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Abstract. We want to understand how animals can learn to solve com-
plex tasks. To achieve this, it makes sense to first hypothesize learning
models and then compare these models to real biological learning data.
But how to perform such a comparison is still unclear. We propose that
yoking is an important component to such an analysis. In yoking, two
agents are made to experience the same inputs, rewards or perform the
same actions – possibly in combination. We use yoking as an analytical
tool to identify the algorithm that drives learning in a target agent. We
evaluate this approach in a synthetic task, where we know the ground
truth learning algorithm. Then we apply it to biological data from a
physical puzzle task, to identify the learning algorithm behind physi-
cal problem solving in Goffin’s cockatoos. Our results show that yoking
works, and can be used to identify the target algorithm more reliably,
with less variance and assumptions, than a more unconstrained approach
to identify learning algorithms.
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1 Introduction

Behavioral biology aims to understand how animals learn to solve novel tasks. AI
wants to use such knowledge to build general artificial agents. To gain insights
into the mechanisms underlying biological learning, we can compare observed
behavior to that of artificial agents for which we know the learning method.
Agreement between learning behaviors serves as evidence for agreement in the
mechanisms that drive behavioral adaptation. But identifying behavioral agree-
ments requires meaningful comparisons of the behavioral trajectories of several
agents. In this paper, we will discuss why this is a challenging problem and show
how yoking—an experimental technique from behavioral biology—can serve as
the basis for such comparisons.
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Behavioral trajectories can exhibit substantial variability. Reasons for this
include inter-individual differences in embodiment, knowledge, and skills as well
as variability in the environment. As a result, the space of action sequences and
learning trajectories is extremely large, already for moderately complex tasks and
environments. Two learning trajectories may explore entirely different regions in
this space, even when they are generated by the same learning algorithm. To
gain insights into biological behavior, we therefore must find ways to perform
meaningful comparisons in spite of this variability.

We propose a method for identifying learning behaviors based on a set of
hypothesized model algorithms, even when behavioral trajectories are sampled
from very large spaces. We assume that the agent whose learning behavior we
seek to understand (usually a biological agent we call the target agent) follows
some learning method we would like to understand. The target agent produces
behavioral trajectories that sample only a small, but highly relevant subset of
all possible behaviors. To identify the mechanisms implemented in the target
agent, we compare its behavior to that of a set of alternative agents, each im-
plementing a different learning method. To effectively compare these agents, we
yoke the other agents to the target agent. This leads to meaningful comparisons,
identifying learning models that resemble the target agent’s learning behavior.

The term yoking originates in behavioral biology. In the classical yoking
setting, two animals experience the outcomes of the behavior of one of them
(the target agent). This serves to isolate the role of contingent behavior from
the effect of receiving rewards. Whereas it is difficult to yoke perception and
actions of biological agents, we have full control over synthetic models. We can
enforce their experience to align with respect to rewards, percepts, and actions.
Figure 1a shows a schematic of this approach. Yoking causes the artificial agent to
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(a) A schematic showing the yoking ap-
proach

(b) A Goffin’s cockatoo opens a baited
mechanical puzzle, called lockbox. The
lockbox consists of a cashew reward be-
hind an acrylic door, a metal bar block-
ing that door, and a metal disk block-
ing the metal bar.

Fig. 1: We evaluate and apply the yoking experimental paradigm with the moti-
vation to identify the learning mechanisms that enable animals to solve complex
problems.
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mimic the behavior of the target agent, effectively confining learning to plausible
behavioral trajectories, rendering the comparison meaningful in spite of large
unexplored regions of the behavioral space.

We develop and evaluate a methodology for yoking-based identification of
learning algorithms. We apply the yoking paradigm to learning a physical puz-
zle task, the lockbox depicted in Figure 1b. To solve this task, an agent must
open several mechanical locks in sequence to obtain a reward. We evaluate the
proposed method in two sets of experiments. First, we evaluate the yoking ap-
proach by successfully identifying the learning algorithm of an artificial target
agent for which we know the true learning algorithm. The yoking-based compar-
ison between the target agent and other artificial agents successfully identifies
the learning method of the target agent from a set of candidate models. Our ex-
periments show that yoking does this with fewer assumptions and less variance
than a more unconstrained approach. We apply yoking to data obtained with
real-life cockatoos performing the same task. Our results show that yoking is an
important tool in identifying learning behavior in artificial and biological agents.

2 Related Work

We discuss applications of yoking in biological learning experiments and then
describe recent applications based on machine learning.

In the biological learning literature, the dominant application of yoking is as
a “yoked control.” Here, two animals are placed inside identical skinner boxes,
where both animals can act and perceive their environments independently, how-
ever, they are yoked with respect to the rewards they receive. The release of re-
wards in both boxes is contingent only on the actions of the target animal. This
setup reveals if changes in behavior are due to operant conditioning or purely
due to a changing frequency of reward or punishment [10]. Yoked control has
been criticized because it can bias results towards conclusions in favor of the
operant conditioning hypothesis [5]. It seems the main source for bias in yoked
controls are individual differences [3]. In this paper we use simulated experi-
ments to evaluate the effect that inter-individual differences have on the yoking
procedure. In contrast to the classical application of yoking as a control, we use
it with the goal to directly identify a target learning algorithm.

Yoking an animal to another animal’s rewards is simple, but yoking percep-
tual inputs is more difficult. The classical kitten carousel experiment [6] is an
example of yoking two animals together so that they get the same sensory inputs.
Besides yoking through mechanical linking, powered mobility devices could also
be used to yoke two subjects perceptually [1].

To yoke the perception of synthetic agents to real animals, we must know the
percepts of the animal. An interesting approach to this problem is a controlled
rearing approach, in which newborn chicks are motion-tracked and raised in a
mostly virtual environment [13]. This setting was used to train artificial neural
networks on the same visual input that the birds received [7].
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It is practically impossible to yoke two animals such that they perform the
same actions. But this can be easily done if the yoked agent is a computational
model. Recently, a so-called tandem learning setting was used to yoke deep Q-
Learning agents to one another [9]. This was done to analyze the difficulty of
off-policy learning problem. Off-policy learning means that an agent learns using
data that was not generated by the behavior it executes to solve the task, but by
another behavior. Results showed that difficulties in off-policy learning mainly
stem from the use of non-linear function approximators and the inherent misfit
of target agents’ data distributions to yoked agents policies. As it turns out, this
insight is not only relevant to machine learning, but also to biological research.
The yoked experimental design necessarily involves off-policy learning. And be-
cause we likely need complex, non-linear learning models to explain learning in
complex animals, biological analysis needs to be aware of the challenges involved
in the off-policy learning problem. In this paper we circumvent this issue by using
tabular models that are capable of off-policy learning.

There are also other approaches in machine learning where a target agent,
potentially human, is copied by another learning agent. Behavioral cloning [12],
inverse reinforcement learning [8] and generally the learning-from-demonstration
setting [2] are related areas of research. However, the common goal in those cases
is to copy the target agent and to achieve high reward, not to identify the target
agent’s learning algorithm.

3 Comparing Synthetic Learning Models to Target Data

We want to understand how animals learn to solve novel problems. Our approach
is to compare their learning to the adaptation of artificial learning models in
similar settings. Because the artificial models are introspectable, we learn which
mechanisms in artificial models are most likely to explain the observed biological
learning. We use two different ways to perform the required comparisons: one in
which the behavior of the agent is yoked and one in which it is unconstrained.

3.1 Problem formalization

We assume that the underlying learning problem can be formalized as reinforce-
ment learning (RL) problem on a discrete Markov Decision Process (MDP). A
discrete MDP is a four-tuple (S,A, T,R) that consists of a set of states S, a
set of actions A, a probabilistic state-transition function T = p(s′|s, a) and a
reward function R(s, a). The probabilistic state-transition function T captures
the probability that an action a will cause the system to transition from state
s to state s′. The goal of the reinforcement learning problem then is to learn
a policy Π(s) = p(a|s) that maximizes the expected reward in the MDP. The
problem this paper tackles is the question: Given sequences of actions that a
reinforcement learning agent performed as it learned to solve the task, can we
identify the ground truth learning algorithm that adapted the behavior?



Yoking-Based Identification of Learning Behavior 5

To answer this question we assume an episodic RL setting, where the target
agent acts in the MDP during a sequence of m sessions D1, ..., Dm (episodes).
In each session the agent performs nm actions am = a1m...a

n
m using its policy

Π∗m which is adapted after each session using the ground truth learning algo-
rithm. As we generally do not have access to the ground truth policy P ∗ or
its output distribution over actions p∗m(am), we can only infer the learning al-
gorithm from the actions a that were performed. Our approach is to compare
the actions performed by the target policy Π∗ to the output distributions pkm of
k different policies Πk that are each adapted by a different candidate learning
algorithm. For this comparison we use the Sørensen–Dice similarity [4] between
each candidate policy’s posterior over actions pkm and a categorical distribution
fit to the actions performed by the ground truth policy. Given a set of candidate
learning algorithm models, this lets us compute a per-session similarity mea-
sure between the policy adapted by the target learning algorithm and several
candidate policies – each adapted by a different candidate learning algorithm.

3.2 Unconstrained approach to identify learning algorithms

A straightforward approach to this problem is to simulate the MDP using the
state-transition function T = p(s′|s, a) and to choose actions based on the can-
didate policy Πk. This yields sequences of actions and rewards that can be used
to adapt the policy using the candidate learning algorithm in between sessions.

But this approach has drawbacks. The first drawback is that modelling er-
rors accumulate, as the actions performed by the agent depend on the changes
made by the learning algorithm, and those changes, in return, depend on the
performed actions. If either the simulation (state-transition function T ) or the
candidate model for the learning algorithm are not exactly correct, errors accu-
mulate significantly over time. The simulation and the learning algorithms are
models, so in any case both will be at least slightly wrong. The accumulated
errors will lead to high variance not only in the outcomes of the simulations, but
also in the metric used to compare those data to the actions performed by the
target agent. The second drawback is that we need a full model of the domain
in which the behavior is observed. Especially a state-transition function T can
be challenging to obtain in contact-rich, real world scenarios.

3.3 Yoked approach to identify learning algorithms

High variance and the need for a state-transition model are challenging problems
that can be avoided with a yoking-based approach. The idea of yoking is simple,
yet powerful. Instead of using a full simulation to generate actions, we can instead
directly use the actions a∗ that were performed by the target policyΠ∗ and align
the state to follow the same trajectory as encountered by the ground-truth agent.
Using this approach, we cannot avoid all modeling aspects that come with an
MDP model. We still need a set of states S, a set of actions A and a reward
function R. However we can avoid modelling the state-transition function T .
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This approach significantly reduces variance as it avoids randomness introduced
by the simulation. Instead, the yoked model is closely aligned to the target agent.

In Section 4 we will use a purely synthetic experiment to evaluate if the yoking
approach can indeed reveal a ground truth learning algorithm more reliably and
with less variance than the unconstrained approach.

4 Evaluation in a Synthetic Lockbox Task

To assess the performance of both approaches we need an experiment where the
ground-truth learning algorithm is known. Thus, we implemented a simulated
experiment, similar to the biological one we will use for evaluation in Section 5.
In this environment we simulate several learning agents and assess how well each
of the two approaches can identify the ground truth learning algorithm.

The task we consider is the physical puzzle depicted in Figure 1b, called a
lockbox. This lockbox represents a sequential manipulation problem where the
agent has to first remove a metal disk, so that it can then push a bar to the side,
which makes it possible to finally open a door and retrieve a reward. This lockbox
task can be modelled as a dicrete MDP with four states and three actions shown
in Figure 2. The transition probabilities depend on the agent’s mechanical skills
pw, pb, pd to open the wheel, bar and door respectively. The reward function
yields a reward of 1 for every action that could successfully open a lock, and -1
otherwise. Importantly, opened locks can not be closed again.

State:
All mechanisms

closed

State:
Wheel open

State:
Bar open

State:
Door open

Action: Bar

Action: Door

Action: Wheel

Action: Wheel

Action: Wheel

p=1,R=-1

p=1-pw,R=-1

p=pw,R=1 p=pb,R=1

p=1-pb,R=-1
p=1-pd,R=-1

p=pd,R=1

Action: Bar

Action: Barp=1,R=-1

p=1,R=-1

p=1,R=-1 p=1,R=-1

p=1,R=-1
Action: Door

Action: Door

p=1,R=-1 Action:
Distractor 1-n

p=1,R=-1

Action:
Distractor 1-n

p=1,R=-1

Action:
Distractor 1-n

Fig. 2: The lockbox task, modelled as a finite Markov Decision Process with
four discrete states. Actions with their probabilistic outcomes and rewards are
depicted as branching arrows.

We consider five different candidate learners. Two of these learners use tabu-
lar Q-Learning [11], but with different learning rates. The model QLearn (slow)
uses a learning rate α = 0.1 and the model QLearn (fast) uses a learning rate
α = 0.9. Two other models follow a custom learning algorithm, we call Myopic
RL. For each state, this model has a parameter vector ω with as many elements
as the number of available actions. In each state, actions are sampled from the
categorical distribution σ(ω), where σ(.) is the soft-max function. Whenever this
agent successfully performs an action i to change the state of the lockbox, then
the respective entry ωi is increased by a constant amount β. The two Myopic
RL learners differ in this learning rate β, where Myopic RL (slow) uses β = 1
and Myopic RL (fast) uses β = 100. Finally, we also use a baseline algorithm
which implements no learning whatsoever, called No Learning.
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4.1 Identifying known ground truth learning algorithms

We cannot use biological data to compare the performance of the yoked and
unconstrained approach, as we don’t know what the ground-truth learning algo-
rithm is behind real animals’ learning. Thus we will simulate the aforementioned
algorithms as the ground-truth learning algorithms and evaluate which of the
approaches identifies the target algorithm more reliably.

To generate the ground-truth learning data, we simulated each of the algo-
rithms 32 times on a synthetic lockbox experiment. This lockbox experiment had
three states and three relevant actions, as described above, however we added
seven additional distractor actions that do not have an effect on the state. The
initial action selection probabilities p(a|s) for each policy were sampled from a
Dirichlet distribution with αdir

1 = . . . = αdir
10 = 1.0, and blackbox optimization

was used to find corresponding parameters for QLearn and Myopic RL that
map to such an initial distribution. We constrained learning to 12 sessions of
maximally 200 actions each. As can be seen in Figure 3, both Myopic RL condi-
tions can learn to solve the task, QLearn (fast) also shows adequate performance
while QLearn (slow) manages to only slightly outperform No Learning with the
very restricted number of actions and sessions. The expected number of required
actions for a perfect agent would be 30, given the mechanical skill setting of 0.1.
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Fig. 3: Mean and standard deviation of the learning curves for different agents
in a simulated lockbox task. The Myopic RL agent learns the task the quickest
on average, with both sets of parameters. Q-Learning also learns the task with
high learning rate, while the learning rate of QLearn (slow is too small to learn
the task reliably in 12 sessions. Each model was simulated 32 times, sessions
were limited to a length of 200 actions and the mechanical skill was set as
pw, pb, pd = 0.1.

Next we perform a comparison of the yoked and unconstrained approach. We
use each of the five previously simulated models individually as the ground truth
target algorithm to be identified. In that identification problem, all five models
also serve as a candidate model that may be the underlying ground truth algo-
rithm. So, for example, when QLearn (fast) is the target, all 5 learning models
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are used as hypotheses and the goal would be to identify that QLearn (fast) is
indeed the most probable learner behind the observed changes in behavior.

For each of the 32 runs per target algorithm, we either yoke or simulate each
candidate algorithm ten times. These ten models are initialized so that they
follow the same distribution of actions as the target algorithm in its first session.
We cannot directly use the probabilities p(a|s) of the target algorithm’s policy,
as in a setting where the target agent is biological we would not have access
to this information. Instead we use the relative frequency of actions the target
agent performed and, again, use blackbox-optimization to find parameters for
the candidate models that yield a p(a|s) according to these frequencies. After
this initialization, agents in the unconstrained condition are simulated and learn
independently, while agents in the yoked condition learn from the same actions
and receive the same action outcomes as the target model.

Next, we assess which of the agents best explain the target agent’s behavior.
The following procedure is applied to all pairs of target models and candidate
learning models, irrespective of how the candidate models were trained. The
similarity measure is computed per session.

For each of the 32 instances of the target agent, there are ten yoked and
ten unconstrained candidate model executions. For each instance i of the target
agent, we fit a categorical distribution pi its performed actions. Then we compare
this distribution to the known action distribution pij(a|s) of the j ∈ [1, . . . , 10]
candidate models using Sørensen–Dice similarity [4]. For each instance of the
target agent, this yields ten similarity scores for which we compute mean µi and
standard deviation σi. Finally, to ensure statistical support, we average these
statistical moments over the 32 instances such that µ = Ei(µi) and σ = Ei(σi).

Figure 4 shows this statistic of scores when it is applied session-wise to all
pairs of target models and candidate models. The data shows that the yoking
approach is superior to the unconstrained approach. Unconstrained suffers from
higher variance and reveals the ground-truth algorithm less clearly than yoking.
In the yoked condition, the ground truth algorithm is almost at all points the
most likely (topmost) hypothesis.

4.2 Comparison over size of action space

We compare the analytical performance of the yoked and unconstrained ap-
proaches when we vary the size of the action space. In the analysis in the previous
subsection, we increased the number or possible actions to ten, by introducing
seven actions without effect. In Figure 5, we assess the performance of the ap-
proaches when we vary the number of additional, effect-less actions to between 0
and 17. We measure analytical performance of either approach as follows. First,
we compute the probability to identify the correct algorithm on a per-session
basis. We do this by computing the probability pic = p(mt ≥ m0∧ . . .∧mt ≥ mi)
that the correct model is the most probable explanation for each session i, using
monte-carlo inference based on the distributions N (µ, σ) described above. Then
we average of these session-wise scores into an overall score.
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Unconstrained: Myopic RL (fast)
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Fig. 4: A comparison of the unconstrained approach (left column) to the yoked
approach (right column). For all five target algorithms, the yoked approach iden-
tifies the target algorithm as the most likely one (it is the topmost line). Yoking
can even differentiate variants of QLearn and Myopic RL with different learn-
ing rates. In contrast, the unconstrained condition suffers from higher variance
which makes conclusions more difficult.
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Fig. 5: The average probability of identifying the correct algorithm, plotted over
increasing size of action space. All actions beyond the first three are distrac-
tors that do not have an influence on the state. The yoked condition is again
generally superior to unconstrained. However, contrarily to our initial assump-
tion, increasing size of the action space does not disproportionately impact the
unconstrained condition.

Figure 5 shows that yoking is generally superior to the unconstrained condi-
tion, but the performance does not vary with increasing number of actions. We
believe this is because the task only has a single solution strategy and distractor
actions do not pose a challenge to finding this only solution.

5 Evaluation in a Real Cockatoo Lockbox Learning Task

After we just established that a yoked approach is suitable to identify the al-
gorithm behind observed behavioral learning, we will now apply it to real bio-
logical data of Goffin’s cockatoos opening a lockbox. In this experiment, three
Goffins’s cockatoos learned to open the lockbox depicted in Figure 1b and de-
scribed above in Section 4. This lockbox is baited with a cashew reward behind
the final plexi-glass door. To obtain the cashew, the birds need to unlock the
individual mechanism in the described sequence. For each bird, the data consists
of 12 sessions with a maximum of duration of 15 minutes per session. The birds
were habituated and pre-trained to open the last two-stages of this lockbox, the
door and the bar, so the main learning problem considered here is learning to
open the lockbox with the additional metal disk that needs to be unlocked first.

The example task we chose does not allow much freedom in the solution
strategy, however even in this condition the yoking-based approach is more re-
liable and suffers less from variance. When tasks become more complex, and
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Fig. 6: Similarity of three candidate learning algorithm hypotheses to real bird
data. Over the course of 12 sessions, all three birds are first best explained
by the No Learning hypothesis, until the Myopic RL model becomes the best
explanation. These switching points also align with the sessions where the real
birds made learning progress in the experiments.

learning agents can learn a more diverse set of approaches to solve the task, we
expect that the gap between the yoked and unconstrained approach will widen
even more, in favor of the yoked approach.

While we acknowledge that none of our candidate algorithms is realistically
implemented in the birds, it is still worthwhile and informative to see how the
models’ adaptation compares to learning in the birds. Figure 6 shows the results
of a yoked comparison to the data of the three birds. For all three birds, their
(not) learning in the first sessions seems to be best explained by the No Learning
model until the Myopic RL (fast) model takes over as the best explanation. This
inflection point is largely synchronous with those sessions where the birds’ learn
to open the lockbox for the first time.

6 Conclusion

If we aim to understand how animals learn to solve complex tasks, we need tools
that help us compare biological learning data to synthetic learning models. In
this paper, we show that yoking should be an important ingredient to such a
comparison. In this context, yoking means that synthetic learning algorithms
directly makes use of the actions, percepts, and rewards that the target agent
experienced. Our analysis demonstrates that yoking is an appropriate tool to
for identifying the learning algorithm underlying an observed learning behavior.
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But this approach also faces a challenge, namely the off-policy learning problem.
Not all reinforcement learning algorithms are equally capable of learning from
data that was generated using the behavior of another agent [9]. Thus, analyses
like ours need to take great care to not bias results towards off-policy capable
algorithms. We believe this is a highly significant insight, also for other analytical
approaches in behavioral biology.

Our results achieved with yoking are an example for the deep connections
that exists between the worlds of machine learning and biological learning. We
believe there is much to gain when we transfer concepts between these domains.
The method of yoking and the problem of off-policy learning, both, are relevant
in either domain. Learning in both domains is confronted with similar problems
and each domain can benefit from leveraging insights of the other.
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