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Abstract— There is strong evidence that robustness in human
and robotic grasping can be achieved through the deliberate
exploitation of contact with the environment. In contrast to this,
traditional grasp planners generally disregard the opportunity
to interact with the environment during grasping. In this paper,
we propose a novel view of grasp planning that centers on the
exploitation of environmental contact. In this view, grasps are
sequences of constraint exploitations, i.e. consecutive motions
constrained by features in the environment, ending in a grasp.
To be able to generate such grasp plans, it becomes necessary to
consider planning, perception, and control as tightly integrated
components. As a result, each of these components can be
simplified while still yielding reliable grasping performance.
We propose a first implementation of a grasp planner based
on this view and demonstrate in real-world experiments the
robustness and versatility of the resulting grasp plans.

I. INTRODUCTION

Many recent advances in robotic grasping and manipula-

tion can be explained by a simple insight: contact with the

environment can improve performance! For example, under-

actuated, soft hands greatly benefit from the interactions that

occur naturally between hand, object, and environment [1]–

[3]. Furthermore, the robustness of grasping can be increased

through the use of contact with support surfaces [4], [5].

And the dexterity of simple, rigid hands is increased drasti-

cally through deliberate contact with the environment [6].

In addition, human graspers routinely and amply employ

environmental contact, especially in difficult grasping prob-

lems [4]. Human studies also provide impressive anecdotal

evidence, such as this annotated video1, of a human cook

cutting potatoes. Given this broad support for the importance

of contact in grasping and manipulation, it is surprising that

recent grasp and manipulation planners generally regard the

environment as an obstacle, rather than as an opportunity.

We introduce a grasp planner that generates robust grasp-

ing strategies based on the exploitation of contact constraints

available in the environment (see Fig. I). We define an en-

vironmental constraint (EC) as a feature of the environment

that enables replacing aspects of control and/or perception

with interaction between hand and environment. To plan the

exploitation of EC, we must eliminate the existing sepa-

ration between perception, planning, and control. Instead,

we tightly integrate perception and action by realizing each

to satisfy the others’ requirements and to account for its

limitations.
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Fig. 1. Our planner generates grasping strategies that make extensive
use of contact with the environment. Thus, control and perception can be
simplified. In this example, three different grasping strategies for a banana
are shown. They exploit the table surface, edge, and the side panel of an
object sitting on top of the table.

The main contribution of this paper is this novel (albeit

heavily informed by previous contributions) perspective on

the grasping problem. We present a formulation of the grasp-

ing problem and transfer it into a specific planning algorithm.

This algorithm is capable of generating grasp plans that

achieve robustness through the exploitation of environmental

constraints. This, at least in principle, is already possible

with traditional planning methods. However, these depend

on exact geometric models of the world. In contrast, we

demonstrate grasp planning in real-world experiments based

on a single depth image of a scene. From this single image,

the planner generates robust, environmentally-constrained

grasps. We believe that grasp and manipulation planning

in this novel view will lead to increased robustness and

increased capabilities for robotic manipulation systems.

Planning Concept

As the proposed planner shares characteristics with several

different branches of work in the robotics literature, it is

helpful to provide a brief overview of the basic idea, before

discussing related work. The key challenge is that exact

planning in the combined state space of hand, object, and

environment is too difficult. To follow the rest of this section,

please refer to Fig. 2.

Environmental constraints implicitly divide the state space

into separate regions, i.e. regions that correspond to one

particular type of EC exploitation. Samples from these re-
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(a) Example scene with red
object

(b) We divide the state space into regions, each representing
the exploitation of a specific environmental constraint.

(c) Intersections between those
regions define a transition graph,
in which a grasp plan can be
determined.

(d) The resulting plan is a
sequence of environmental
exploitations that end in a
grasp.

Fig. 2. Illustration of planning environmental constraint exploitations for grasping.

gions projected into the workspace are shown in Fig. 2(b).

As we will see later, rather than computing these regions

explicitly, which would be computationally challenging, we

determine an approximate representation of these regions

directly from sensor data. By determining intersections of

these approximated state space regions in a graph (Fig. 2(c)),

we obtain a representation of possible transitions between

different EC. Given this information, we can search for a

feasible sequence of EC exploitations that leads from the

current state to a successful grasp (see Fig. 2(d)).

By approximating the EC-relevant state space regions

from sensor data, we have circumvented complex, high-

dimensional c-space planning problems. As we will see,

these approximations still permit effective EC planning.

II. RELATED WORK

The idea of exploiting the environment and using contact

via compliance can at least be traced back to the influen-

tial approach by Lozano-Pérez et al. from 1984 [7]. This

work introduced the central concept of the pre-image—a

description of all positions that reach the goal given the

same action—to enable the generation of fine-motion plans.

Later, this idea was extended to the concept of backpro-

jections, representing a weaker form of a pre-image, by

separating goal reachability from goal recognizability [8]. By

restricting plans to temporal termination predicates of motion

primitives, manipulation tasks can even be solved in an

open-loop, sensorless fashion [9]. Subsequently, the binary

representation of a backprojection was given a probabilistic

upgrade [10]. These approaches depend on exact geometric

models of the environment.

The geometric reasoning we apply is similar to classi-

cal work in assembly planning [11]. The way we define

pose constraints is similar to the task space regions [12]

used for motion planning. And the concept of contact-state

graphs [13] is reflected in our representation of environmen-

tal constraint transitions. However, in addition to contact

states, our algorithm requires spatial information derived

from sensor data. And again, in contrast to the mentioned

approaches, we do so entirely based on sensor information.

Closely related to environmental constraint exploitations

are guarded moves. A guarded move is “a move until some

expected sensory event occurs” [14]. Plans of guarded moves

can include branches based on sensor events to compensate

for uncertainty in world modeling [15]. Our work includes

this concept but in addition is concerned with the automated

generation of such plans from sensor data.

Pre-grasp manipulation refers to the contact-drive modifi-

cation of the environment to facilitate a subsequent manip-

ulation action. These actions involve, for example, rotations

due to payload limits [16], or sliding flat objects on table

surfaces [17], [18]. All these works realized specific, pre-

programmed actions. In addition, pushing or sweeping can be

considered as pre-grasp action [19]. There, the environment

is designed to present challenges to the planner, rather than

opportunities.

Toussaint et al. provide an interesting approach to for-

malize the advantages of contact exploitation [20]. They

optimize plans so that they minimize uncertainty by contact

with the environment. In our approach, the assumption that

contact during manipulation is beneficial is directly encoded

by focusing on contact-based actions.

III. SEQUENCING ENVIRONMENTAL CONSTRAINT

EXPLOITATIONS

EC exploitations represent structured parts of the state

space that can be easily recognized and acted on. We define a

single EC exploitation as a contiguous subset of all possible

hand and object poses and the exerted forces onto the hand:

XECE ⊂ Chand × Cobject ×Whand,

where Chand = Cobject = SE(3) and Whand is the 6D wrench

space. To plan among EC exploitations we need to look at

their connectivity. This is defined by their intersections, i.e.

we can transit between two arbitrary EC exploitations XECEi

and XECEj
if XECEi

∩XECEj
6= ∅.

Due to its high complexity, we need to approximate XECE.

The corresponding hand poses are given as an oriented

bounding box and orientations are represented by discretizing



all possible rotations. We use a single 6D vector to repre-

sent the contact wrench exerted onto the hand, since this

contact property is constant within a single EC exploita-

tion. To describe the relationship between hand and object,

we use the predicates {away, caged, grasped}. The resulting

parametrization used by the planner is:

X̃ECEi
(obbhand, Rhand, Cobj, whand) =






chand

cobj

whand




∣∣∣∣∣∣∣∣

chand
position ∈ obbhand

chand
rotation ∈ Rhand

cobj ∈ Cobj

whand ∈ R
6





,
(1)

where obbhand is the 3D oriented bounding box, Rhand is the

set of orientations, and Cobj ∈ P({away, caged, grasped}).
The wrench whand describes the forces and torques acting

onto the hand within that particular EC exploitation.

To find sequential exploitations of environmental con-

straints we need to define the aforementioned connectivity

check between two arbitrary EC exploitations. We use their

spatial and contact properties to decide this:

X̃ECEi
7→ X̃ECEj

⇐⇒ obbi ∩ obbj 6= ∅ ∧Ri ∩Rj 6= ∅

∧ whand
j − whand

i 6= 0

∧ C
obj
i ∩ C

obj
j 6= ∅

∧ C
obj
j \ Cobj

i 6= {away}

This means that the hand poses described by both EC

exploitation need to overlap, there needs to be a change in

the force exerted by the environment onto the hand, and they

need to share at least one object-hand mode. Note, that the

sequence operator is not symmetric (that’s why we use ’7→’

instead of ’∩’), because of the last term which excludes the

retraction of the hand. Thus, all sequences undergo the same

object-hand mode changes: away 7→ caged 7→ grasped.

Given the above parametrization we propose the follow-

ing hierarchical planning scheme to find sequences of EC

exploitations:

1) EC exploitations are extracted from a single depth

image of the scene according to the definitions given

above. Each one is inserted as a vertex into a graph.

2) All nodes X̃ECEi
for which (grasped) ∈ C

obj
i are

marked as goal nodes. The node that contains the

current robot/object state is the starting node.

3) The 7→-operator is used to calculate transitions be-

tween all pairs of vertices. Each transition is added

as a directed edge between the corresponding vertices.

4) Search the graph for all paths that connect the initial

and goal nodes. All paths that lead from start to goal

are sequences of EC exploitations.

This is very similar to the the concept of manipulation

graphs [21].

We are finally looking for controllers to execute the

sequence on a real robotic platform. Each EC exploitation

can be seen as a controller with desired spatial and contact

profiles and a termination predicate defining the switching

condition. Given a planned sequence of EC exploitations

(X̃ECE1
7→ X̃ECE2

7→ . . . 7→ X̃ECEn
), we construct a hybrid

automaton by using hybrid position/force controllers. Their

termination predicates are defined as the poses given by

(obbhand
i , Rhand

i )∩ (obbhand
j , Rhand

j ) and the wrenches given by

whand
j − whand

i . Note, that here we use simple linear inter-

polation to generate trajectories but more advanced motion

planning algorithms could be applied.

IV. INTEGRATING PERCEPTION AND ACTION

In the following, we will explain three grasping strategies

and three non-prehensile manipulations that make explicit

use of ECs. For each of the six actions, we will devise

a sensor model that is used to visually recognize the EC

exploitation according to the parametrization given previ-

ously 1: X̃ECE(obb
hand, Rhand, Cobj, whand). Sensory input is

assumed to be in the form of a depth image of the scene.

The object to be grasped is represented as a bounding box

whose parameters are assumed to be known.

Surface-Constrained Grasp: This grasping strategy can

be applied whenever the object is placed on a flat support

surface and partly caged by the hand. During finger closing,

a compliant wrist position along the support surface normal

guarantees slip along the environmental surface while contact

locations between object and fingers remain stable. The

region obbhand is given by the known object bounding box.

The orientations Rhand are normal to the objects surrounding

surface [22]. The wrench whand consists of a force compo-

nent directed towards the palm of the hand. The surface-

constrained grasp assumes the object to be already caged

and closing the fingers will fixate the object inside the hand,

i.e. Cobj = {caged, grasped}.

Wall-Constrained Grasp: This grasping strategy exploits

two surfaces that form a concavity. The open hand pushes

the object along its support surface towards the second

surface – the wall. While the object is caged between wall

and palm, the fingers can slip underneath the object (see

Fig. 3). We detect wall-constrained grasps by finding concave

edges in the environment. We have tested this strategy under

varying inclination angles between the two surfaces. These

tests revealed successful grasps for angles between ∼ 90◦

and ∼ 140◦. The poses in which the hand can exploit the

surface during grasping is defined by two intersecting planar

segments. Accordingly, obbhand is set along the edge and

orientations Rhand are normal to the wall surface. Again, the

wrench whand consists only of a force component directed

towards the palm of the hand and Cobj = {caged, grasped}.

Fig. 3. Left: The wall-constrained grasp. Right: Visualization of its spatial
properties obbhand (green) and Rhand (RGB axes) extracted from depth
measurements.



Edge-Constrained Grasp: Here, we assume that the object

is close to a convex edge, partially protruding it. The open

hand wraps its fingers around the exposed object surface to

grasp it. In contrast to the two strategies explained above, the

environment is not used to reduce the object’s DOF during

grasping. Instead the edge is a particular part of space that

allows the hand to easily take over the DOF-constraining

function of the environment. The spatial parameters obbhand

and Rhand are computed based on the presence of edges in the

scene. We extract edges by searching along the boundaries of

planar segments in the depth image, see Fig. 4. Convexity is

determined by the local curvature along an edge. The wrench

parameter whand represents the torque components that is

exerted onto the hand due to the fact that some fingers still

touch the surface while half of the hand already passed the

edge. The relationship between hand and object is described

by Cobj = {caged, grasped}.

Fig. 4. Left: The edge-constrained grasp. Right: Visualization of candidate
edges from planar segmentation and the resulting spatial properties obbhand

(green) and Rhand (RGB axes).

Visually-Constrained Positioning: Inside the visible

workspace, the hand can be constraint visually, i.e. by visual

servoing. This strategy is helpful whenever positioning the

hand in free space is hard due to missing external calibrations

or poor sensor models (e.g. encoders that ignore cable

stretch). Although we constrain the hand by model-based

tracking in 3D using a depth sensor, more complex schemes

are possible that use lower-level features like edges and

RGB-cameras [23]. To compute the spatial extent obbhand,

we expand a box in visible free space starting from the

current hand pose until collision with a depth measurement.

The set Rhand includes all possible orientations. The wrench

parameter whand = 0 and the object is outside the hand, i.e.

Cobj = {away}.

Object-Constrained Caging: This action simply gets the

hand/palm close to the object. It can be applied whenever

parts of the object are freely accessible. The pre-grasp

configurations based on fitting geometric primitives to the

object [22] could be used. Since the bounding box of the

object is given, we use only the box pre-grasp to determine

obbhand and Rhand. The wrench whand exerted onto the hand is

zero since object and hand are not directly in contact. Still,

Cobj = {away, caged} holds since this EC exploitation is

exactly at the boundary of caging the object.

Surface-Constrained Sliding: This strategy assumes that

the hand is caging the object or that the hand is isolated

from the object. During sliding the hand and object’s motion

are restricted by a support surface exposing only three DOFs.

We extract sliding constraints by segmenting the depth image

with a flood-fill algorithm. It clusters regions with low

curvature and small changes of surface normals (see Fig. 5).

To generate the corresponding region obbhand each planar

segment is turned into the maximum inscribing rectangle

and off-setted by object size. The orientations Rhand includes

all rotations around the surface normal of the segment. The

wrench whand is set with a force that points inside the

hand’s palm; Cobj = {caged} and in the case of hand/palm

interaction Cobj = {away}.

Fig. 5. Left: The surface-constrained slide. Right: Visualization of the
planar segmentation from depth data and the resulting spatial properties
obbhand (green) and Rhand (RGB axes).

V. EXPERIMENTS

Our experiments need to show that the grasp strategies pro-

duced by the planner can be executed reliably on a physical

platform. Additionally, we need to show that the proposed

environmental constraints can be found and exploited in a

significant amount of everyday scenarios where a robot will

encounter grasping tasks.

A. Evaluation of various real-world scenes

To evaluate the applicability of our planner, we used 30 in-

door scenes from a clutter dataset [24]. They depict office

desks, book shelves, and kitchen environments and contain

a significant amount of clutter. The scenes are encoded as

polygonal meshes but we feed our algorithm with a ray-

traced depth image of a single viewpoint in which most of the

mesh is visible. For each scene, we position a box-like object

at a random location that we assume to be statically stable.

In total, our planner generated 218 grasping sequences, with

at least one sequence per scene (average of ∼ 3.6 per

scene). Among the planned strategies most ended in an edge-

constrained grasp (64%), followed by surface-constrained

(27%), and wall-constrained (9%) ones. The most prominent

problems the planner encountered were wrongly recognized

edge-constraint grasps. To assess the quality of the generated

plans, they were visually inspected and categorized according

to their feasibility. In total, 62% of the plans were deemed

feasible. The majority among the infeasible plans ended

in edge-constrained grasps (92%). This had two reasons:

Because of the nature of the dataset, point clouds were often

incomplete, increasing the occurrence of shadow edges (see

Fig. 6). The dataset also contains a significant amount of

clutter making support surfaces unnavigable. Example plans

showing the different failure cases and successes can be

seen in Fig. 6. The results indicate that the environmental

constraints are general features that can be exploited for

grasping in a wide variety of human environments.



(a) Scene with red object overlaid (b) Visually-Constrained Positioning (c) Surface-Constrained Sliding (d) Object-Constrained Caging

(e) Surface-Constrained Grasp (f) Edge-Constrained Grasp (g) Wall-Constrained Grasp (h) Four different planned sequences

Fig. 7. Experimental banana scene: For each of the six EC exploitations, the extracted spatial properties obbhand and Rhand are shown. The final planned
grasping sequences are shown in Fig. 7(h).

Fig. 6. Evaluated environments from a clutter dataset [24]. The resulting
grasp plans are overlaid in color. Lines connect consecutive exploitations.
The final prehensile exploitation for each sequence is plotted with a hand
model (orange: surface-constrained, cyan: edge-constrained, purple: wall-
constrained grasp). The dataset revealed a lot of shadow edges which
produced false positives among the edge-constrained grasps.

B. Execution of Plans on a Real Robot

To further evaluate the feasibility of the plans, we executed

some of them on a real robotic platform. We used a Barrett

WAM with seven DOFs, an ATI Industrial Automation multi-

axis force-torque sensor, and a Barrett hand BH-262 with

four DOFs. We chose a natural scenario in which multiple

grasping strategies would be possible. It contained a banana

placed onto a table surface with a big electronic amplifier

next to it (Fig. 7(a)). The scene was measured with an Asus

Xtion Live depth sensor at QVGA resolution from a single

static viewpoint. Color information is not used at any stage

of the algorithm. Location and dimensions of a bounding

box describing the banana were given to the algorithm.

Fig. 7(b)-7(d) show the extracted EC exploitations for the

non-prehensile actions. Slidable surfaces were found on the

table, at the side panels of the electronic amplifier, at the

curtain and on top of the robot base. Fig. 7(e)-7(g) display

the detected EC exploitations that refer to grasping actions.

Two possible wall-constrained grasps were found between

the table and the electronic amplifier 7(g). Much more

false positives were among the recognized edge-constrained

grasps 7(f): E.g. the lower part of the curtain was shadowed

by the table and not a real edge due to depth discontinuities.

In total, 28 EC exploitations were found. Their connectivity

is depicted in the graph in Fig. 8. The graph also shows

the four paths the algorithm finally found from the current

unconstrained hand pose to one of the three types of prehen-

sile EC exploitations. Fig. 7(h) visualizes the four sequences

in the scene. For execution, the sequences are converted to

multiple hybrid position/force controllers. Switching between

them is governed by contact with a surface. Instances of the

executed sequences are shown in Fig. 9.

C. Limitations

Though our method proves to be a powerful way of

generating robust grasping behavior, there are limitations

that require future work. As mentioned earlier, a planned se-

quence does never contain multiple contact-making/breaking

events between hand and object contact establishing phases.

For most grasping strategies this is a reasonable assumption.

Additionally, the shape of the object is only represented by

a bounding box, more complex kinematic relations between

object and environment such as rolling contacts are missing.

Presently, the algorithm does not use any intrinsic object

properties during planning (e.g. friction, mass). The linear

trajectories within one environmental constraint exploitation



Fig. 8. Graph showing the extracted EC exploitations and connectivity
in the example scene 7. Nodes are color-coded according to EC exploita-
tion (see Fig. 7). Framed nodes are goal nodes, start node is double-framed.

Fig. 9. Sequences of executing three plans found in the banana
scene 7. (First to last row: surface-constrained, edge-constrained, and wall-
constrained grasping strategies)

makes the approach prone to obstacle collisions. Here, more

sophisticated schemes such as trajectory optimization could

be applied.

VI. CONCLUSION

We presented a grasp planning algorithm to synthesize

and execute grasping strategies that exploit environmental

constraints. Recent results from the grasping literature lead to

the conclusion that such exploitation plays an important role

in achieving robust grasping performance. Our grasp planner

leverages this insight and sequences constraint exploitations

into versatile and robust grasp plans. The algorithm tightly

couples planning, perception, and control, thereby enabling

grasp planning from real-world sensor data in the absence

of prior information about the world. We demonstrated the

effectiveness of the planner in experiments on a real robot

platform and illustrated the generality of the planner by

generating grasp plans in a great variety of environments.

We believe that the exploitation of environmental constraints

is a promising route leading towards robust grasping and

manipulation with weak a priori object and world models.
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