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Abstract— We aim to find fundamental principles of robust
vision and express them as interconnected recursive filters,
which is a network capable of feed-forward and feed-back
information. We demonstrate that certain visual illusions can
be explained using interconnected recursive filters, while also
serving as an algorithmic architecture to build robotic vision
applications.
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I. MOTIVATION AND PROBLEM DEFINITION

Today’s artificial vision is hardly as versatile as biological
vision. Artificial vision works really well in human-designed
niches, but are not robust in general situations. This hinders
producing intelligent robotic solutions for day-to-day tasks.
To achieve similar performance as biological vision then, one
way is to identify the fundamental differences and import the
qualities necessary for robust vision. However on the one
hand, those qualities are not well known, and on the other,
such qualities may not be easily expressible for artificial
vision.

II. RELATED WORK

Historically there have been many attempts to mimic
neural mechanisms for machine vision. The most prominent
work [1] in deep-learning cemented CNNs into common
usage, but it still deviates in crucial ways from biological
vision. For example, it is well known that information flows
top-down and bottom-up in the visual cortex [2]. We believe
CNNs are insufficient and fragile [3], and also don’t allow
mechanisms that are necessary for robust vision.

III. OWN APPROACH AND CONTRIBUTION

Some important characteristics that have been identified
in biological vision, but not fully leveraged yet in artificial
vision are: multi-directional information flow [2], crossmodal
fusion between different aspects of sensory information
[4] and temporal coherence [5]. We believe interconnected
recursive filters provide a language to express these qualities
in a holistic way, because it is composed of a network
of recursive (Bayes) filters that allow probabilistic fusion
of multiple information sources while associating multiple
priors (such as time consistency). Martin-Martin et al. [6]
have already applied this to a robotic problem to detect and
track kinematic degrees-of-freedom of arbitrary objects.
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Given that we have a framework to express qualities
necessary for robust vision, we follow an iterative strategy
to accelerate our process: From hypotheses about certain
characteristics of human vision, we build synthetic models
using interconnected filters to verify those hypotheses. With
the deviations and insights from such modeling, we perform
psychophysical experiments on humans, which in turn re-
veals new strategies to model. Since we use interconnected
filters during the process, it can easily transfer to robotic
applications as demonstrated by [6].

We attempt such an iterative strategy to understand mech-
anisms in human vision related to shapes and color: We
emulate two illusions using interconnected recursive filters,
viz., “Filling-in afterimage between the lines” [7] elicits
illusory colors in shapes as an aftereffect, and “neon-color
spreading” [8] bleeds colors confined to contours of a shape.
We explain such illusions by a constraint that arises from
tightly coupling shape and color perception. Some may
regard these illusions as glitches in human vision, but we
believe this can be seen as taking advantage of statistics of
natural image sequences [9]. We have still not completed a
full verification with psychophysical experiments, but litera-
ture [9] already supports our view.
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