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Abstract— We present an active acoustic sensor that turns
soft pneumatic actuators into contact sensors. The whole
surface of the actuator becomes a sensor, rendering the question
of where best to place a contact sensor unnecessary. At the same
time, the compliance of the soft actuator remains unaffected. A
small, embedded speaker emits a frequency sweep which travels
through the actuator before it is recorded with an embedded
microphone. The specific contact state of the actuator affects
how the sound is modulated while traversing the structure. We
learn to recognize these changes in the sound and map them
to the corresponding contact locations. We demonstrate the
method on the PneuFlex actuator. The active acoustic sensor
achieves a classification rate of 93% and mean regression error
of 3.7 mm. It is robust against background noises and different
objects. Finally, we test it on a Panda robot arm and show that
it is unaffected by motor noises and other active sensors.

I. INTRODUCTION

We use sound to sense contact anywhere on soft robotic

actuators. In effect, our active acoustic contact sensor con-

verts the whole actuator into one big contact sensor. It offers

detailed measurements of the actuator’s contact state while

being low-cost and non-intrusive. This is important because

sensors for soft actuators should not limit the actuator’s

compliance. The sensor technology needs to be as compliant

as the actuator itself. Finding a good placement of a sensor

is difficult when one needs to trade-off access to the relevant

measurements with the negative effects on the compliance.

Additionally, to maintain the low fabrication costs of soft

actuators, soft sensors should be equally low-cost.

In previous work, we have shown that dynamic contacts

create impact sounds that we can measure to locate con-

tact points [1]. The sound transports information about the

contact from the point of origin, through the actuator, to

a microphone. This allows any part of the actuator to act

as a contact sensor. Additionally, the actual physical sensor,

i.e. the microphone, can be placed somewhere to the side,

where it does not affect the actuator’s compliance. However,

the dynamic contact is only measurable until the impact

sound has faded. Afterwards, when the contact is static,

no new sound is introduced. It is difficult to acoustically

sense contact in this passive case. Instead, we propose to

actively emit a custom sound inside the actuator using a

small embedded speaker. This way, the sensor is independent

of externally created impact sounds, and can instead sense
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(a) Inside view of a PneuFlex actuator: Microphone (left) and speaker (right)
are attached to the passive bottom layer at opposite ends of the air chamber.

(b) The speaker (top) and
MEMS microphone (bot-
tom) are small enough to
fit into the actuator.

(c) Experimental setup on a Panda robot:
Four sensorized actuators are mounted on an
RBO Hand 2. Contact is measured with a
static object in different workspace locations.

Fig. 1. For active acoustic contact sensing, we embed a microphone and
a speaker into a soft pneumatic actuator. The emitted frequency sweep is
affected by the specific contact state. A trained sensor model detects these
subtle changes and predicts the contact location anywhere on the actuator.

the static contact state at any time. When the active sound

travels through the structure of the actuator, it is modified

slightly based on the acoustic properties of the actuator [2].

These acoustic properties depend on the design and material

of the actuator, but also on its current contact state. In a

way, each contact state “sounds” differently. While these

interactions are too complex to model analytically [3], the

contact-dependent differences in sound are detectable by

data-driven machine learning methods.

We demonstrate the active acoustic contact sensor on the

example of the highly compliant PneuFlex actuator [4]. We

embed a speaker and a microphone at different ends of

the actuator’s air chamber (Fig. 1), and learn to localize

static contact on the actuator’s hull. Using the active sound,

we distinguish six contact locations with a classification

rate of 93% and predict the exact location with a mean

regression error of 3.7 mm. This is a significant improvement

over passive and dynamic acoustic sensing. Furthermore,

we show that the sensor is unaffected by different objects



and loud background noises. Finally, we test the sensor on

a Panda robot arm and demonstrate its robustness against

motor noises and neighboring active acoustic sensors.

The presented active acoustic contact sensor turns the

whole pneumatic actuator into a contact sensor without

affecting its compliance. The sensor measures static contact

by transmitting an active sound through the actuator, where it

is changed depending on the actuator’s contact state. Because

this fundamental effect is present in all soft actuators, we

believe that the active acoustic contact sensor is applicable

to soft actuators in general.

II. RELATED WORK

The challenge in soft robotic sensorization is to find

approaches that are applicable to the highly compliant struc-

tures, while measuring the relevant information. While well-

established approaches exist to sense contact, forces, and

more for traditional, “hard” robots [5], [6], soft roboticists

are still evaluating different approaches. We will first give a

brief overview of soft sensing in general, and then survey in

more detail the research field of acoustic sensing.

A. Soft Sensing

Existing soft sensing approaches can be organized by

their intrusiveness, i.e. how much do the sensors affect

compliance, and their level of detail, i.e. how precisely do

the sensors measure the actuator’s state. The least intrusive

methods use external vision systems that track the position

and shape of the actuator [7]. While this does not influ-

ence the actuator at all, these methods are limited to pose

measurements and fail quickly in case of occlusions, which

are common during manipulation tasks. Soft tactile arrays,

on the other hand, are placed directly on the actuator [8].

This allows precise measurements even during occlusions,

but only at the specific sensor location and often at the cost

of some compliance. Between these two extremes, liquid

metal strain sensors [9], [10] and optical waveguides [11],

[12] aggregate measurements over a larger area. This limits

the level of detail, as the exact origin of a measurement is

unclear. But needing fewer sensors also reduces the influence

on compliance. To further reduce the impact on compliance,

the sensor itself may be placed somewhere it does not

affect the actuator, while using the actuator itself to transmit

information from the point of measurement to the recording

device. TacTip [13] and GelSight [14] are examples of visual

sensors that use light to transmit contact information. The

benefit of this method is that the actuator remains unaffected,

while detailed measurements are possible from anywhere on

the actuator. The same method is used for acoustic sensing.

B. Acoustic Sensing

In acoustic sensing, sound is used as an information

carrier for various measurements. For example, sound is

used for distance measurements in mobile robots [15] and

in robotic grippers [16]. While these approaches are limited

to the pre-contact phase, they show that sound carries useful

information. To obtain information about the contact itself,

several approaches analyze the characteristics of sounds

created by the contact and use these to recognize and classify

objects [17], [18], [19]. In robotic manipulation, similar tech-

niques have been used to explore objects interactively and

with multi-modal measurements. Contact sound is created by

tapping objects with a compliant hand [20] and combined

with vision, haptic, and/or joint torque measurements to

categorize objects [21], [22], [23]. These works have studied

the characteristics of contact sounds and identified effective

sound features and their representations, which we will also

use in this work. However, these approaches all use impact

sounds created by a dynamic contact. To measure the static

contact state, after the impact sound has faded, we need to

actively introduce a new sound.

In active acoustic sensing, sound is artificially added to

the system to induce a measurable acoustic signal. Ono et

al. have used this technique to sensorize rigid objects [24],

but stated that it would be difficult to apply their method

to soft materials. Mujibiya et al. proposed a human-worn

sensor which measures contact using transdermal ultrasound

signals [25], but it requires the receiver to be mounted

on the object that makes contact. In soft robotics, active

acoustic sensing was recently used by Takaki et al. [26] who

used a small speaker and microphone inside a pneumatic

bellow actuator to measure its length by modeling the shift

in resonance frequencies. In this paper, we use a similar

hardware setup. However, we employ a model-free, data-

driven approach to extract detailed contact information from

the active sound signal. In effect, we turn the complete soft

actuator into a contact sensor.

III. BUILDING AN ACTIVE ACOUSTIC CONTACT SENSOR

The active acoustic contact sensor works by emitting a

sound into the actuator and recording it after it traveled

through the structure. The contact location is then calculated

by detecting small changes in the sound signal, which are

specific to each contact state. We describe the fabrication of

such a sensor by the example of the pneumatic PneuFlex

actuator [4]. However, we attempt to keep the description as

general as possible to be easily applicable to other actuators.

1) Hardware Setup: First, we add the audio components

to the PneuFlex actuator. It is important to place the com-

ponents somewhere with minimal influence on the actua-

tor’s compliance while maintaining enough distance between

speaker and microphone for the sound to be modulated based

on the current contact state. We embed a MEMS condenser

microphone (Adafruit SPW2430) at the base-end of the

air chamber. A small balanced armature speaker (Knowles

RAB-32063-000) is placed at the tip-end to maximize the

distance (Fig. 1(a)). We attach both devices to the passive

bottom-layer of the actuator, because it experiences the least

deformation during use. To minimize the influence on the

compliance, we route the speaker cables in a curved pattern

along the passive layer. Both components are connected to

a USB audio interface (MAYA44 USB+) recording at a

sample rate of 48 kHz with 32 Bit precision. We chose these

audio components for their small form factor, which fits well
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Fig. 2. The generated sweep (blue) emitted by the speaker is quite
different from the sound recorded by the microphone (orange). This is due
to the limitations of the audio components, but also because of the acoustic
properties of the actuator. For example, some of the peaks in the recorded
spectrum correspond to the resonance frequencies of the air chamber.

into the actuator’s air chamber. But they also offer decent

performance in a comparatively large frequency range.

The sensorized PneuFlex actuator is then mounted on an

RBO Hand 2 (Fig. 4(a)). We removed the other three fingers

for better access to all sides of the sensorized actuator, as

we want to evaluate the sensor’s ability to measure contact

anywhere on the actuator. The sensorized RBO Hand has an

attachment for a manual handle for human operators and for

a Franka Emika Panda robot arm (Fig. 1(c)).

2) Generation and Recording of the Active Sound: Next,

we generate the active sound emitted by the embedded

speaker which travels through the actuator, where it is

modulated depending on the actuator’s contact state. The

sound we use is a logarithmic frequency sweep from 20 Hz

to 20 kHz with a duration of 1 s (Fig. 2). The sweep contains

all frequencies in sequence, while the logarithmic profile

emphasizes the lower-frequency sounds. We expect these

to be more relevant for the distinction of contact states,

because in our previous work [1], low frequencies played an

important role for classification performance. Because we

have no reliable acoustic models to predict the change of

acoustic properties of a soft actuator during interaction [3],

we instead use the full-range frequency sweep, which con-

tains all possibly relevant frequencies. The 1 s duration was

chosen as to have enough time for even low frequencies to

observe the contact-dependent modulation effects. While this

limits the achievable sensing rate, we first aim to prove the

viability of the sensor. We are confident that the sensing rate

can be improved in the future.

The microphone at the base of the actuator records the

active sound after it traveled through the structure. The

recording is synchronized with the playback and trimmed to

1.4 s samples (1 s of sweep with 0.2 s of silence before and

after to compensate for small inaccuracies in the cutting of

the sounds). In the frequency domain, the contact-dependent

changes to the active sound are easily recognizable. We

extract the amplitude spectrum of each sample using a

discrete Fourier Transform. The result is a 33k-dimensional

feature vector containing the amplitude of each frequency in

the signal from 0 Hz to 24 kHz (Fig. 2(b)). In our approach,

we disregard the phase spectrum to be independent of the
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Fig. 3. The amplitude spectra from three different contact states are visibly
different. Contact changes the acoustic properties of the actuator and each
state has a distinguishable amplitude spectrum.

exact timing of sounds. In the future, the phase spectrum

might be used to extract even more information from the

contact sounds. While our work shows high performance

without weighting or reducing frequency bins, this represents

another source for potential future optimization.

3) Mapping from Sound to Contact: The last step is the

supervised learning of the mapping between the sound and

contact state. We record sets of training data that contain

example recordings of the active acoustic sensor in various

contact states and their corresponding contact locations.

We use a k-nearest neighbor (KNN) predictor from the

scikit-learn library [27] because it is simple and does not

need a lot of data. The default implementation uses five

neighbors and the Euclidean distance metric. We did not

need to change the parameters, because even with these

default values the prediction was very good. This indicates

that the actual learning problem is rather simple, which can

also be seen by manually inspecting the amplitude spectra

of different contact locations: Figure 3 shows a section of

three spectra recorded in different contact states, using the

same active sound. The different contact locations create a

noticeable frequency shift. To predict the contact location

for a new sound, the sensor model simply identifies the

most similar, existing spectra. With these steps, we have

sensorized the PneuFlex actuator for active acoustic contact

sensing and have set up the necessary processing steps for

the measurement of contact states from sound.

IV. EXPERIMENTAL VALIDATION

To evaluate the active acoustic contact sensor, we first

show that the active sensing significantly improves the lo-

calization of static contacts, compared to passive or dynamic

sensing. Subsequently, we confirm the sensor’s robustness

to different objects and background noises. Finally, we

demonstrate the sensor’s suitability to a robotic environment

by testing it on a Panda robot arm. 1

A. Localizing Contact with a Classification Rate of 93 %

We demonstrate the usefulness of the active acoustic

sensor by evaluating the classification rate of static contacts

at different locations across the actuator. When comparing

1The code and data are available online: http://dx.doi.org/10.14279/
depositonce-9711



(a) An acoustic sensor finger on an RBO Hand 2 is in contact
with a wooden object.

(b) We test the spatial accuracy of the acoustic sensor with
30 contact locations at a distance of ca. 3 mm.

(c) Six contact locations all around
the finger show our method turns the
whole actuator into a sensor.

(d) The sensor is unaffected by
different object shapes and ma-
terials.

Fig. 4. In our experiments, we evaluate the active acoustic sensor by
localizing contact on all sides of the actuator and analyzing its spacial
accuracy and robustness to different objects.

to results of using no sound (passive) and the sound during

impact (dynamic), we expect to see that the active approach

improves the accuracy of contact location prediction.

Setup: For this experiment, the sensorized PneuFlex on the

RBO Hand 2 is used with the manual handle (Fig. 4(a)). To

demonstrate the sensor’s ability to measure contact anywhere

on the actuator, we define six contact locations distributed

across its hull: Three on the palmar side (tip, middle, and

base) and one each on the other sides (left, top, and right)

(Fig. 4(c)). A wooden block is mounted on a tripod as

the contact object. A human operator places the actuator in

contact with the object, varying both the contact location

on the actuator and the side of the object. This variation

ensures that we learn to recognize the contact location and

not just the actuator’s pose. Static contact is held while the

microphone records. The speaker either emits the 1 s sweep

(active) or no sound (passive). For better comparison to our

first paper [1], we also include dynamic contacts. For this, we

record the impact sound of the actuator making contact while

maintaining all other parameters, e.g. recording duration,

etc. For the three sensor types, we record 25 samples of

six contact locations for a total of 150 sounds each. The

recording order is randomized to prevent any temporal effects
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Fig. 5. Acoustic sensing of six contact locations: The high values on
the diagonal of the confusion matrix for active sensing show that the active
acoustic contact sensor improves upon both passive sensing and dynamic
sensing with classification rates of 93 %, 47 % and 58 % respectively.

in the data. Each dataset is split into 90 samples for training

and 60 samples for testing, with equal class distributions.

In this paper, we only record data using the uninflated

actuator, as it would be used, for example, in pre-grasp inter-

actions or tactile exploration. Nonetheless, we acknowledge

that sensing at different inflation levels is essential for a

sensorized soft actuator. For this, we refer to our previous

work [1], which showed that dynamic acoustic sensing works

well regardless of inflation.

Results: The confusion matrix in Figure 5 shows both

true and predicted contact location and the corresponding

predictions. The high diagonal values for the active sensor

indicates good classification. The near-perfect predictions

(the classification rate is at 93%) demonstrate the impressive

performance of the active sensing approach. In comparison,

the passive and dynamic sensors are only able to achieve

classification rates of 47% and 58%, respectively. This shows

that the active sound transmits relevant information about the

contact which is not available to the sensor in the other cases.

Interestingly, the passive sensing of static contacts, without

any added sound, is still significantly better than the random

chance baseline (17%). It seems the classifier picks up on

small regularities in the sounds created from holding the con-

tact and ambient noise. Nevertheless, active sensing clearly

outperforms the other two approaches and demonstrates that

successful acoustic localization of static contacts is possible

anywhere on the actuator.
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shows high accuracy, predicting close to the target (blue) with a regression
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B. Localizing Contact with a Spatial Accuracy of 3.7 mm

The six contact locations in the previous section had a

distance of roughly 2 cm. In this experiment, we record

data for contact points 3 mm apart and train a sensor model

to predict the exact contact location. The mean prediction

error determines how close together contacts can be for their

sounds to be still distinguishable.

Setup: We mark 30 equally-spaced contact points along

the 87 mm long palmar side of the actuator (Fig. 4(b)). A

human operator holds the actuator against the edge of a

wooden block. We record two datasets, one active and one

passive, with five samples for each of the 30 contact points

for a total of 150 sounds, each. We use the default k-nearest

neighbor regressor from the scikit-learn library [27] with 90

samples for training and 60 samples for testing.

Results: Figure 6 shows a cluster plot of the predicted

contact points for both passive and active sensing. The blue

line indicates the target if each contact were to be predicted

perfectly. The active sensing prediction is relatively close to

the target, with a root-mean-square error (RMSE) of 3.7 mm.

Towards the tip of the actuator, the predictions appear to be

more accurate. The passive sensing predictions are generally

less accurate, with an RMSE of 18.0 mm. However, a correct

tendency is visible in the slight slope of the data points.

While a more finely tuned regression method is likely to

further improve this result, a sensor resolution of less than

4 mm demonstrates the high accuracy achievable with active

acoustic sensing, which allows detailed measurements for

grasping and manipulation tasks.

C. Sensing Success is Unaffected by Noise and Object Type

1) Robustness to Background Noise: To characterize the

sensor, we analyze its robustness to changes in the environ-

ment, for example, loud external noises. In this experiment,

we evaluate if a noisy environment affects the classification

performance for passive and active contact location sensing.

Setup: We record six sets of 60 recordings with two types

of background noise (white noise and generic office noise)
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Fig. 7. A loud environment does not affect our contact sensing
performance: Four experiments were recorded at four noise levels from
very quiet (20 dBa) to very loud (80 dBa). The classification rate for active
sensing (red and orange) does not drop for higher volumes and only slightly
for passive sensing (light and dark blue).

at three volumes (40 dBa, 60 dBa, 80 dBa). A dataset with

150 recordings in a quiet room (20 dBa) is used as baseline.

A KNN classifier is trained on 90 recordings of the baseline

set and then used to predict all test sets.

Results: The classification rate of active sensing is consis-

tent across all noise levels (Fig. 7). It even increases slightly

with more background noise, which might be due to the noise

drowning out other distractors. The type of noise does not

appear to have a noticeable influence. The results for passive

sensing deteriorate a little with an increasing volume of office

noise; the effect of white noise is less pronounced. But even

at 80 dBa, the passive sensing classification rate is roughly

twice as high as the random chance baseline. These results

show that background noise does not negatively affect the

sensor performance of the active sensor. This aligns with the

findings from our first paper [1], where background noise

did not influence the dynamic acoustic sensing.

2) Robustness to Different Objects: Different object ma-

terials and geometries have different acoustic properties.

Since our sensor uses the acoustic properties of the actuator,

changes to the object might affect the sensors measurement

results. We test this by training and testing the sensor on

objects of three different materials: wood, silicone, metal. If

the type of object influenced the sensor, we would expect

to observe worse measurement performance when using a

sensor model that was trained on one object being used to

predict contact with a different object.

Setup: We use the same experimental setup as in Sec-

tion IV-A and additionally record 2 more sets of 150 sounds,

one with a silicone block as the contact object, and one with

a metal strut (Fig. 4(d)).

Results: Figure 8 shows the cross-prediction results. There

is no noticeable difference between the diagonal (trained and

tested on the same object) and the off-diagonal values (tested

on a different object than the training). This shows that active

acoustic sensing is very robust to different objects.

It is, however, relevant to note that classifying the object

material from the active sound signal is not as successful

(material classification rate of 50.5% over the random chance
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Fig. 8. Active contact sensing is not influenced by object type and
material: Four contact location classifier were trained on the objects shown
in Fig. 4(d). The matrix shows the classification rate of each classifier when
predicting test sets of different materials. The classification rate remains very
high regardless of material.

baseline of 33.3%). This is a disadvantage compared to our

previous, dynamic acoustic sensing approach, which was ca-

pable of differentiating materials with 69.4% accuracy [1]. To

achieve both, a combination of dynamic and active sensing

might be necessary. For real-world applications, however, it

is encouraging to see that active acoustic sensing can handle

different types of objects.

D. Acoustic Sensing Works Well in a Robotic Environment

Until now, we demonstrated that the principle of active

acoustic contact sensing works very well. Next, we test if this

holds true when deployed on a robot. Robotic environments

contain several sources of potential interference for the

acoustic sensor, for example, motor noises and vibrations or

cross-talk from other acoustic sensors. We will first show the

sensor working on a robot with multiple sensorized actuators,

and then demonstrate the transfer of the sensor model to

different workspace locations.

Robot setup: We attach four PneuFlex actuators, each

equipped with the active acoustic contact sensor, to an

RBO Hand 2. The hand is mounted on a Panda robot arm

(Fig. 1(c)). A wooden contact object is mounted in a vice.

We define six different contact locations on the index finger

actuator. However, because the actuator sides are not easily

reachable due to the other fingers, we instead use tip, middle,

and base on both palmar and dorsal side of the finger. Each

contact location is recorded 25 times, for a total of 150

samples. To test if there is interference with other acoustic

sensors, we record one dataset where only the index finger

is active, and another one with all four fingers active. As

before, we train on 90 samples and test with 60.

Robot results: The classification rate for a single active

finger is at 100%, which means that all contact locations

from the test sets were correctly identified. Obviously, motor

noises and vibration do not negatively affect the measure-

ment. With four active fingers, the classification rate is still

very high at 96.7%. The sounds from the other sensorized

actuators do not affect the measurements much. This shows

that multiple actuators, each with active acoustic contact sen-

sors, can be operated in parallel, without much interference.

Transfer to other workspace locations: Finally, we eval-

uate if sensor models transfer between workspace locations,

to make sure that the acoustic sensor learns the sound of

contact and not the specific motor vibrations of each robot

pose. This is an important prerequisite for using the sensor in

robotic applications. For this, we place the contact object in

three different workspace positions, each requiring different

end-effector poses to make contact. We run two evaluations:

First, we train the sensor separately at each of the three

object locations with 90 training samples and 60 test samples.

Then, we train on two of the object locations (2∗90 training

samples) and test on the third (60 test samples). This will

show if the active acoustic sensor model transfers to novel

object locations.

Transfer results: The results of the transfer test are very

promising: For active sensing, the location classification rate

for the three object positions when trained separately is 100%

each time. Interestingly, the passive sensor, without the active

sound, also predicts surprisingly well for the three positions

separately (mean classification rate of 88.3%). However,

when attempting to train on two positions and predicting

the third, the classification rate drops to 40%. This indicates

that the sensor likely did not learn to recognize the contact

sound, but rather the specific motor noises of the robot arm

for each pose. In contrast, the active sensor, when trained on

two object positions and predicting on the third, still achieves

a classification rate of 100%. This impressive result shows

that the active acoustic contact sensor works very well in a

robotic environment and that the sensor model transfers well

between different object locations.

V. CONCLUSION

We presented an active acoustic sensor that measures static

contacts on a soft actuator using sound. Embedded audio

components emit and record a frequency sweep, which un-

dergoes small changes while traveling through the actuator.

These changes depend on the contact state of the actuator

and can be distinguished with a simple k-nearest neighbor

classifier. This effectively turns the complete actuator into

a contact location sensor, without affecting the actuator’s

compliance. By using an active sound, the sensor no longer

relies on impact sounds of dynamic contacts but instead

measures the contact state at any time.

We demonstrated the active acoustic sensing approach on

the soft PneuFlex actuator. The sensor successfully identified

six contact locations with a classification rate of 93% and a

regression accuracy of 3.7 mm. This is a significant improve-

ment over passive and dynamic acoustic sensing with 47%

and 58% classification rate, respectively. The approach is

robust against background noise up to 80 dBa and transfers

between different objects. The sensor works very well when

mounted on an RBO Hand 2 on a Panda robot arm. It is

unaffected by neighboring active sensors and contact location

models transfer between different end-effector poses.

We believe this active acoustic sensor to be an impressive

demonstration of the possibilities of using sound for sensing

in soft robotics. By exploring other active sounds and more

advanced learning methods, the range of measurable actuator

states can certainly be expanded even further.
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