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Abstract— The most prominent criterion for learning of
manipulation skills is the optimization of task success, modeled
as expected reward or probability of success. This is sensible
if we only want to optimize a single controller. But if learned
manipulation primitives are used as modules in a larger system,
then it is also important that their generated sensor traces
facilitate recognition of action-outcomes. Optimization solely
for expected success of a primitive does not guarantee this.
We demonstrate a simple example for optimization of actions
towards observability, combined with optimization for expected
success. Our experiment is a manipulation task with a soft
manipulator, where an action primitive is learned such that
its generated sensor trace helps a classifier to distinguish task
success and task failure. The experimental results indicate that
adding auxiliary forces to the original manipulation primitive
can indeed facilitate outcome recognition for manipulation
tasks.

I. INTRODUCTION

To be robust, robotic systems must detect and compensate
for errors that occur during action execution. For simple
behaviors, motion primitives achieve this based on feedback
control, by descending the gradient of a control function [1].
This works well as long as the behavior can be described
by a single controller. For more complex behavior, however,
controllers are often composed and sequenced into hybrid
automata [2]. In this context, it becomes crucial for the con-
troller to fail in a way that indicates to the hybrid automaton
how the failure should be reacted to. It therefore would be
desirable to design low-level behaviors (i.e. controllers) in
such a way that failures requiring different reactions can
easily be distinguished.

Error detection during controller execution can be modeled
as a classification problem, where sensor traces are mapped
to discrete labels: either success or different types of failures.
A straightforward approach could look like this: Execute
a motion primitive multiple times to gather sensor-traces,
then label these as success or failure and train a classifier
to predict these labels. If the recorded sensor readings carry
enough information, this approach seems adequate. But it can
also be the case that the action execution does not generate
rich enough sensory data and it becomes very difficult or
even impossible to find a good mapping.

We propose a method for optimizing motion primitives
for their ability to fail in distinctive ways—in addition to
optimizing them for expected success. To do this, it is crucial
to understand how the parameters of an action affect the
quality of error-detection based on the sensor signals the

Both authors are with the Robotics and Biology Laboratory, Technische
Universität Berlin, Germany. We are grateful for funding by the DFG (grant
BR 2248/3-1).

Fig. 1. A WAM robotic manipulator opening a drawer using a soft
manipulator and feedback from a force-torque sensor

action generates. The method finds action parameters that
achieve a high success rate and which generate distinctive
sensor signals for distinctive failure modes.

In manipulation experiments on a real-world robotic plat-
form (Figure 1), we optimize the parameterization of a prim-
itive for success and interpretability of the error. We evaluate
this in the context of a drawer-opening task. Our results
show that optimizing an action for success and distinctive
action outcome classification simultaneously contributes to
the robustness of the overall robotic system.

II. RELATED WORK

Action outcome estimation for robotic manipulation has
been investigated before. We will compare our approach
to this problem setting to other works on failure detection
in Section II-A. Our approach is an instance of Interactive
Perception, which is reviewed in Section II-B. It solves a
similar problem as belief space planning, which is briefly
covered in Section II-C.

A. Outcome estimation / failure detection

Learning general behavior for robotic manipulation is a
difficult problem. It is commonly decomposed by building
a plan out of multiple action primitives, which all solve a
specific sub-problem of the complex task. Hybrid automata
or manipulation graphs [3] are dynamic plans that switch
between action primitives based on task progression. To be
robust, such dynamic plans should incorporate means to
detect if a controller execution failed. If a failure is detected,
it can then switch to a recovery strategy. We will now discuss
data-driven and engineering approaches to failure-detection.



1) Engineered failure detection: When engineers combine
robotic action primitives into a plan, they use their knowledge
about the task dynamics, the robot’s sensory capabilities, and
the expected sensory signals. They define rules for switching
between these primitives and some of these rules may use
specific failure detectors to increase the system’s robustness.
As an example, one autonomous manipulation system [4]
used the frequency spectrum of its measured force-torque
signal to detect if an electric drill was powered on. It
also used that signal to detect if it successfully actuated a
paper stapler. The system in [5] also achieved robustness by
augmenting the core behavior of the system with engineered
failure detection and compensation routines.

2) Data-driven failure detection: Robots can detect fail-
ures in a data driven way by monitoring the action exe-
cution and detecting anomalies [6]. Learning the structure
of manipulation graphs [3] enables switching between ac-
tion primitives and activating recovery actions in case of
failure. Previous data-driven approaches, to the best of our
knowledge, all follow the same order of steps: Execute a
motion primitive multiple times to gather sensor-traces, then
label these as success or failure and train a classifier or
an anomaly detector to predict if an action is failing. The
quality of this final learning step strongly depends on the
quality of the sensor information that is used for training. If
the robotic system’s behavior does not generate rich sensory
training data, then such a separation of first learning actions
and afterwards learning action outcome recognition becomes
problematic.

B. Interactive Perception / Active Sensing

Interactive Perception emphasizes that some information
can only be revealed by interacting with the environment. In-
stead of dividing behavior into sequenced sensing, planning
and acting steps, Interactive Perception approaches actively
generate the sensory information that the system requires.
Problems tackled with Interactive Perception include object
segmentation, pose estimation, articulation model estimation,
grasp planning and more. See [7] for a survey on this topic.

As an example from object segmentation, simply being
able to push objects apart can facilitate the segmentation
problem significantly [8]. We argue that adding a small
desired force to the action primitive can also make outcome
recognition easier. It can increase the distance between dif-
ferent classes of action outcomes in the sensory space. Now
the challenge is to find actions that achieve such separation.

Our approach represents a novel instance of Interactive
Perception. We want robots to act in such a way that reveals
task-specific information about success or failure of the
interaction itself. Existing literature on Interactive Perception
focuses on interaction to reveal properties of the environment.

C. Belief space planning

While we propose to adapt actions based on past ex-
periences, agents can also choose informative actions by
planning. In classical planning, an agent needs to plan a
sequence of actions in order to transition from a start state

to a goal state. Uncertain actions and observations can make
it necessary to represent the state as a belief over states.
Planning in belief state allows agents to perform actions
that achieve the goal state and reduce the uncertainty over
states [9]. Like our approach, belief space planning can
integrate perception and action, so that acquired information
supports manipulation tasks [10], but requires an explicit
transition model to predict the effects of the robot’s actions.
This is not the case for our learning based approach.

III. METHOD

We present our approach to action outcome recognition
in this section and want to start by pointing out the high-
level structural difference between other approaches and our
method with the help of Figure 2. The common solution
to the action outcome recognition problem is a two-step
process: First execute the action primitive several times
to generate sensor traces, then design or learn a classifier
that predicts success or failure. When the system adapts to
recognize action outcomes, only the final stage is active.
The top part of Figure 2 illustrates this. In contrast, the
lower part of Figure 2 illustrates which parts of the system
actively contribute to action outcome recognition with our
approach. We believe that robots should learn outcome
recognition and action primitives not one after the other, but
at the same time. The robot’s actions strongly influence the
sensor feedback, and the sensor traces in turn dictate how
difficult the outcome recognition problem is. We can use
this dependency and adapt the robot’s actions to facilitate
the outcome recognition problem. Thus we propose to feed
back the error from outcome recognition to adapt the action
primitive. Such a closed loop learning scheme assures that
the learned action supports outcome recognition. Compared
to the common two-step approach, the complete pipeline
from action to outcome recognition is actively involved in
improving outcome recognition.

The parametrized action primitive we used is described in
Section III-A. We further need to measure how well action
parameters facilitate task outcome recognition. This classifi-
cation loss is explained in Section III-C. Our system should
only adapt its actions for perception as long as this does not
increase probability for failure. We need to formulate this
trade-off as a combined task failure and recognition loss.
This combined loss is explained in Section III-D.
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Fig. 2. Two different loops to adapt a primitive for failure detection. The
upper diagram shows a loop where classification is learned after interaction.
The lower diagram shows a loop where the primitive is adapted to improve
classification. Different parts of the pipeline are active during adaptation.



A. Action Primitive

We use an operational space impedance controller [11],
with a target pose that is already specified a-priori. It is
initialized such that the controller can approximately solve
the task already in the beginning of our experiments. This
simple, approximate and parametrized task solution is chosen
for simplicity and to test our basic hypothesis that outcome
recognition can be facilitated by action adaptation. The
controller’s free parameters are a constant desired force
in x direction Fxd

and a constant desired torque around
the y-axis Tyd

. The parameters w = (Fxd
, Tyd

) are being
optimized to improve the performance of our action outcome
recognition classifier. The system is optimized by minimizing
a classification loss LC(w) on the classifier’s predictions by
adapting the action parameters w. Before we explain the loss,
we will now describe the classifier.

B. Classifier

We use a k-nearest neighbor (k-NN) classifier to predict
class-labels yi for a time-series vector xi of variable length
Ti. The training phase of this classifier is simple: just store
the training data (X,Y), where X = {xi|xi ∈ RTi} and
Y = {yi|y ∈ R}. For predicting y′ for an unseen x′,
the classifier needs a measure d : RTi × RTj → R≥0 to
compute the distance between the input sample and each of
the training samples. This distance is used to compute the k
nearest neighbors of x′. We compute a histogram over the
class-labels of the nearest neighbors and predicts the label
with the highest count as the unseen data-point’s class.

As the distance-metric d needs to handle sensory time-
series of different lengths and with possible shifts and
scaling in time, common euclidean distance-measures are not
applicable. Instead, we use dynamic time warping (DTW)
as distance-measure between the samples. Dynamic time
warping is a parameter free and very effective measure at
comparing time-series [12]. The core idea behind DTW is
to find a transformation that locally speeds up or slows down
time in order to align two time-series. The alignment should
minimize the sum of euclidean distances over all time-steps
between the time-series. We use this minimum distance as
the distance-measure for the k-NN classifier.

C. Classification Loss

The classification loss LC(w) should penalize those action
parameters w that lead to similar sensor signatures for
different outcomes. Optimization of this loss should lead
to actions that make it easy to classify. For this reason,
we do not use the predicted label y′ directly to compute
the classification loss, but use the classifiers certainty for
predicting the ground truth class-label. We need to make the
prediction of k-NN probabilistic. Choosing uniform weights
for the voting of the k nearest neighbors, the certainty of the
classifier to predict class c is computed as

p(y = c|x) = 1

k

k∑
i=0

δc,ck , (1)

where ck is the true class of the kth nearest neighbor and
δi,j is the Kronecker delta.

The loss over all N roll-outs for a specific choice of action
parameters w is defined as

LC(w) =
1

Nw

Nw∑
i=0

|yw − p(yi = 1|Xw, yw0:i, y
w
i+1:N )|, (2)

where Nw is the number of roll-outs, yw is the ground
truth for these samples, Xw are the sensor traces, p is the
certainty of our classifier, and the label for success is 1.
This can interpreted as leave-one-out cross-validation for
the action parametrization w as a hyper-parameter for the
classification task.

D. Combining the losses

For each w, we execute the action N times. A human
supervisor labels the rollouts as success or failure. This data
is used to compute the classification loss LC . To penalize
action parameters that lead to failure we compute a loss

LS(w) =
1

Nw

Nw∑
i=0

1− yw. (3)

The losses LS and LC are further combined into a single
loss L by

L(w) = LS(w) + LC(w)− LS(w)LC(w), (4)

which penalizes parametrizations with high probability for
failure and miss-classification. We chose this loss function
over a simple summation of the individual losses because it
provides a balance between LC and LS . This is important to
avoid parameters w where classification loss is minimized by
unbalanced data-sets which contain only failures. The term
−LS(w)LC(w) gives those parameters w an advantage that
have a balanced proportion between miss-classification and
task failure. On the other hand it also gives a disadvantage
to those parametrizations that succeed often, but if this was
a problem we could still add linear coefficients to the indi-
vidual terms in the sum. Minimization of this loss function
should yield action parameters that guarantee success for the
action execution itself and success in outcome recognition.
As a result, the primitive promises success as an individual
unit and as a building block in an autonomous system.

IV. EXPERIMENT

For a specific manipulation task, we tested a complete
pipeline of robotic action execution and action outcome
recognition under different action parameters w. We com-
pared the classification quality for different w to see if action
adaptation can indeed facilitate action outcome recognition.



Fig. 3. The end-effector, desired forces and the drawer

A. Setup

For our experiments, we used a compliant, soft manipu-
lator [13], mounted to a Barrett WAM arm. A force-torque
sensor is used to measure forces and torques between the
soft end-effector and the WAM arm. This setup can be seen
in Figure 1 and also in a video at https://youtu.be/
KO3XfspsXJY. A soft end-effector, as the one we use, has
many advantages for robotic manipulation, but can also raise
difficulties: As it is highly underactuated, the configuration
of the end-effector is not easy to measure. Additionally, the
force-torque signal is more difficult to interpret than with a
rigid end-effector, because the Soft Hand vibrates when the
arm is not in contact and the signal is damped when the
manipulator is in contact. This makes it especially important
to generate rich feedback.

B. Task

We evaluate our method for a drawer opening task. See
Figure 3 for an illustration that accompanies the following
explanation of the task. The solution to this task is to pull
the end-effector in negative z-direction. We define an action
execution as successful, if the robot opened the door for
more than 15 cm and remained in contact with the drawer’s
handle for the complete duration of the interaction. Ground
truth values for success are provided by the user. For each
execution of the task, the hand is randomly placed on the
handle of the drawer, simulating an approximately uniform
distribution of good and bad pre-grasps. The inflation of the
pneumatic hand was subject to uniform random sampling,
to deliberately introduce failures through imperfect grasps.
Additionally, for some of the action executions, the end-
effector is disturbed by human intervention so that it loses
the grasp. We made sure the number of these disturbances
is equal for each of the parametrizations.

The impedance controller we chose as parametrized action
primitive has a high stiffness in z-direction, so that it can pull
open the drawer in the direction of the user defined target
pose. The stiffness for translation along x-axis and rotation
around y-axis is also relatively high, while it is relatively low
for all other dimensions. The free parameters Tyd

and Fxd
are

a desired sensed torque around y and desired sensed force in
x direction. Depending on the values of these parameters, the
robot will move its end-effector in the respective direction
until the sensed values reach these desired values. We expect
that some action parametrizations will lead to more robust
action executions than others. The robot can solve the task
more robustly if it pushes down on the handle and applies

a desired torque that rotates the end-effector further into
the gap behind the handle. In contrast, if it has a desired
force upwards, away from the handle or a desired torque
that rotates the end-effector out of the handle gap, it will
lose the grasp more often.

In order to increase statistical support and also to make
the classification problem more difficult, we regard the six
available force-torque signals independently. For each of
the individual learning and recognition problems, the robot
can only use one of the signals. So it has to optimize its
action such that the single signal it can observe helps it to
discriminate success and failure. We expect that for each
of these artificially isolated force or torque sensorizations,
different action parametrizations will maximize outcome
recognition success. The two-dimensional parametrization of
the action is discretized in a 5x5 grid, where the desired force
is uniformly subdivided in the interval [−5.0N, 5.0N ] and
the desired torque is uniformly subdivided in the interval
[−0.75Nm, 0.75Nm]. For each of the 25 parameter sets
in the parameter-grid, the action was executed 16 times,
summing up to 400 executions in total. We chose the
parameter k for the nearest neighbor classifier to be k = 3.
We also tested k = 5, 7, 9, which either led to similar or
slightly worse results.

V. RESULTS

Figure 4 shows the success loss LS for the parameter
grid. This plot shows that a positive desired force in x-
direction and a positive desired torque around the y-axis
both increase the probability of success. In contrast, the
tested action executions fail often for negative Fxd

and Tyd
.

Unsurprisingly, action parameters influence success ratio.
The classification loss LC indicates how easy it is to

predict action outcomes for action parameters w. Figure 5
shows this loss for each of the six force-torque sensor
signals. A loss of LC = 0 would indicates that there are
no miss-classifications. For example, this is the case for 5
different parameter sets, when force signal Fx is used. Those
parameter sets with desired force Fxd

= 5.0 can create
sensor traces for sensed Fx that are easy to classify. But
the sensor traces for Fxd

= −5.0 are trivial to classify, as
the highly unbalanced data for these action parameters only
contains failures. For other action parameters, the classifica-
tion loss can be as high as 0.5, which is basically random
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Fig. 4. The loss LS , defined as the ratio of success, plotted for different
action parameters. Brighter colors indicate higher rate of success and
correspondingly lower loss.
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Fig. 5. The classification losses for different sensor signals. Matrices Fx,Fy

and Fz show classification losses for the force signals in x-, y- and z-
direction. Matrices Tx,Ty and Tz show classification losses for the torque
signals around x-, y- and z-axis.

guessing. This shows that, different action parameters can
indeed facilitate the subsequent classification problem as
we hypothesized. But the fact that action parameters which
always lead to failure and make the classification problem
trivial also shows, that we need to have a combined loss that
relates classification and task success.

Figure 5 also reveals that different sensor capabilities
lead to different optimal action parameters. The parameter
sets where the classification loss is minimal is different for
each of the isolated sensor signals Fx, ..., Tz . This shows
that information gathering by interaction should adapt to
the characteristics of the available sensors. As an example,
Figure 6 visualizes sensor traces for Ty , the measured torque
around the y-axis. The classes are difficult to separate with
the unchanged action parameters (Fxd

= 0N ,Tyd
= 0Nm),

which leads to a classification loss of LC = 0.4 (see
Figure 5). Adding a small desired torque Ty = 0.375Nm
facilitates discrimination of the classes, which is reflected in
a better classification loss of LC = 0.1.

The combined loss L can be seen in Figure 7. Notice
the difference between L and the success loss LS from
Figure 4. Several parametrizations with high desired force
in x-direction were equally likely to be optimal, if solely
optimized for success. Now if we add another term to the
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Fig. 6. Two different plots of measured torque around y-axis Ty over time.
The two subplots show the signal generated for action parameters Fxd = 0
and Tyd = 0, 0.375.

loss, namely the classification loss which penalizes actions
where it is difficult to recognize failures, there are clearly
some parametrizations that are better suited for each of the
artificially reduced sensorizations.

To examine if the minimization of this loss leads to a
more robust skill, we also have to test the action as part of
a larger system. Exemplarily we will show an analysis for
sensor modality Fx, but analyses of the other modalities lead
to similar results. If we minimize the combined loss L for
sensor modality Fx, optimal parameters are in the region of
Fxd

= 5.0Nm and also Fxd
= 2.5N when Tyd

= 0.375Nm
or Tyd

= 0.75Nm. To see if this region of minimum loss L
corresponds to a more robust overall system, we simulated
an experiment. In our Monte-Carlo simulation loop, a system
virtually performs the manipulation action, classifies the
gathered sensor information as success or failure and only
stops the loop if it predicted success. For each parameter
set, the action succeeds with the probability we obtained in
our real-world experiment. The conditional probabilities for
predicting success or failure given the sampled ground truth
success or failure were also according to the classification
likelihoods we obtained on experimental data. By repeating
this process until convergence, we gather statistics about the
mean number of action executions the robot performs for
the action parameters and can compute the probability of
actually finishing with a successful outcome.

Figure 8 shows the outcome of the simulation for a classi-
fier based on sensed Fx. Three main regions can be identified
in these matrices: The top-left region, where the loop would
end after a successful action, but with a relatively large mean
number of required actions. A stripe in the middle where
the loop can often end with a failed action, and the bottom
region, where the loop probably ends after a successful action
and with a low number of actions on average. Notably, the
initial interaction with parameters Fxd

= 0, Tyd
= 0 (no

additional forces) leads to a significantly higher probability
to end in failure than most actions with additional force
or torque. This is because of high probability of miss-
classification due to relatively poor sensory input. This shows
that even a simple system that uses the action primitive can
benefit from adapting the primitive for informative feedback.
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Fig. 7. The combined success and classification loss L for different sensor
signals. Matrices Fx, Fy and Fz show L for force signals in x-, y- and z-
direction as sensor modality. Matrices Tx,Ty and Tz show L for the torque
signals around x-, y- and z-axis as sensor modality.
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Fig. 8. The outcome of simulating repeated execution of the action,
estimating outcome with a classifier on Fx and only ending this loop if
success is estimated. The left plot shows probability to end with a failed
action, the right plot shows the mean number of action executions.

VI. CONCLUSION
We showed that naive action executions can yield poor

sensory feedback which makes failure detection difficult.
To resolve this, we proposed to use error feedback from
action outcome recognition to adapt the parameters of ac-
tion primitives. By this, we introduced a novel instance
of Interactive Perception, where robots should adapt their
actions not only for expected success or to reveal information
about the environment, but also to facilitate recognition of

their actions’ outcomes. As a first step to test this idea, we
performed an experiment where a robot opens a drawer under
the effect of severe disturbances which introduce failure. We
used a classifier to recognize success or failure as action
outcomes, and optimized an action primitive for classification
success and task success at the same time. We proved that a
system that uses such an optimized primitive becomes more
robust. This supports our claim that if robot actions can fail,
then they should fail in distinctive ways.

As a next step, it would be interesting to try this ap-
proach with more powerful action parametrizations. Com-
pliant Movement Primitives as a combination of Dynamic
Movement Primitives as task-specific solution for the kine-
matic part, augmented by Torque Primitives [14] could be a
promising replacement for the impedance controller.
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