires data, training, simulation, and

computation. Clearly, not requiring perception simplifies the

system. And without perception, only open-loop control is

possible, a simple form of control. Finally, prehensile ma-

nipulation requires achieving and maintaining force-closure

hand/object configurations, also adding complexity that is

not required for non-prehensile manipulation. None of these

sources of complexity are present in the cube reconfiguration

system described in this paper.

B. Leveraging Physical Constraints, Gravity, and Inertia

Eppner et al. [10] describe “Environmental Constraint

Exploitation” (ECE) as a way for robots to manipulate

objects by deliberately using contacts with the environment.

These deliberate contacts with the environment restrict object

motion and allow grasping and repositioning objects in the

hand [10], [13], [14]. In this work, the hand itself provides

such compliant constraints [15]. We configure these con-

straints (by reconfiguring the hand) to form partial cages [16]

that restrict the mobility of an object to a portion of con-

figuration space and thus reduce uncertainty in object pose

without sensing.

In [13], [17], [18] gravity and inertia are exploited to ma-

nipulate objects using simple grippers. Similarly, we exploit

compliant constraints provided by a general-purpose robot



hand using gravitational and interial forces to move an object

within the hand.

III. FORMULATING MOTION PRIMITIVES

We design motion primitives by the simple interplay of

physical constraints and gravity on a soft dexterous hand.

Before we discuss the details of these motion primitives, we

introduce the robotic setup in the following section.

A. The Robotic Platform

We use the soft, anthropomorphic RBO Hand 3 [15] which

has 16 degrees of actuation (DoA) as the end-effector. The

hand consists of soft continuum and pouch actuators which

are pneumatically actuated and are inherently compliant. We

actuate the hand by controlling the air mass enclosed in each

actuator.

The hand is attached to a Franka Emika Panda robot arm

as shown in Fig. 2. We use the arm to leverage gravity by

reorienting the hand, as shown in Fig. 2. We also wiggle the

hand to leverage the inertial effects of an object to trigger

object motion by overcoming static friction between object

and hand.

Fig. 2: Robot setup consisting of the RBO Hand 3 attached

to the Franka Emika Panda arm. Gravity is controlled by

reorienting the wrist.

B. Using Gravity and Inertia for Actuation

The manipulated object is always supported by the palm

and not in a force-closure grasp. The hand, with its many

actuated degrees of freedom, is reconfigured to provide

diverse sets of environmental constraints. Each set can be

interpreted as a partial cage that the object can move around

in. The fingers are not used to actively exert forces onto

the object. Gravity and inertia are the only active actuation

sources. We control the wrist orientation to leverage gravity

and wiggle the hand to make sliding easy on the high-friction

hand surface. By tilting the wrist around the x- and y-axis, we

can span the effective gravity vector across the palm plane

of the hand, as described by Eq. 1.

[

θx

θy

]

= arcsin(α)

[

−ĝ′y
ĝ′x

]

. (1)

θx and θy represent the wrist orientation about the x- and

y-axis of the hand frame H. ĝx and ĝy represent the x- and y-

components of the unit effective gravity vector in hand frame

H. α represent the scale of the gravity magnitude (9.8 ms−2)

in the range [0,1]. Unlike related work [19], which uses an

analytic approach to find tilting angles to move the object, we

derive these experimentally for each primitive. In our case,

the tilting angles remain constant irrespective of the object

to be manipulated.

Additionally, we do not model inertial forces, friction,

and their interactions. Instead, we simply leverage them

by wiggling the hand. For wiggling, we oscillate the wrist

with an amplitude of 5◦ and frequency of 5 Hz relative

to the current robot pose. In the next section, we discuss

the interplay of constraints and wrist movements to derive

motion primitives.

C. Constraint Exploitation using Gravity

To reconfigure a cube to any of its 24 configurations, we

derive a set of five simple motion primitives as shown in

Fig. 3. For each motion primitive, we first create a specific

constraint arrangement, and then exploit it by moving the

wrist. The roll (Fig. 3a) and spin (Fig. 3b) primitives rotate

the cube along two orthogonal axes. Both rotations change

not only the orientation of the cube but also its position.

Therefore, if we want to sequence these primitives, we need

to restore the cube to its original position before the rotation.

We derive such primitives by sliding the cube against a finger

or a group of fingers that act as a planar environmental

constraint (Fig. 3c-e). Each primitive has a pre- and post-

condition set that are used for planning. The precondition

set describes the positions of the object where the primitive

is likely to succeed. The postcondition set describes the set of

configurations of the object after the primitive is executed.

These sets are required for GOFAI planning. In addition,

each primitive requires two inputs: the actuation levels of

the hand to achieve the constraint configuration, and the

corresponding wrist orientation to induce object motion via

gravity as described in Routine 1.

We hand-craft the primitives based on our intuition of the

constraints and wrist motion needed to achieve the desired

object motion. We experimentally derive these primitives

using a wooden cube of size 4.7 cm and weight of 70 g. In

a given constraint configuration, we determine the direction

of gravity and then adjust the wrist orientation until the cube

slides or rolls according to the desired motion. If the cube

does not move due to irregularities on the palm surface or

high friction, we wiggle the hand after tilting.

To reconfigure a cube to any of its 24 configurations, we

sequence these primitives based on their effect on the cube.

By considering the initial arrangement of letters on the cube

and the pre- and postconditions of each primitive, we utilize

breadth-first search to create a plan that brings the cube from

its starting configuration to the desired goal configuration.

This plan consists of spin and roll rotations and shift opera-

tions to reset the cube’s position for subsequent rotations.



Fig. 3: Simple set of motion primitives to manipulate a cube

by exploiting constraints provided by the hand and leveraging

gravity as the actuation source.

Routine 1: Motion Primitive

input : air_mass, θ , wiggle = true or false

output: manipulation behavior that translates or

rotates the cube

ConfigureConstraints(air_mass) ;

// actuate hand

ReorientWrist(θ) ; // gravity

if wiggle then

OscillateWrist();

ResetWrist() ; // home pose

ResetHand() ; // deflate hand

IV. SOLVING CUBE RECONFIGURATION TASK

To experimentally assess the robustness of our hand-

crafted motion primitives, we compute the success rate for

each primitive when applied to different objects. Afterwards,

we generate long manipulation plans to visit multiple cube

configurations and compare the performance to a deep learn-

ing based solution. The robotic platform we use is the one

introduced in Sec. III-A consisting of RBO Hand 3 mounted

on a Franka Emika Panda.

A. Robustness of Motion Primitives

For each primitive, we place the cube initially at a ran-

domly chosen position from its precondition region. Then,

we execute that motion primitive multiple times and observe

the manipulation behavior. For each trial, if the cube’s pose

changes in a desired manner, i.e. translates (for translation

primitives) or rotates (rotation primitives), we count the

trial as a success, otherwise as a failure. One such trial is

depicted in Fig. 4. The results for 20 trials for each motion

primitives and three different objects are given in table III.

TABLE II: Objects used in the experiments. We use cube,

cuboid, cylinder, and prism objects for manipulation.

Object Dimensions (cm) Weight (g)

Cube I 4.7 70

Cube II (Rubik’s) 5.7 78

Cuboid 6×4.5×4.5 85

Cylinder r = 2.2, h = 4.8 53

Prism 6×5.7×3 35

The motion primitives in our work have a high success rate

and generalize across variations in the initial cube placements

spanned across the precondition set. The overall behavior

produced by these primitives is robust, even though they

are generated with simple open-loop actuation. We use five

different objects to test derived motion primitives (Tab. II),

and to our surprise, these generalize well to different shapes

(Fig. 5) given the same actuation and pre- and postcondition

set. Consequently, they can be sequenced into more complex

object manipulations. In the following section, we investigate

the robustness of sequences of these primitives to solve the

cube reconfiguration tasks.

TABLE III: Generalization of motion primitives to object

variations. Successful executions of motion primitives over

20 trials each on the physical robot: If the cube rotates by 90◦

for roll and spin, it is counted as a success. For different shift

variations (right, left, and back), if the cube translates fully

in the desired direction and aligns with the target constraint,

it counts as success; otherwise as a failure.

Motion Primitives
Successful executions

Cube I Prism Cylinder

Roll (R) 20/20 20/20 20/20

Spin (S) 20/20 12/20 15/20

Shift right (Tr) 20/20 10/20 20/20

Shift left (Tl) 20/20 10/20 20/20

Shift back (Tb) 18/20 8/20 20/20

B. Long Composition of Motion Primitives

We have shown that the motion primitives for the wooden

cube are highly reliable. Therefore, the cube reconfiguration

problem becomes a simple planning problem because only a

small set of primitives is required and no feedback is needed.

We rotate a cube to its different faces by sequences of the

five derived motion primitives that are derived with breadth-

first search as described in Sec. III-C. The experimental data

of executing these plans is reported in Table IV. On our

project page, long sequence demo video shows execution

of 34 sequenced primitives on the wooden cube, while the

spelling demo video involves two different cube sizes and a

cuboid, executing in total 21 primitives across all objects.

We compare our results with the performance achieved by

OpenAI’s cube reconfiguration system (Tables IV and V).

We do only have three trials as OpenAI evaluated their long

manipulation sequences ten times. This is the case because



Fig. 4: Keyframes of the roll, spin, and shift (left)

primitives while execution on the real robot (top view).

spin

Fig. 5: Keyframes of the spin primitive for prism and

cylinder (side view). The prism’s lateral and the cylinder’s

curved side are supported by the palm.

we did not start this research with the intention of comparing

it to OpenAI. Instead, we focused on building a simple

manipulation system relying on inertial and gravitational

forces for IHM without any perception. The observed robust

behavior gave rise to conduct this comparison. We compare

OpenAI’s total subsequent rotations vs. subsequent total

primitives (rotation + translations) because all our individual

primitives move the object within the hand while moving

the RBO Hand 3 and the Franka Panda. First, our simpler

method reliably reconfigures the cube using long sequences

(Exp. 4, 7, 8 in Table IV) with almost zero standard de-

viation compared to OpenAI’s system which exhibits high

variance. Second, OpenAI’s system performs worse if they

use wrist movements during manipulation. In contrast, we

generate robust behavior by purely relying on the wrist

as the actuation source without any feedback. Third, the

manipulation behavior produced by our system is easily

legible by humans (facilitating human/robot collaboration)

and does not include the seemingly random, unexplainable,

not goal-oriented finger motions present in OpenAI’s system.

Our findings reveal that in-hand cube reconfiguration is

a relatively simple manipulation problem, indicated by the

simplicity of the presented system. Therefore, cube recon-

figuration may not be a good benchmark to demonstrate

the effectiveness of deep learning for manipulation tasks.

Furthermore, our results show that very simple solutions can

compete with deep learning methods for cube manipulation.

TABLE IV: Successful executions of cube reconfiguration

plans to reach different goal configurations (three trials for

each plan). We count the successful consecutive executions

of motion primitives until the first failure of any primitive is

observed. Here, R & S represent the roll and spin primitive,

and T represents the combination of three shift primitives

[Tl ,Tr,Tb]. NR,NT represent the number of rotation and

translational primitives, respectively. N is the total number

of primitives in the plan. The column “individual trials” lists

the number of consecutive primitives executed successfully

in each trial (maximum: N). Mean values for successful

consecutive primitives are reported in absolute terms and as

a percentage of N. All plans are executed on Cube I.

Exp. Plan NT NR N Mean ± s.d. Mean (%) Individual trials

1 (RT )2 6 2 8 7.33 ± 0.58 91.6 8, 7, 7

2 (RT )3 9 3 12 11.33 ± 0.58 94.4 12, 11, 11

3 (ST )2 6 2 8 8 ± 0 100 8, 8, 8

4 (ST )10 30 10 40 40 ± 0 100 40, 40, 40

5 ST,RT,ST 9 3 12 12 ± 0 100 12, 12, 12

6 (RT )2
,ST 9 3 12 10.33 ± 2.29 85.8 12, 12, 7

7 (ST )2
,RT,(ST )2

,RT 18 6 24 23.33 ± 0.58 97.2 24, 23, 23

8 (ST )3
,RT,(ST )3 21 7 28 28 ± 0 100 28, 28, 28

TABLE V: OpenAI results [4]: The number of successful

consecutive cube rotations (maximum: N) on the real robot.

For explanation see Table IV.

Physical Task N Mean ± s.d. Mean (%) Individual trials

Block (state) 50 18.8 ± 17.1 37.6 50, 41, 29, 27, 14, 12, 6, 4, 4, 1

Block (state, locked wrist) 50 26.4 ± 13.4 52.8 50, 43, 32, 29, 29, 28, 19, 13, 12, 9

Block (vision) 50 15.2 ± 14.3 30.4 46, 28, 26, 15, 13, 10, 8, 3, 2, 1

C. Limitations and Future Work

Since the object is not firmly grasped, our approach cannot

be applied to upside-down manipulation tasks. The primitives

work by partially caging the object. Therefore, large objects

that don’t completely fit in the hand are hard to manipulate.

Additionally, the planning is open-loop, therefore, is not

robust to strong external disturbances. However, we can

incrementally increase the complexity by including object

perception and by learning the parameters of the motion

primitives (tilt angle, air mass). We can use RL to sample

and learn these small sets of parameters for diverse objects.

This would be computationally less expensive and could

potentially be carried out in the real world.

V. SIMPLICITY AND COMPLEXITY

There is no agreed-upon definition of simplicity (or com-

plexity) for robotic systems and algorithms, as in the case

of Kolmogorov complexity. We, therefore, have to rely on

intuition. Complicating matters further, there is ambiguity

in what aspects of a system we want to consider regarding

complexity. Is a neural network complex simply because it

has many parameters? Probably not—if we have a simple

way of determining these many parameters, we might not

care about their number. If, however, finding these param-

eters requires significant engineering effort (simulators) and

resources (computation time, data), we might say that this

constitutes some form of complexity.



In regards to perception, we can say that—everything else

being equal—a system without perception is simpler than a

system with perception. In that sense, the system we propose

here is simple. The proposed system uses breadth-first plan-

ning on a fully known state representation based on a set of

five manipulation primitives. This is simple algorithmically

and also in terms of computation time. There is, of course,

exponential growth in computation time for increasing the

size of the state space and number of primitives. However,

we believe that both of these numbers remain tractable, even

for complex in-hand manipulation problems.

Based on our experiences with the RBO Hand 3, we de-

signed a set of only five primitives, each simple in the sense

that it consists of a single hand configuration and a single

gravitational force vector, specifying a wrist orientation. The

primitives are executed open loop. Implementing all five

primitives involves using the same thirty lines of abstract

Python class code with different parameters, interfacing to

the robot via end-effector frames passed to an operational

space controller.

The assessment of complexity for hands is more am-

biguous. Let us compare the Shadow Hand (used in the

Open AI experiments) to the RBO Hand 3. In nearly all

respects, the RBO Hand 3 is simpler (degrees of actuation,

manufacturing, material cost, control complexity, mainte-

nance, sensing, etc.). The RBO Hand 3, however, as a result

of being inherently compliant, has a very large number

of degrees of freedom; it is highly underactuated, which

could be seen as complexity. This complexity pertains to the

observed behavior but does not affect the design of the rest

of the system. In fact, robust grasping [10] and prehensile

manipulation [1] have been demonstrated with simple open-

loop control, which is hard to replicate with a rigid hand

like the Shadow Hand. Therefore, the RBO Hand 3 enables

simplicity in our system.

Based on these considerations, we feel justified in saying

that system we described here is very simple. We acknowl-

edge that this statement is not based on a clear definition of

simplicity, but we hope the reader will share our intuition.

VI. CONCLUSION

We presented a very simple system for robust in-hand

cube reconfiguration. Our experimental results show that the

proposed system arguably exceeds the robustness and gener-

ality of competing, more complex systems. This is achieved

by combining simple GOFAI-based planning with exploiting

environmental constraints to simplify control and eliminate

the need for perception. Actuation of the manipulandum

is exclusively obtained from gravitational forces, varied by

changing the pose of the hand. The inherent compliance

of the robot hand used in our experiments contributes ro-

bustness by simplifying the contact dynamics between the

manipulandum and the hand. We view the simplicity and

performance of our system as support for the hypothesis

that GOFAI-based planning, exploitation of environmental

constraints, and inherent compliance of the end-effector form

a viable conceptual basis for general-purpose manipulation.

This offers an alternative perspective to the prevalent view

that deep learning alone is the most suitable approach to

capable and general manipulation.
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