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Abstract— Soft pneumatic hands offer the advantage of
intrinsic mechanical compliance. We argue that to fully leverage
the compliance available in soft pneumatic actuators, they
should be controlled using air mass rather than position or
force, as is customary in most research in soft robotics. We
propose an air-mass controller that can servo to a preset
position and also allows for the exploitation of fast, mechanical
compliance without additional control burden. The proposed
mass control scheme is based on discrete commodity valves and
pressure sensors, filling a gap in available mass control systems
for small-scale soft continuum actuators. The proposed mass
controller exhibits low drift for mass trajectories lasting tens
of seconds, without requiring a precise model of the actuator.
Continuous mass control enables applications for soft robotics,
in which leveraging compliance during actuation is of central
importance.

I. INTRODUCTION

Soft pneumatic hands, such as the RBO Hand 2 (Fig. 1),
leverage mechanical compliance to produce robust grasping
behavior. Such hands excel in establishing stable contact
by compliantly adapting to the shape of the manipulated
object. Mechanical compliance achieves this beneficial effect
without increasing the requirements on control and sensing.

To fully utilize the advantages of mechanical compliance
in soft robotics in general and soft pneumatic hands in
particular, their control should focus on putting compliance
to work, rather than counteracting it by controlling either
position or force, as is customarily done for both “hard” and
soft hands [1]–[3]. Consequently, we propose to control the
behavior of soft pneumatic hands (and actuators) through
a) compliance, i.e. a force-position gradient and, at the same
time, b) preset position, i.e. the position attained when no
external forces are applied.

The compliance of most soft pneumatic continuum actua-
tors, such as PneuFlex [4], PneuNet [5], Pneumatic Artificial
Muscles, and others [3], [6]–[9] is determined by the struc-
ture and material of the actuator, so control cannot change
it. The preset position, however, can be changed by inflating
and deflating the actuator. The crucial observation is that the
natural and straightforward control variable for the preset
position is not pressure, but the mass of air enclosed in
those actuators. While both can be used to change the preset
position, only air mass is independent of the actuator’s actual
position, which is desirable as it is not determined by the
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Fig. 1. Example application: Teleoperation of four fingers of an
RBO Hand 2 using mass control

controller, but by the (desired!) compliant interactions with
the environment.

Mass control is not a novel concept. However, relevant
work on pneumatic control only addresses mass-flow estima-
tion in the context of pressure and position control [10], [11],
where accuracy and low drift are not essential. Integrated
commercial solutions, such as Festo VPWP valves [12], exist
but their nominal flow rates (350 to 1400 slpm, standard liters
per minute) are two to three orders of magnitude higher than
what is required for the typical soft hand. We can therefore
conclude that existing commercial solutions to mass control
are not suitable for a broad range of applications in soft
robotics, where masses and flow rates are relatively small
and drift plays a significant role.

In this paper we present a simple yet effective method
for mass control, with flow rates adaptable from 100 slpm
down to 0.1 slpm. This range is suitable for the control of
soft robotic hands and many other pneumatic systems in
soft robotics. The control method operates on discrete valves
and pressure sensors. Both components are used much more
frequently [3], [6], [7], [13] than expensive mass-flow sensors
or proportional control valves.

While discrete valves are attractive from the perspective of
size and cost, two main problems arise in the context of mass
control. Without additional sensors on the actuator, mass
can only be estimated via integrating the mass-flow at the
valve, making it subject to drift. The second problem arises
from using discrete valves, which cannot create infinitely
short pulses, resulting in hysteresis. In our approach, drift is
minimized by learning a model to accurately predict change
of mass from pressure sensor and valve actuation state in
Section III, while hysteresis is minimized by the choice of
hardware, as explained in IV.



Fig. 2. Schematic control path of the pneumatic control system using discrete valves and pressure sensors

Our experiments demonstrate the feasibility of accurately
controlling soft hands via mass based on discrete valves. The
proposed controller has low drift, enabling the fast and stable
tracking of smooth preset position trajectories tens of seconds
in duration. This capability closes a gap in soft hand control
and opens up applications where compliant and synchronized
motion plays a central role.

II. RELATED WORK

Most pneumatic control systems are designed for position
or force control [1]–[3], [8], [14]. For both, pressure is the
most natural choice of control variable. However, we want
to control the preset position via mass. As a result, this
precludes the use of commercially available servo pneumatic
systems, which usually provide position control. For control
of the preset position, actuator pressure is not a suitable
control variable as it varies through contact of the environ-
ment — the normal situation when we want to leverage the
compliance of soft actuators.

For the type of soft continuum actuator we use in this
paper, two control methods are described in literature, both
based on position control by pressure. A recent attempt to
create smooth, continuous actuator control was published by
Polygerinos et al. [2]. Marchese and Rus [1] developed a
comprehensive position control system for soft continuum
actuators which requires electromechanically actuated cylin-
ders to control pressure.

The controller for the pneumatically driven Shadow
hand [15] decomposes control into position and compliance,
whereas we decompose control into preset position and
compliance. While the former controller treats the position of
the actuator as the key control variable, our approach leaves
the position free so as to exploit compliance. We believe
this is advantageous when the exploitation of compliance is
required by the application.

Carneiro and de Almeida [11] perform position control,
where they employ an artificial neural network to linearize
mass flow of servo valves w.r.t. their command input. If a
control system is based on proportional valves, this approach
could also be used for mass control, even though the authors
do not implement this. In contrast, the approach presented
here relies on discrete valves which are more widely in use.

Control of mass has generally been neglected in favor of
controlling pressure. This is surprising, as mass provides a
meaningful proxy of actuator state, which is particularly rel-
evant for soft continuum actuators. In this paper we attempt
to close this gap by presenting a simple to implement, high-
performance mass controller.

III. MASS CONTROL MODEL

We want to design a controller for the pneumatic system
illustrated in Fig. 2. Two sensors provide measurements of
the supply pressure and the pressure directly after the valve,
while ambient pressure is assumed to be known and constant.
These sensors are used to estimate the air mass passing
through the valve during an opening cycle (we will refer
to this as a pulse). The controller opens a valve when the
error between currently estimated and desired mass exceeds a
threshold. Once the valve is open, the controller continuously
monitors the estimate and closes the valve when the error
changes sign.

The controller obtains a mass estimate through the integra-
tion of mass flow. Consequently, control is subject to drift
as estimation errors accumulate. It is therefore paramount
for reliable control to estimate mass flow as accurately as
possible across many different pulse lengths and pressure
ranges. To achieve this, we model the flow path with a linear
combination of well known effects from fluid dynamics [16]
plus effects caused by switching delays:

m(∆t) = c0 Bias

+ c1 ·
∫ ton+∆t

ton

(pin(t) − pout(t))dt Friction

+ c2 ·
∫ ton+∆t

ton

pin(t) · Ψ(t)dt Injector

+ c3 · pin(ton) + c4 · pout(ton) Switching
(1)

where pin and pout denote absolute inlet and outlet pressure
and ∆t the duration of the pulse. The bias term models
sensor bias, friction models viscous friction along the inner
walls of the flow path, injector models choke behavior, and
switching models effects by the dead volume and valve
timing. As the flow path volume used for estimation is small,
we do not need to model inertial and temperature effects. The
parameters c0, . . . , c4 are determined via linear regression as
explained in Sec. V. The function Ψ(t) = Ψ(pin(t), pout(t))
captures the non-linearity of a choke or valve and is well
known in fluid dynamics [16].

To simplify computation of the injector term, we use an
approximation (Eq. 2) published by The Lee Company [17]:

ψ ≈
√
pin − pout

pin
· pout

pin

pin

pout
< 1.894

ψ ≈ 0.5
pin

pout
> 1.894 (2)



Fig. 3. The control system consists of a single-board-computer, input/output
PCB, valve array and pressure sensors.

Fig. 4. A PET foil is placed under the valves on the socket to reduce
nominal flow. Left: Pre-cut template with areas marked to be pierced. Right:
Configured foil with a number of 0.2mm holes at the inlet and 4mm holes
at the outlet path.

The top and bottom terms model subsonic flow and sonic
flow respectively. The approximation results in an acceptably
low increase in root-mean-square-error (RMSE) of 1.4% in
the evaluation experiments.

The mass is estimated continuously during inflation and
deflation and is used for bang-bang control of the mass. The
minimal attainable mass change is determined by the valve’s
switching delays and the dead volume between valve and
choke. It is discussed in detail in Section IV.

IV. CONTROLLER HARDWARE

The mass control model described in the previous section
is based on discrete valves, requires pressure sensors, and is
implemented on a real-time control unit. All components are
shown in Fig. 3. We use a valve array with eight standard
5/3 pilot valves (Festo VTUG series), each providing three
states for inflation, deflation, and for disconnecting the plant.
The switching times of the valves range from 20 ms to 40 ms.
Actuator pressure is measured with a Freescale MPX4250
(250 kPa range, 1.4% accuracy), supply pressure with a
MPX5700 (700 kPa range, 2.5% accuracy). The real-time
control unit is a single board computer (BeagleBone Black).
The controller runs at 500 Hz. Valves, sensors, and control
unit are connected with a custom adapter PCB.

To allow fine-grained mass control, we reduce the smallest
attainable change of air mass in two ways. First, the valve
is choked to reduce air flow, which reduces the amount
of air flowing during the minimum opening period of the
valve used. Second, we place the choke as close as possible
to the valve to minimize the length of the flow path in
between. This is important, as the volume along that section
(the dead volume indicated as (4) in Fig. 2) is pressurized
(or depressurized) almost instantly when the valve opens,
increasing hysteresis.

Choking is realized by placing a 0.1 mm thick PET foil
(Fig. 4) between the valves and their aluminum array socket.
This placement minimizes the dead volume to 0.15 cm3.
The foil is prepared using a cutting plotter (Silhouette
Portrait). The inlet and outlet holes are pierced afterwards,
using needles of different sizes. This allows us to adjust
the nominal air flow by two orders of magnitude. In our
experiments, the foil has a 0.2 mm hole along the inflation
path and a 0.6 mm hole along the deflation path to balance
inflation and deflation speed.

V. CALIBRATION

As the exact structure and behavior of the control hardware
is usually not known, an important aspect of the mass-
controller is calibration of the mass observer model. We
devised a mostly automated calibration procedure which
only requires user interaction to vary supply pressure (Al-
gorithm 1). We attach a known, fixed volume to the channel
and gather data from a predefined range of channel pres-
sures (pmin , pmax ), pulse durations (tmin , tmax ) and supply
pressures (manual). Channel pressure is swept gradually
by skewing the ratio of inflation to deflation period. The
change of mass is estimated via the ideal gas law and the
change of channel pressure. Eq. 1 coefficients are computed
separately for inflation and deflation pulses, as air passes
through different flow paths.

Algorithm 1 Calibration procedure
skew factor← 2.0
nsupply ←

nsamples
5

skew ←
√

skew factor
for i in [1 . . . nsamples] do

if pchannel < pmin then skew ←
√

skew factor
else if pchannel > pmax then skew ←

√
1

skew factor
end if
if i mod nsupply = 0 then

Request variation of supply pressure
end if
t← RANDOMEXPONENTIAL( tmin , tmax , λ = 1 )
tinflation ← t · skew
tdeflation ← t · 1

skew
· deflation speed

inflation speed
Record pchannel , psupply

INFLATE(tinflation )
Record ∆pchannel and Eq. 1 terms
Compute ground truth ∆m from ∆pchannel

Record pchannel , psupply

DEFLATE(tdeflation )
Record ∆pchannel and Eq. 1 terms
Compute ground truth ∆m from ∆pchannel

end for
Compute c0 . . . c4 on inflation data points using linear regression
Compute c0 . . . c4 on deflation data points using linear regression

For a typical channel calibration, 200 individual data
points are recorded for each flow path. A settling period of
1 s before reading pressures guards against residual airflow.
The term deflation speed

inflation speed is a rough estimate to approximately
balance the duration of upwards and downwards sweeps. Due
to the exponential distribution of t, linear regression is biased



towards better fitting shorter pulses. This is intentional as
short pulses usually occur more often than long ones.

VI. MASS CONTROL PERFORMANCE

Two important aspects are evaluated in this section: the
attainable improvement in accuracy over using precomputed
inflation periods and the drift of mass. Ground truth for this
evaluation was acquired by computing the contained air mass
post-hoc by applying the ideal gas law m = p·V

R·T on a fixed,
constant volume. Pressure was measured before and after
inflation.

Evaluation of the mass observer was done by gathering
data on ten different inflation and deflation pulses lasting
40 ms to 1000 ms, starting from five different initial pressure
values, and executed with four different supply pressures
from 260 kPa to 350 kPa to obtain a total of 200 data points.
The individual terms of Eq. 1 were computed individually at
500 Hz.

We compare the proposed mass observer with a control
that was used in previous work [4], [13]:

m(∆t) = c0 · ∆t · pin(ton) (3)

The model assumes mass flow to be constant during inflation
and to only depend on the presumably constant inlet pres-
sure. These assumptions make it possible to precompute the
required pulse duration.

A. Overall Improvement to Accuracy

Fig. 5 shows the overall improvement in mass estimation
when using a calibrated mass-flow estimator (Eq. 1) relative
to the naive model (Eq. 3). The former reduces absolute error
by approximately a factor of five. Errors are computed with
respect to ground truth.
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Fig. 5. Change of error when switching from the baseline model (x-axis)
to a model employing Eq. 1 (y-axis)

Fig. 6 visualizes the performance of both models against
ground truth. At inflation (positive mass change), both the
baseline model and the full model perform equally well. This
can be explained by the large pressure drop at the choke,
which puts the model into the sonic region where airflow is
only determined by inlet pressure. At deflation though, the
full model exhibits superior accuracy.

B. Contribution of individual model terms

We evaluate the individual contribution of the model’s
terms to the root-mean-square-error (RMSE) of the mass
estimate. Errors of selected subsets are given in Table I. The
full model (Eq. 1) improves accuracy over the baseline by a
factor of seven. The biggest improvement can be obtained by
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Fig. 6. Performance of the full model compared to the baseline model.

Baseline 1.325 mg
Full model 0.179 mg
Model w/o Injector 0.804 mg
Model w/o Bias and Switching 0.431 mg
Model w/o Bias 0.182 mg
Model w/o Switching 0.188 mg
Model w/o Friction 0.188 mg

TABLE I
RMSE OF MASS OBSERVER VARIANTS AND THE BASELINE MODEL.

including the injector term, followed by either the switching
term or a constant bias. Removing only either switching or
bias does not change RMSE much, which indicates a large
overlap between both terms. When excluding the friction
term, RMSE increases only by 5.0%, which indicates that
viscous friction does not play a significant role in our setup.
Nevertheless, it may be advisable to keep this term for other
setups, e.g. miniature solenoid valves which have narrower
flow paths.

Overall, the data presented in this section indicate a
considerable improvement over the baseline model. We
identified the injector term to be the most important model
component, followed by the switching term for effects not
related to the inflation period.

C. Accuracy

To gauge the variance in attainable accuracy, we calibrated
five individual valves and computed the mass error resulting
from the sinusoidal test pattern shown in Fig. 7. The training
set was reduced to 100 data points by only recording at
260 kPa and 320 kPa supply pressure to speed up calibration.

The resulting error is shown in Fig. 8. For all but one
valve the error after 60 s stays below the hysteresis of the
hardware.

The mass controller also rejects influence of supply pres-
sure variations. Fig. 9 shows a test run in which the supply
pressure varied in a range typical for unregulated compres-
sors. The controller fares well in rejecting the variation,
demonstrating that soft hands can potentially be operated
with a small on-board compressor in mobile robots without
sacrificing performance.

The left plot in Fig. 8 shows the tracking error during a test
pattern after calibration. It shows a continuous, systematic
buildup of error (drift), which indicates that the model
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Fig. 7. Tracking performance of one calibrated channel over 60 s and 122
individual pulses
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Fig. 8. Tracking error of six individual channels using the sine pattern
shown in Fig 7: Performance when calibrating each channel individually
(left), performance when sharing a single calibration across identically
configured channels (right)

under-fits the actual system behavior. It may therefore be
worthwhile to investigate the application of more versatile
function approximators (e.g. neural networks [11] or kernel
ridge regression) for the observer model.

D. Variability Across Valves

We also evaluated whether valve calibration is required for
each individual valve, or if calibration data can be shared
for identical configurations, which would greatly simplify
calibration. The right plot in Fig. 8 shows the performance
when sharing a single calibration. Compared to the same
test with individually calibrated valves on the left, the error
is almost five times larger. Given this result, every channel
should be calibrated individually.

VII. APPLICATION

The mass controller enables us to enact mass trajectories
on soft hands, but also to adjust actuator state incrementally.
These capabilities are tested with the RBO Hand 2 [13] in
two applications. In the first application—a benchmarking
test—four fingers of the hand are closed and opened in
a sinusoidal motion six times. The total duration of the
motion is 60 s. This benchmark enables us to assess the
amount of drift. In the second application, a human controls
the finger posture of the soft hand via a dataglove in a
manipulation scenario. This allows us to assess whether
control is smooth and reactive enough for teleoperation
experiments in grasping. In both tests we attached index,
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Fig. 9. Changes in supply pressure are automatically compensated by the
mass controller, a feature important for mobile applications.

middle, ring, and little finger to four channels, making each
controllable independently. Together with the volume added
by tubes we require ca. 45 mg of air to bend the fingertip
by 180◦. The controller’s threshold was set to 1.7 mg, which
translates to about 7◦ in fingertip orientation.

Fig. 10. Effect of drift after sinusoidal finger motion (shown in the video
attachment): Initial posture (left), posture after 60 s of continuous motion
(right); middle and small finger return to the initial posture, while index and
ring finger show a slight deviation.

1) Sinusoidal Finger Motion: The desired mass trajectory
was set to a sine wave (10 mg to 40 mg amplitude and
10 s period) for 60 s, starting at 10 mg. Fig. 10 shows the
fingertip positions before and after the benchmark. After the
entire motion, index and ring finger are slightly more bent
by about 10◦ while the other two finger did not drift at all.
Overall, the drift in hand posture is small enough to make
the implementation of grasping motions and short in-hand
manipulation tasks feasible.

2) Teleoperated Hand: In the second application, the
RBO Hand 2 is teleoperated by a human with visual feed-
back, as shown in Fig. 1. Such a setup enables research on
how humans compensate for end effector impairments, but
also allows to transfer human manipulation expertise onto
robots [18].

To control the RBO Hand 2, the operator wears a dataglove
(Cyberglove II). The measurements of PIP and DIP joints are
mapped linearly to the desired mass of the corresponding
fingers. Posture is only set once at the beginning of interac-
tion, making the setup subject to drift. The human operator
is capable of enacting postures, but is also capable to grasp
objects and modify the grasps. The drift is sufficiently low



to enable elaborate interactions before resetting the mass
estimate becomes necessary. The control hysteresis attained
by our hardware is low enough to not negatively affect the
interaction with the object.

VIII. LIMITATIONS

1) Drift: Mass control based on mass flow integration
inherently drifts over time. Therefore, this type of control
is best suited for short or moderately long actuation patterns
that require less than 20 to 50 pulses. If longer sequences
are desired, either additional sensors have to be employed
for sensor fusion, or ground truth is acquired at intermediate,
well defined hand postures which results in a known channel
volume, thereby enabling the computation of mass based on
pressure.

2) Leakage: Leakage potentially leads to a mismatch
of estimated and actual mass flow. In our experience, all
components are sufficiently airtight for this not to be a
problem, quick-connect plugs are most prone to introduce
noticeable leakage.

3) Hysteresis: The applications presented in Section VII
reveal a considerable positioning hysteresis, albeit the ac-
tuator’s compliance exaggerates the effect. The hysteresis
is determined by the product of two factors, the smallest
attainable opening period of the valve used and the maximum
actuation speed required by the application. The pilot valves
used in this paper have a minimum pulse duration of 20 ms
to 40 ms. By adopting solenoid valves, it can be reduced
to 1 ms to 4 ms, providing a tenfold reduction in hysteresis,
or alternatively a tenfold increase in actuation speed. Per-
formance can further be improved by pairing two discrete
valves, one configured for fast inflation and large hysteresis
and one configured for slow inflation and small hysteresis.

IX. CONCLUSION

We presented a simple yet effective method for mass
control of soft continuum actuators and soft hands. The
use of mass control (rather than position or force control)
is motivated by the importance of compliance for many
applications in soft robotics. If the exploitation of mechanical
compliance is the target behavior, the control goal for a
soft actuator becomes its preset position, i.e. the position
attained when no external forces are applied. This preset
position is most naturally controlled with air mass, as this
does not require control action during the use of compliance
in interaction. In contrast, position and force control would
require continuous adjustments during the exploitation of
mechanical compliance. Mass flow can also be switched on
and off almost instantly, enabling high control bandwidth.
This stands in contrast to pressure control, where complex
flow dynamics reduce control bandwidth and stability de-
pends on the attached plant. Mass, on the other hand, can be
estimated without knowledge of the properties of the attached
robotic device.

The proposed controller and the demonstrated hardware
close a gap in control in soft robotics: Based on low-cost

commodity hardware, it is now possible to perform accurate,
low-drift mass control. We successfully applied the proposed
mass controller to a benchmark problem with a soft actuator
and to the teleoperation of a soft hand.
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