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Abstract— To successfully manipulate in unknown environ-
ments, a robot must be able to perceive degrees of freedom
of objects in its environment. Based on the resulting kinematic
model and joint configurations, the robot is able to select and
adapt actions, recognize their successful completion and detect
failure. We present an RGB-D-based online algorithm for the
interactive perception of articulated objects. The algorithm
decomposes the perception problem into three interconnected
levels of recursive estimation. The estimation problems at each
level are much simpler than the original problem and their
robustness is improved by level-specific priors that help reject
noise in the measurements. These three estimators mutually
inform each other to further improve the convergence proper-
ties of the three estimation solutions. We demonstrate that the
resulting algorithm is robust, accurate, and versatile in real-
world experiments. We also show how the perceptual skill can
be used online to control the robot’s behavior in real-world
manipulation tasks.

I. INTRODUCTION

Robots achieve tasks by manipulating their environment.
This manipulation is the deliberate change of the config-
uration of objects. To perform such manipulation success-
fully, the robot must be able to detect and track degrees
of freedom (DOF) in the environment. Detection includes
the characterization of DOF based on joint type and joint
axis. Tracking implies the continuous perception of DOF
state in order to monitor manipulation progress, recognize
completion, or detect failure. These perceptual capabilities
are a fundamental prerequisite for successful manipulation
in unstructured environments with unknown objects (Fig. 1).

In this paper, we present a novel online interactive per-
ception (IP) algorithm to estimate parametrized kinematic
models of unknown objects from streaming RGB-D data. The
proposed online IP algorithm consists of three interconnected
levels of recursive state estimation: 1) the estimation of 3-D
feature motion based on the 2-D motion of tracked RGB
features, 2) the estimation of rigid body motion based on
the estimated feature motion, and 3) the estimation of the
kinematic model based on the rigid body motion (Fig. 2).
The probabilistic representations used for estimation yield a
kinematic model with uncertainty estimates. We demonstrate
the robustness, accuracy, and generality of the proposed
algorithm in extensive real-world experiments as well as the
usefulness of these uncertainty estimates.
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Fig. 1. Example of online interactive perception: The robot pulls on the
drawer using an anthropomorphic soft hand built in our lab [1] and perceives
the prismatic joint (joint axis shown as narrow green cylinder, joint value
shown as wider green cylinder), including an estimate of the uncertainty
(transparent green cone)

Two key features of the algorithm lead to the observed
robustness, accuracy, and generality. First, the factorization
of the overall perceptual problem into three levels enables
the use of highly relevant, level-specific priors, namely
motion continuity, rigid body physics and kinematics of
rigid bodies. These physical priors effectively improve the
quality of data at each level. Second, the three levels of
the recursive estimation problem are interconnected. The
information improved by the level-specific priors is passed
to other levels, thereby also improving the effectiveness of
the estimation process on other levels. The overall effect is
that the combined estimation process is informed not only
by sensor data but also by three specific process models,
each containing task-relevant information to help interpret
the uncertain data.

The proposed algorithm advances the state of the art in
interactive perception of (rigid) articulated bodies in three
respects. First, existing IP methods are offline algorithms
and can therefore not inform the ongoing action of the
robot, originally the goal of interactive perception. The
proposed online method now overcomes this and integrates
the perception process into the execution of actions. Second,
the offline setting leads to failure cases that are properly
addressed with our online method. Third, existing offline
methods are not probabilistic and hence do not include an
estimate of model uncertainly. We deem it to be important to
reason about uncertainty when manipulating in unstructured
environments.



II. RELATED WORK

Interactive perception (IP) captures the idea that percep-
tion and interaction are inextricably linked. Manipulation of
objects reveals perceptual information about the world which
in turn informs manipulation. This concept has been applied
to image segmentation [2, 3], object recognition [4, 5], and
object singulation in cluttered environments [6, 7, 8]. In our
review of related work, however, we will focus on work
about perceiving kinematic models of articulated objects
from visual data.

Yan and Pollefeys [9] propose an integrated approach for
segmentation and joint detection. They use structure from
motion to estimate 3-D feature trajectories and apply spectral
clustering to identify rigid bodies. Ross et al. [10] improve
this work by using maximum likelihood estimation instead
of spectral clustering. These methods require to accumulate
large motion data to estimate the depth of point features and
are thus inherently offline algorithms.

Sturm et al. [11, 12] present a probabilistic approach
to joint classification and characterization. Although this
method incorporates uncertainty estimates about the joint
types and is applicable in real-time, it omits the important
part of detecting and tracking unknown rigid bodies. It
requires that the rigid bodies are known beforehand and
that their poses are tracked reliably. In contrast, our method
incrementally detects the moving rigid bodies and tracks
them, addressing the complete perceptual problem.

Huang et al. [13] present an offline method to extract 3-D
models of articulated rigid objects using IP. However, this
method requires multiple object views to first generate a full
point cloud of an object, which is then used to estimate the
kinematic state by matching the configurations before and
after the interaction.

Katz et al. [14] propose an RGB-based, offline solution for
the perception of three-dimensional, rigid kinematic struc-
tures. Subsequently, this method was adapted for RGB-D
sensors [15]. The use of RGB-D sensing avoids the costly
structure from motion computation and is therefore more
accurate and computationally more efficient, but still offline,
and thus suffering some inherent limitations, for example for
newly appearing objects (see Section V-B).

The IP method described in this paper differs fundamen-
tally from prior work in this area. The step from offline
to online algorithms changes the nature of the perception
problem, which can now be formulated as probabilistic
recursive state estimation.

III. RECURSIVE STATE ESTIMATION

Recursive state estimation refers to a family of filters
that estimate the current state xt of a time-varying system
based on the previous state xt−1, a last observation zt ,
and a control input ut . When state and observation are
stochastic processes, recursive estimation can be solved by
using recursive Bayesian filtering. In this case, the filter
estimates the posterior p(xt |z1:t ,u1:t) over the state, based on
p(xt−1|z1:t−1,u1:t−1) [16]. In a first step, called prediction,
recursive Bayes filters use a process model to predict the

distribution of the next state based on the current state
distribution and the control input. In a second step, called
measurement update, recursive Bayes filters predict the next
measurement using a measurement model, and use the differ-
ence between predicted and the subsequently acquired new
measurement to generate a new probabilistic estimate of the
state.

If process and measurement model are linear functions
with Gaussian noise and the probability of the initial state
p(x0) is normally distributed, Bayes filters can be opti-
mally implemented using Kalman filters [16]. If process
or measurement model are not linear but linearizable, ex-
tended Kalman filters (EKF) are a suitable implementation
for the Bayes filters. In the latter case, the process model
becomes xt = g(xt−1,ut) + εt and the measurement model
zt = h(xt)+δt , where g and h represent the possibly non-
linear functions that have to be linearized, and ε and δ are
process and measurement additive Gaussian noise.

In the following, we will use this structure of the recursive
estimator and the terminology introduced here to describe the
three interconnected recursive state estimators that make up
the multi-level recursive estimator for online IP of articulated
objects.

IV. MULTILEVEL RECURSIVE STATE ESTIMATION FOR IP

Our proposed online algorithm factorizes the interactive
perception of articulated objects into three recursive state
estimation levels: estimating feature motion, rigid body mo-
tion, and the overall kinematic model. The structure and
interactions of these levels is depicted in Figure 2. Each level
exploits a level-specific prior: motion continuity, rigid body
physics, and the kinematics of rigid bodies. These priors
improve convergence of the state estimate. The resulting state
information is passed as a measurement to the next-higher
level (blue arrows). The predicted measurement of each level
is also fed back as the predicted state to the next-lower level
(red arrows). The information passed to the next-higher and
next-lower levels is now informed by the prior and improves
convergence at the other levels. Both of these design choices
(use of priors, feedback to lower levels) are crucial to achieve
the effectiveness, robustness, accuracy, and versatility of the
proposed online IP algorithm.

We will now explain in detail the three recursive state
estimation levels that constitute our online IP algorithm.

A. Recursive Estimation of Feature Motion

The first level of recursive state estimation tracks the
motion of a set of point features in an RGB-D sensor stream
using a recursive filter. The state of this filter is the vector
xxxfm

t ∈R3N (fm = feature motion) containing the 3-D coordi-
nates of N tracked point features. The measurements for this
feature tracking filter zzzfm

t ∈R2N are the 2-D coordinates of the
features in the image plane. We obtain these measurements
by tracking the features in the RGB sensor stream using a
point feature tracker. The estimation of feature motion relies
on two priors: motion continuity (the location of a feature
is close to its previous location) and physics of rigid bodies
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Fig. 2. Multi-level recursive estimation for IP: (from bottom to top) an
RGB-D sensor data stream provides information about a scene, feature
motion is estimated, from the feature motion rigid body motion is estimated,
from the rigid body motion the kinematic model is estimated; the estimated
state of each level is passed as measurement to the next-higher level (blue
arrows) and the predicted measurements from one levels are passed to the
next-lower level as state predictions (red arrows); level-specific priors to
help the estimation process are a key feature of the proposed algorithm
(vertical text on the left side of the boxes)

(the motion of the features on a rigid body must be consistent
with the motion of the rigid body). This second prior allows
us to leverage information determined by the next-higher
level, the estimated motion of rigid bodies.

1) Prediction in Feature Motion Estimation: We predict
the next feature locations from their current location and
the estimated rigid body velocities. These velocities are
estimated on the next-higher estimation level, the recursive
Bayesian estimation of rigid body motion (see Section IV-B).
The next-higher level effectively acts as the process model
of the recursive estimation of feature motion.

2) Measurement Update in Feature Motion Estimation:
We project the predicted 3-D feature locations into the image
plane to obtain estimates of the next feature location as input
to the Kanade-Lucas-Tomasi (KLT) tracking algorithm [17].
The KLT algorithm refines these 2-D locations, which we
subsequently use to update the filter state. This recursive
estimation schema (prediction and measurement update) in
feature motion improves the tracking accuracy and robust-
ness of the KLT algorithm.

3) Feature Initialization and Maintenance: The initial set
of N features is selected based on Kanade-Tomasi corner
point features in the first RGB image and their corresponding
3-D coordinates. Often, features get lost. To compensate

for this loss and to continuously be able to extract useful
information from the sensor stream, we increasingly add
novel features to constantly maintain a set of N features.

To improve the reliability of feature tracking, we actively
reject features based on three criteria. First, we reject fea-
tures whose SURF descriptor [18] changes more than a
given threshold (in our experiments: 0.1) over the course
of 15 frames. Second, we reject features lying close to
depth discontinuities in the RGB-D image. In the presence of
tracking noise, these features change their depth drastically,
negatively affecting the estimation of rigid body motion.
Third, when the robot arm enters the field of view, we reject
features tracked on its surface. We determine these features
by projecting a geometric model of the robot into the image
plane.

B. Recursive Bayesian Estimation of Rigid Body Motion

The second level of recursive state estimation is responsi-
ble for detecting and tracking the motion of rigid bodies,
based on the feature motion estimated by the next-lower
estimation level and the kinematic model estimated by the
next-higher estimation level (see Section IV-C).

The motion of one single rigid body is estimated with a
recursive Bayesian filter (RBF). We instantiate and maintain
one independent RBF for each moving rigid body. In the
following, we first suppose that some features have been
correctly assigned to one RBF and describe its prediction and
measurement update steps. (The detection of rigid bodies and
the assignment of features to rigid bodies will be described
later in this section.) This RBF is implemented as an ex-
tended Kalman filter (EKF). The state of the EKF is given
by a 6-DOF rigid body pose and velocity represented as
6-D twists: xxxrbm

t = (ppp,vvv)T ∈R12 (rbm = rigid body motion).
The measurement zzzrbm

t ∈R3M is a vector containing the 3-D
locations of the M features assigned to this rigid body.

1) Prediction in Single Rigid Body Motion Estimation:
We use three different process models in parallel to predict
the next rigid body state. The first model predicts the next
pose of the rigid body based on its current pose and velocity
and the elapsed time. The second process model handles the
special case when a rigid body stops moving abruptly (for
example, when closing a door), setting the current velocity
to zero. The third process model uses the current kinematic
model, estimated by the next-higher estimator, to predict an
alternative next pose and velocity for the rigid body. The
next-higher level is used therefore as process model of the
recursive estimation of rigid body motion.

2) Measurement Update in Single Rigid Body Motion Es-
timation: The measurement input consists of the 3-D feature
locations estimated on the next-lower level. We predict the
future locations of features based on the predicted state of
the rigid body and the following observation model:

zzzrbm
t = h(xxxrbm

t )+δ
rbm
t =


T (ppp) fff 1

init
T (ppp) fff 2

init
...

T (ppp) fff M
init

+δ
rbm
t , (1)



where T (p)∈ SE(3) is the homogeneous transform obtained
from the rigid body pose and fff l

init is the 3-D location
of the features when the body was initially detected. We
predict the new observations relative to this reference to take
advantage of increased precision with larger feature motion.
The covariance of the measurement uncertainty δ rbm

t is set
proportional to the square of the feature depth (based on the
RGB-D sensor properties) and inversely proportional to the
tracking score given by the feature tracking algorithm. The
EKF linearizes this measurement model using a first-order
Taylor expansion of h(xxx) around xxxrbm

t and uses it to estimate
the covariance matrix of the next state of the rigid body.

The state predictions obtained by the three process models
generate different measurement predictions (next feature
locations). The Bayes filter compares predicted and acquired
measurements and uses the most likely state prediction given
the actual measurement. As each of the predictions for the
feature locations is generated under the assumption of rigid
body motion, the predicted feature locations are informed by
this prior.

3) Recursive Bayesian Estimation of Multi-body Motion:
To track the motion of multiple rigid bodies, we have to
group features accordingly and use a separate Bayes filter
for each one. We assign features to those rigid bodies that
best predict their motion. If the motion of a set of features
cannot be accurately predicted (error under 2 cm) by any
of the existing rigid body Bayes filters, we use RANSAC
to find a rigid body transform that describes their motion.
If a rigid body transform explains the motion of at least
fmin = 15 features, a new RBF is created, using this rigid
body transform as the initial state. Using this procedure, the
proposed algorithm works for an arbitrary number of moving
rigid bodies in the scene, as long as fmin visual features can
be tracked on each body.

C. Recursive Bayesian Estimation of Kinematic Model

The third level of our algorithm estimates and tracks
the kinematic model of the scene, based on the motion of
rigid bodies obtained on the next-lower estimation level. We
assume a pair of rigid bodies to be related in one of four
possible ways: (i) prismatic joint, (ii) revolute joint, (iii) rigid
connection, or (iv) disconnected, the latter being a special
case defined as the absence of relationships (i)–(iii). We
model these relationships with different types of RBF, each
type modeling the necessary parameters for that relationship
(joint axis, joint variable, etc.) in the state xxxjoint

t . The measure-
ments zzzjoint

t ∈R6 are obtained from the next-lower estimation
level as the twist of relative motion between the two rigid
bodies. The covariance of the measurement model noise δ

joint
t

is also obtained from the next-lower level. We instantiate and
maintain one RBF of every type for each pair of rigid bodies
in the scene.

In the following we explain the state representation,
prediction and measurement update of the three different
RBF types. Each RBF type uses a different kinematic prior
which defines its state and measurement model. As before,
the priors enable the estimation and tracking of kinematic

models, but also the prediction of the next state of the
next-lower level (feedback). Following this, we explain how
we estimate the most likely joint type between two bodies
and the overall kinematic structure, which completes the
description of this estimation level.

1) Prismatic Joint Estimation: The state of a prismatic
joint is parametrized by the orientation of its axis (azimuth
φ and elevation θ ), its joint variable qp ∈R (translation along
the joint axis), and the velocity of the joint variable. In the
prediction step, we use the joint velocity to update the joint
state. To predict the pose of one rigid body relative to the
other, we use the following measurement model:

zzzjoint,p
t =

(
qp · ôoop

0003

)
+δ

joint
t (2)

where ôoop ∈R3 is the axis orientation (unit vector) estimated
from φ and θ , and 0003 is a three dimensional null vector.

2) Revolute Joint Estimation: The state of a revolute joint
is parametrized by the orientation of its axis (azimuth φ and
elevation θ ), a point on the axis pppr ∈ R3, its joint variable
qr ∈ R (rotation about the joint axis), and the velocity of
the joint variable. Again, we use the joint velocity to predict
the next joint state as process model. To predict the pose of
one rigid body relative to the other, we use the following
measurement model:

zzz joint,r
t =

(
tttr

qr · ôoor

)
+δ

joint
t (3)

where ôoor ∈R3 is the axis orientation (unit vector) estimated
from φ and θ and tttr = (−qr · ôoor)× pppr is the linear relative
motion between rigid bodies.

3) Rigid Joint Estimation: A rigid joint does not allow
for relative motion between rigid bodies. Therefore, it has
no parameters nor variables to estimate. The measurement
model of a rigid joint predicts that there is no relative motion
between bodies, i.e. zzzjoint,rigid

t = 0006 +δ
joint
t .

4) Recursive Bayesian Estimation of Multi-type Kinematic
Model: After evaluating the RBF of every type for each
pair of rigid bodies, we select the one most consistent
with the observed rigid body motion. If none of the RBF
can explain the motion between a pair of rigid bodies,
we declare this pair of rigid bodies to be disconnected.
From all pairwise selected joint types and parameters, we
build the kinematic model of the scene. Because joints are
always determined considering only pairs of rigid bodies,
our algorithm can naturally determine the kinematic model
of branching mechanisms and closed kinematic chains.

V. EXPERIMENTS

We conducted three sets of experiments. In the first set
we evaluate the performance of the online IP algorithm
with different articulated objects. We measure the robustness,
quality, and convergence of the kinematic model estimation
by comparing to ground truth. To obtain the ground truth
for the joint parameters, we placed artificial markers that
are not used by the algorithm to estimate the kinematic
model. We then manually measured the joint parameters in



the RGB-D stream. In the second set of experiments, we test
our algorithm in scenarios were offline algorithms fail. And
in the third set, we make use of the online abilities of the
algorithm to control the motion of a robot.

In all experiments, the input is an RGB-D stream, pro-
vided either by a Kinect or a Carmine RGB-D sensor. The
articulated objects are of different size, color, texture, and
with different kinematic structures (number and type of
joints). The only constraint for the objects is that they have
some visible texture. We also vary lighting conditions and
the relative pose between the objects and the sensor. The
algorithm tracks N = 150 features at a frame rate of 15
frames per second, running on real-time on an Intel Xeon
E5520 PC at 2.27 GHz.

A. Experimental Evaluation

We measured the accuracy and convergence of our online
IP algorithm on four articulated objects. Figure 3 shows
initial, intermediate (after 1 s), and final frames of these
experiments. The figure also includes graphs of the esti-
mation error including estimated uncertainty over time. In
some of the experiments, the observed motion was pro-
duced by human interaction, in some by a robot interacting
with the environment, and in some the environment moved
autonomously. In the following, we discuss each of the
experiments from Figure 3.

1) Book experiment: The book is opened 60◦ and closed
again (120◦ of accumulated motion) in 14 s. The joint is
correctly classified from the first frame and converges within
1 s to a stable set of parameters. Point features are correctly
assigned to the moving book cover. The error remains under
4◦ for the orientation and under 2 cm for the position of the
revolute axis. We used artificial markers to obtain the ground
truth of the revolute axis.

2) Umbrella experiment: The umbrella is extended by
40 cm in a motion lasting 10 s. The joint is continuously
estimated correctly as prismatic. The features on the umbrella
are correctly assigned. Some features on the hand are also
assigned to the umbrella since they move coherently with it.
The error of the estimated joint axis remains under 5◦ during
the entire experiment. We used artificial markers to obtain
the ground truth of the prismatic axis.

3) PUMA 560 experiment: In a motion lasting 15 s, the
shoulder joint of the PUMA 560 robot moves 90◦ and the
elbow joint moves 140◦. Initially, our algorithm detects both
links as a single moving rigid body. When the motion of the
two links of the robot arm is different enough (0.7 s), the
algorithm succeeds at separating them. Once both moving
rigid bodies are detected, the features are correctly assigned.
The revolute axis between base and upper arm and the
revolute axis between upper arm and forearm are quickly
classified as revolute, and their parameters converge fast
to a stable accurate value. The joint between the base
and the forearm is initially classified as revolute, but the
algorithm quickly detects that there is no direct connection
(disconnected joint). The estimation error of the first revolute
axis (shown in the graph) remains under 6◦ for orientation

and 5 cm for position; for the second joint the error remains
under 8◦ and 8 cm after convergence. The estimates of joints
connecting two moving bodies are usually less accurate,
as the errors in motion estimation for both bodies add up.
The robot does not have sufficient texture to reliably track
features at this distance; we attached checkerboards to it to
remedy this problem. In this experiment the RGB-D sensor
is pointing parallel to the joint axes of the robot to simplify
ground truth estimation. The experiments demonstrates the
algorithm’s ability to determine multiple DOF of a kinematic
chain at the same time.

4) Human head experiment: The algorithm estimates the
neck joint of a human shaking his head. The human rotates
his head 100◦ in 5 s. The joint is correctly classified from the
beginning of the motion, all features are correctly assigned,
and the error of the axis after convergence remains under
5◦ and 4 cm. The RGB-D sensor is pointing perpendicular
to the orientation of the joint to simplify ground truth
estimation. The joint position is manually measured in the
point cloud. This experiment demonstrates the performance
of the algorithm on large semi-rigid articulated bodies.

B. Failure Cases of Previous Offline Algorithms Solved with
Online IP

In this section, we show three situations that can only
be handled by an online incremental IP algorithm. Existing
offline methods would fail in the following scenarios.

1) Disappearing features: The motion of the object may
cause all features obtained at the beginning of the motion
to disappear by moving out of visual field or simply due to
tracking error. Offline IP methods would fail, as they cannot
find matching features between the initial and the final frame.
We use a rotating globe and a portable projection screen with
casing (see Figure 4, first and second rows) to demonstrate
that the incremental nature of our online IP aims to overcome
this problem. We rotate the globe 300◦ in 31 s and open the
poster hanger 70 cm in 13 s. Our online algorithm quickly
detects the moving bodies and incrementally assigns new
features to them as they appear. This allows us to successfully
track the motion of the rigid body, even when the initially
visible parts of the object get obstructed (globe) or leave the
field of view (projection screen).

2) Appearing objects: The articulated object may not be
visible at the beginning of the analysis. To demonstrate how
online IP can address this, we use a book in a cabinet and
a Pioneer mobile base (see Figure 4, third and fourth rows).
The cabinet has to be opened to perceive the book. We then
open the book 30◦ in 3 s. Once the book is visible, new
features are detected on its surface, and the joint can be
perceived when the book is opened. The Pioneer base enters
the field of view from the right. The base moves 82 cm in
22 s after entering the scene. The revolute joint connecting
the wheel to the base as well as the prismatic joint between
the robot base and the background are correctly estimated. At
the end of the experiment the uncertainty about the prismatic
joint increases because the robot base slightly changes its
orientation.
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Fig. 3. Experiments with online IP (each row represents a different experiment): initial (first column), intermediate (second column), and final frame
(third column) of the estimation of the kinematic model, including error plot (fourth column) of joint configuration estimation, relative to ground truth,
including uncertainty (shaded areas); the insets in the three images show the time t and the estimated joint variable q; estimated prismatic joints are shown
as solid green cylinders, revolute joints as solid red cylinders; transparent, narrow cones represent the uncertainty of the axes orientation; red dots are
features assigned to the static background; dots of other colors are features assigned to moving rigid bodies

3) Identical initial and final configuration: When the
initial and final configuration of the object performing the
motion are identical, a comparison of these poses will not
reveal information about the kinematic model. To show that
online IP overcomes this problem of some offline IP meth-
ods, we experiment with a cabinet door and a drawer. The
drawer is opened and closed (50 cm of accumulated motion)
in 6 s, and the door is opened and closed (80◦ of accumulated
motion) in 7 s. The proposed online IP algorithm accurately
estimates the kinematic model. The model remains converged
after the object returns to its initial configuration.

C. Controlling Interaction with Online IP

One of the main advantages of an online IP algorithm
is the ability to use the kinematic model to control the
robot’s interaction with the environment. We demonstrate
this in two experiments with two objects each (door and
drawer). The goal of the first experiment is to obtain a
kinematic model with a specified uncertainty bound (5◦ in
orientation and 5 cm in position of the joint axis). The goal

of the second experiment is to move one of the joints to a
specific configuration. Each experiment is repeated ten times.
Figure 4, rows five and six, shows initial, intermediate, and
final frames of two trials of these experiments, with the
online estimated joint variable in the bottom right corner.

In the first experiment we measure the amount of inter-
action necessary for the algorithm to reduce the uncertainty
below a required level, and the deviation of the estimated
kinematic model to ground truth (manually measured in the
point clouds). In the case of the drawer, our controller stops,
due to the attained uncertainty bounds, after a mean amount
of motion of 5.07 cm. The mean error of the estimated axis
is 4◦ with a single value above 5◦ (5.08◦). In the case of
the door our controller stops due to the attained uncertainty
bounds after a mean amount of motion is 8.4◦, with a
maximum value of 26◦. The mean error of the estimated
axis is 2.95◦ with a maximum of 4.47◦. The mean error in
the estimated joint axis position is 7.03 cm with a maximum
of 49.71 cm for a failed trial. Without this value the mean
position error is 2.28 cm (under the 5 cm threshold).
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as solid green cylinders, revolute joints as solid red cylinders; transparent, narrow cones represent the uncertainty of the axes orientation



In the second experiment, the robot manipulates the same
objects as before so as to attain a certain value of a joint
variable. In the case of the drawer, this value is 15 cm. The
robot stops, when its model indicates this amount of motion.
We measure the ground truth motion manually. The mean
value of the measured joint value is 15.55 cm and the maxi-
mum and minimum are 15.9 cm and 15.2 cm, respectively. In
the case of the door, the desired joint configuration is 45◦.
The mean value of the measured rotation is 44.8◦ with a
minimum of 44◦ and a maximum of 46◦.

The results of these experiments demonstrate that online
IP can be used to monitor and control interactions with
articulated objects in the environment. We showed that it
is possible to adjust the robot’s action based on a desired
uncertainty bound for the accuracy during the estimation
of a kinematic model. This demonstrates that the estimated
uncertainty reflects the correctness of the estimated kinematic
structure. We also showed that the online estimation of joint
values can be used to monitor and attain manipulation goals,
expressed in terms of specific joint configurations.

VI. LIMITATIONS

The proposed method inherently depends on motion in the
scene. This motion can be produced by robot interaction, by
others in the scene, or by the object itself, but there must
be motion for our method to work. In a separate line of
our research, we investigate how robots can generate such
motion so as to explore efficiently [19, 20].

Only objects with sufficient trackable texture can be
perceived. As a result, our method inherits the limitations
of feature tracking, including the requirement of “good”
features, relatively stable lighting conditions and bounded
object acceleration. Note that we explicitly address the case
of high deceleration to zero velocity (see Section IV-B.1).

There are computational limitations, but we do not deem
these severe. To be able to integrate into the robot’s action
loop, our algorithm must perform at reasonably high frame
rates. The frame rate is mostly affected by the number of
tracked features. In all our experiments, we track 150 features
at 15 Hz, independent of the number of moving rigid bodies.
Increasing this number to 250 reduces the frame rate to 9 Hz.

Currently, our method only handles four kinematic rela-
tionships (revolute and prismatic joint, rigidly connected, and
disconnected). We are extending the estimation of kinematic
structures to other types of kinematic relationships [11, 12].

VII. CONCLUSION

We presented an online algorithm for the interactive per-
ception of articulated bodies. It receives as input an RGB-D
stream and at interactive frame rates outputs a kinematic
model of the observed scene, including joint configura-
tion values. This perceptual capability is a prerequisite for
successful manipulation in unstructured environments. We
formulated the perception problem as three interconnected
recursive estimation filters, successively estimating feature
motion, rigid body motion, and kinematic model of moving
objects in the scene. The composition of these three filters

and the bidirectional flow of information between them result
in a highly robust algorithm. This robustness is a result of
level-specific priors that help to interpret the data and to
reject measurement noise. The connectivity between the lev-
els passes valuable information from simpler sub-problems
among the levels, further improving the convergence of
the overall estimator. We demonstrate the effectiveness of
our method in twelve real-world experiments in which the
algorithms successfully estimates the degrees of freedom of
humans, robots, and objects in the scene.
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