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Abstract— We propose a novel sensing method for soft
pneumatic actuators. The method uses a single microphone,
embedded into the actuator’s air chamber. Contact with the
environment induces sound (vibration) in the actuator. The
materials and the shape of the actuator reflect, refract, and
attenuate the sound as it propagates inside the actuator. This
produces a unique sound signature for different types of events,
enabling the sensing of contact locations, contact force, and
the type of contacted material. Sensing is insensitive to the
inflation state of the actuator and to background noise. We
demonstrate the robustness and versatility of the microphone-
based sensor solution in experiments with a PneuFlex actuator.
The proposed sensorization avoids the fundamental challenges
of sensorizing soft pneumatic actuators, because the placement
of a microphone does not negatively affect the compliance
of the actuator and because a single microphone suffices for
sensorization of the entire actuator, eliminating the need for an
application-specific sensor layout.

I. INTRODUCTION

Soft pneumatic actuators offer significant benefits for

robotic grasping and manipulation, due to their compli-

ance [1], [2], [3]. But their sensorization poses substantial

challenges. First, most traditional, “hard” sensors, electron-

ics, and wiring cannot not be built into soft materials without

negatively affecting their compliance. Second, the complete

recovery of the actuator’s high-dimensional state would

require many sensors. Third, the most appropriate sensor

placement depends on the application. Once the sensor layout

has been built, the actuator is specialized to this application.

We demonstrate sensing of contact location, contact force,

and material of the contacted object for a soft pneumatic

actuator. The method uses a single microphone, embedded

into the actuator’s air chamber, as shown in Figure 1. Our

approach exploits acoustics: Airborne and structure-borne

sound [4] is affected by the transport medium through reflec-

tion, refraction, and attenuation. These interactions between

sound and matter are sufficiently complicated to produce

a unique sound signature for different types of events at

different locations on the actuator. We therefore propose to

use a single microphone to infer from sound what happened

and where it happened on the actuator.

Our microphone-based sensing approach eliminates all

three of the aforementioned problems of sensorizing soft

pneumatic actuators. Even though the microphone itself

could be considered “hard”, we place it in the air chamber

at the base of the actuator where it does not negatively affect

the compliance of the actuator and cabling is trivial. And as
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(a) Longitudinal cut of a PneuFlex actuator: the micro-
phone board is placed inside the air chamber at the base
of the actuator

(b)
MEMS micro-
phone board

Fig. 1. A microphone embedded into the air chamber of a soft pneumatic
actuator enables the reliable detection of localized contact events.

a single microphone is sufficient to recover contact events

all over the actuator, we do not need multiple sensors or an

application-specific sensor layout.

In our experiments, we demonstrate the surprising accu-

racy and versatility of the proposed sensing method. We are

able to reliably recover contact events and their locations, as

well as contact force and material properties on a PneuFlex

actuator [1]. Because such contact events play a critical role

in human grasping and manipulation [5], we believe that

microphone-based sensing is well-suited to advance robotic

grasping and manipulation with soft pneumatic actuators.

II. RELATED WORK

For a detailed review of tactile sensing in robot hands, we

refer the reader to reference [6]. Here, we discuss related

work specifically suited for soft actuators and prior uses of

vibration-sensing in robotics.

A. Sensor Technologies for Soft Actuators

The compliance of soft actuators requires that sensors are

flexible and stretchable, including electronics and cabling.

This renders many existing sensor technologies unusable [6].

Metal alloys, like eutectic gallium-indium (EGaIn), are

liquid at room temperature and can be used to detect strain

through change in resistance. Based on these alloys, various

silicone-based contact and strain sensors have been pro-

posed [7], [8]. Bilodeau et al. [9] include liquid metal strain

sensors into a four-fingered gripper. Farrow and Correll [10]

inject EGaIn into prefabricated silicon tubes to produce an

easily customizable liquid metal strain sensor. Given a soft

actuator and a desired application, it is possible to create

economic and effective sensor layouts [11].

Conductive, fabric-based sensors can serve as an alter-

native to resistive, liquid metal-based sensors. For exam-

ple, knitted fabrics with embedded silver nanowires pro-

duce a flexible capacitive sensor when sandwiched with a

stretchable dielectric layer [12]. A deformable skin measures

surface contact locations using the principle of electrical



impedance tomography [13]. Another sensor technology re-

lies on stretchable optical waveguides and light attenuation

for strain sensing in fluidic actuators [14].

Flexible, stretchable tactile arrays constructed from

MEMS barometers measure pressure inside soft mate-

rial [15]. However, the electronic components are only flex-

ible but not stretchable, limiting their applicability.

Other sensor technologies, such as the GelSight [16] or

TacTip [17], include soft-material components, but still re-

quire “hard” sensor components near the location of contact.

With all of these sensor technologies, it is necessary to

place the sensor at the location where something must be

sensed. Acoustic sensing holds the surprising promise of

removing this constraint.

B. Acoustic Sensing

Microphones or vibration-sensing accelerometers have

been used in robotics in a variety of ways: to recognize

objects from the sound they make upon contact [18] or

more complex interactions [19], to detect materials [20]

and textures [21], [22], to identify the contents of a sealed

container by shaking [23], or to detect the attainment of

contact during grasping and placement of objects [24]. All

of these applications measure properties of the world, rather

than properties of the robot itself.

A microphone-based proximity sensor leverages the

seashell effect [25], which amplifies ambient sound based

on the resonance frequency of the air pocket between the

microphone and the nearby object. Here, the microphone is

used to measure the distance between a gripper and an object.

None of the uses of microphones we discussed so far

take advantage of sound modulation that occurs in structure-

borne sound as a result of the sound-carrying structure [4].

One work that makes a step into this direction uses forearm-

mounted contact (piezo) microphones to detect sound (trans-

mitted through the bones) from finger gestures, including

tapping, flicking, writing, etc. [26]. Here, the structure is used

to conduct sound. The only work that deliberately exploits

modulation in structure-borne sound uses this effect to create

a touch-based input device, buttons or touchpad, by placing

an active vibration source and a vibration sensor on a hollow

box [27]. The touch of a finger modulates the vibration,

enabling detection of the finger’s contact location on the box.

The work presented in this paper will take advantage

of sound modulation in the sound-conducting structure to

“localize” sound-causing contact events. In contrast to the

aforementioned work [27], our sensing is passive and there-

fore detects contact events, rather than contact states.

III. INSTALLING THE MICROPHONE

The pneumatically powered PneuFlex actuator, shown in

Figure 1, was developed as a finger in the context of robotic

grasping with soft hands [1]. During inflation, the expansion

of the actuator’s silicone hull (Smooth-On Dragon Skin 10)

is constrained in two ways: first, by a helically wound

polyester thread to prevent radial expansion, and second,

by an inextensible but flexible passive layer, embedded in

the bottom of the finger. This layer prevents longitudinal

extension of the bottom of the finger, leading to a bending

motion.

Fig. 2. To install the microphone,
the actuator is cut at the base, leaving
structural reinforcements intact. Then
the microphone is inserted and the
finger is glued shut again.

We embed a MEMS

(micro-electro-mechanical

system) condenser

microphone (Adafruit

SPW2430, see Figure 1)

into the air chamber of

the actuator, as close as

possible to the base of

the actuator. This part

experiences the least

deformation when the

actuator is inflated. To

install the microphone,

we cut three sides of the

finger, leaving the bottom

layer and the polyester thread intact. Through the opening

we insert the microphone and attach it with silicone adhesive

to the bottom of the finger, facing up (see Figure 2). The

finger is then resealed with silicone. The cables leading to

the microphone are routed through the cut and attached to

the outside of the finger, also with silicone glue. This is a

simple procedure that does not affect the structural integrity

or expansion properties of the actuator.

IV. CLASSIFYING ACOUSTIC SIGNALS

A. Data Acquisition

Our first goal is to demonstrate the identification of contact

locations based on the sound recorded by the microphone.

We will employ machine learning to classify the sound. As

a first step, we record sound data.

We recorded the sound that resulted from tapping the

finger against an acrylic strut, as shown in Figure 3, via

a USB audio interface recording at a 24bit resolution and a

48 kHz sampling rate. The microphone is rated for a range

of 100 Hz to 10 kHz, in which it behaves linearly—but it

records also much lower frequencies (see Figure 4).

For each of the eight contact locations (see Figure 3),

we recorded five repetitions at four inflation levels of the

actuator: 0 kPa, 15 kPa, 30 kPa, and 50 kPa, the latter corre-

sponding to full inflation. Six such sets were recorded by

two different experimenters. This amounts to a total of 960

sounds arising from contact events. The beginning and end of

the recording for each contact event were selected manually.

Each of the resulting sound recordings is labeled with the

contact location to obtain our first data set.

We also want to demonstrate that sound-based sensing is

able to identify contact force and the material the tap was

performed on. For this, we recorded a second data set. Now

the tip of the finger is the only contact location we consider.

We tap the fingertip against objects made of three different

materials: wood, silicone, and aluminum. We used three

different tapping durations: lifting the finger off the object

after 0.1 s, 0.5 s, and 1 s. For each of these, we recorded three

different ranges of contact forces, measured by a force sensor



(a) Experimental setup (b) Contact locations

Fig. 3. Contact events were created by tapping different parts of the
finger and hand scaffold against an acrylic strip (a). We used eight different
locations (b), three on the bottom of the finger (1: tip, 2: middle, 3: base),
three on the other sides of the finger (4: left, 5: right, 6: top), and two on
the hand’s scaffold (7: mounting strut of the finger, 8: other parts of the
structure). The scaffold is from a four-fingered RBO Hand 2 [1]

(a) Sound signal (b) Amplitude spectrum

Fig. 4. Sound recorded by the microphone during a contact event (left)
and the corresponding amplitude spectrum (right): the actuator is inflated
to 15 kPa and contact is made at the tip

mounted underneath the object: 0 N to 1 N, 1 N to 2 N, and

2 N to 3 N. All of this was done for the same four inflation

states of the actuator as above. We recorded two sets of these

measurements, amounting to a total of 648 recorded sounds,

making up our second data set. Each of the resulting sound

recordings is labeled with the material, the tapping duration,

and the contact force.

B. Input Features

To ready our data set for machine learning, we extract

a consistent feature vector from each sound file. We apply

a discrete Fourier transformation to obtain an amplitude

spectrum, which is the real-valued absolute of the complex-

valued frequency spectrum. This conversion turns variable-

length sound files into feature vectors of identical length,

each value corresponding to the amplitude of a specific

frequency range. Figure 4 shows a sound file and the

corresponding amplitude spectrum. We include the cutoff

frequency and sampling resolution of the amplitude spectra

as hyperparameters to the classification problem (see next

section). Finally, we normalize the feature vectors to zero

mean and unit variance on the training set.

C. Classification of Amplitude Spectra

We want to learn a classifier that enables the identifica-

tion of contact locations from a feature vector (processed

amplitude spectrum). We tested three different classification

algorithms: k-nearest neighbor, logistic regression, and sup-

port vector machines. We did not attempt neural networks,

as we have relatively few training data compared to the high

dimensionality of our feature vector.

Our classifier is based on the scikit-learn library [28]

which implements all three algorithms. We performed an

exhaustive parameter search (grid search) over hyperparam-

eters. For k-nearest neighbors, we tested different distance

metrics (Manhattan and Euclidean distance). For support

vector machines we tested different kernels (linear, radial

basis function, and the parameters γ and C). For logistic

regression, we tested different regularizations (L1 and L2

norm). For all of the classifiers, we tested different different

frequency cutoffs (100 Hz, 200 Hz, 1 kHz, 3 kHz, 10 kHz)

and different resolutions for sampling the amplitude spec-

trum (100 samples, 1000 samples).

To identify optimal hyperparameters for each classifier,

we used 5-fold cross-validation. The classifiers were trained

on two sets of recordings and evaluated on another set of

recordings from a different date. The best classifier, by a

small margin (ca. 2%) over k-nearest neighbors and a large

margin (ca. 20%) over the other two algorithms, was a

support vector machine (SVM) with a radial basis function

kernel (γ = 0.001 and C = 100) on a spectrum with a cut-off

frequency at 200 Hz at 1000 data points.

V. EXPERIMENTAL VALIDATION

A. Sensing Contact Locations

We trained the SVM classifier described above on the

first data set and tested with a held-out set of sounds.

Classification rates are summarized in the confusion matrix

shown in Figure 5. The overall classification rate is 74.7 %

for all contact points, including the scaffold. In the following,

we provide some interpretation and explanation of the data

shown in the confusion matrix.

The contact locations left, right, top, and middle cover the

four sides of the actuator at the identical distance from the

base. As a result, we might expect significant misclassifica-

tion. And we do see this to some degree between opposing

contact points: Left is misclassified as right in 25 % of the

cases and middle as top in 10 % of the cases. Interestingly,

however, the inverse confusion is much less likely: Right

is misclassified as left only in 13 %, and top as middle

only in 5 % of the cases. We interpret this to imply that

the misclassifications of left as right and middle as top can

also be learned better, possibly with more data or with slight

design modifications.

The structure contact point, on the scaffold without a

finger, exhibits a decent classification rate of 70 %. This

suggests that the classification results remain acceptable,

even when the distance the sound travels through material

(and consequently the signal attenuation) is large.



Fig. 5. Confusion matrix for the SVM-based prediction of contact location:
the high values along the diagonal indicate that sound recorded from a single
microphone embedded into the actuator can be used to identify contact
locations.

Contact at the tip of the actuator is misclassified as contact

on the mounting strut 10 % of the time. These two contact

locations lie on at opposite ends of a line through the

microphone. It is possible that the actuator might vibrate in

similar ways when tapped at the extreme points of its length.

This, too, may provide some guidelines for how to optimize

actuator shape for microphone-based sensing.

Contact at the base is classified correctly 92 % of the time.

Tapping at the base of the finger, right where the microphone

is mounted, should be louder than other locations. This

might provide a more significant feature to learn on than

the vibration of the whole actuator.

Overall, these results demonstrate the feasibility of acous-

tic sensing of contact locations in soft-material actuators.

We found it surprising that a single microphone and simple

machine learning methods suffice to detect contact locations

with 74.7 % accuracy. While these results do not (yet)

reach the reliability of contact sensors, we are optimistic

that this very first proof of concept can be improved upon

in many ways. And in contrast to tactile sensors, the

proposed microphone-based approach is cost-effective (the

microphone costs $5), simple to install, and unintrusive to

the desired material behavior of the soft actuator.

B. Measuring Robustness to Background Noise

One might expect environmental noise to affect the sound-

based identification of contact location. To test this, we repeat

the previous experiments while playing back recordings of

common office noises at different volumes (50 dB, 70 dB and

90 dB) from a distance of 10 cm. In Figure 6 we compare

the overall classification rates for all eight contact locations

at different noise levels. The first column corresponds to the

original data, recorded in a quiet room at 30 dB.

Fig. 6. The classification rate of
the proposed sensor system is practi-
cally unaffected by background noise,
irrespective of the noise level. The
dashed line indicates the performance
of guessing.

The plot shows that

the mean classification rate

does not correlate with

the volume of the back-

ground noise. The stan-

dard error of the classifica-

tion rate is slightly higher

in the presence of back-

ground noise, but this also

does not correlate with

the volume. This suggests

that the proposed sound-

based method for detecting

contact locations is robust

against background noise,

even when that noise is

very loud. This result can

be explained by the sound

insulation provided by the

hull of the actuator. We performed the same test with white

noise and achieved comparable results.

C. Sensing Contact Force

We now examine if it is also possible to predict contact

forces using acoustic sensing. For this, we use the second

data set, in which sounds are labeled by the three ranges of

contact force. In addition, this data set includes sounds from

three different object materials and three tapping durations.

We again perform a hyperparameter search over the three

classifiers. This search produces the same result as before:

the best classifier is an SVM with a radial basis function

kernel and the same hyperparameters as above. Training uses

two-thirds of the recorded data, with one-third serving as test

set. Please note that the recorded data is not ideal for the

classification of contact forces, as the three force ranges are

not clearly separated from each other but instead represent

three adjacent force ranges.

Over a random-guessing baseline of 33 %, the best SVM

classifier achieves a cross-validation score of 80 % and a test

score of 78 %. These results demonstrate generalization of

the SVM over tap duration, materials, and actuator inflation

level, as these parameters vary in the training and test data.

The confusion matrix for the classification results is shown

in Figure 7. High contact forces (2 N to 3 N) can be classified

with 96 % accuracy. For lower contact forces (<2 N), the

classification rate is lower. This might be explained by low-

amplitude sound being less distinctive, even if it represents

different events.

Our results demonstrate that it is possible to measure

contact location and contact force using a single microphone.

D. Detecting Materials

To challenge the versatility of acoustic sensing even fur-

ther, we attempt to predict a third type of sensor signal from

the recorded sound: the material that was contacted during

tapping. We again use the second data set, now attempting

to learn a classifier to predict the material. We perform a



third grid search over classifiers and hyperparameters, again

as described above. The best classifier is for the third time an

SVM with the same hyperparameters. We train all classifiers

on two-thirds of the second data set and test the trained

classifiers on the remaining third.

Fig. 7. Confusion matrix for
the SVM-based prediction of contact
forces: the high values on the diagonal
indicate that contact forces can be
inferred from sound recorded by a mi-
crophone embedded into the actuator.
The labels light, middle, and strong
correspond to the three force ranges
described in the text.

The best SVM-based

classifier achieves a

cross-validation score of

75 % and a test score

of 69.4 %, with all three

materials being predicted

about equally well. The

test results demonstrate

generalization of the

classifiers over tap

duration, contact force,

and actuator inflation

level, as these parameters

varied in the training and

test data. In this case,

guessing would achieve a

classification rate of 33 %.

Our results demonstrate

that a microphone embed-

ded in a soft-material actuator can be used to sense a variety

of information types: contact location, contact forces, and

material type. To achieve the same with “traditional” sensing

technologies, we would likely require several different sensor

technologies and multiple physical sensors.

E. Applying Acoustic Sensing

To demonstrate the proposed acoustic sensing in an ap-

plication, we place the RBO Hand 2 on a door handle

in preparation for grasping it. The index finger of this

hand is equipped with our acoustic sensor, and the contact

location is predicted online from the sound signal. In future

work, a controller could use this information to correct

misalignments of the hand in increase grasp success.

A sliding-window predictor interprets the sound of the

previous second at an average rate of 13 Hz. To also detect

when no contact occurs, we introduce a ninth class called

“none”, in addition to our previous eight contact locations

(see Figure 3). To capture the different acoustic properties

of the RBO Hand 2, we recorded a new data set consisting

of 900 samples (5 sets, 4 inflation levels, 9 classes, 5 repe-

titions).

Figure 8(a) shows the experimental setting. Three still

frames (b-d) show the moments the hand touches the handle

with the index finger’s tip, middle, and base. The plots (e)

visualize the recorded sound and the predicted contact class

probabilities.

As expected, the “none”-class is most probable when

the hand is not making contact. The “tip”-class is assigned

high probabilities twice: When the sliding prediction window

enters and when it leaves the event signal. In between, no

clear prediction is made. The “middle”-class is correctly

predicted with high probability, very quickly after contact

occurs. After the “base”-contact, the first few predictions

are uncertain, before the correct class is predicted. This

shows that different phases of the contact event, e.g. the

initial contact or the following propagation, have different

significance for the classes. When the relevant sound of the

event is not within the sliding window, the prediction may

be incorrect. Thus, the choice of the prediction window size

influences the results.

This proof-of-concept experiment shows that our approach

can interpret acoustic signals during hand/environment inter-

actions in an application setting with a full RBO Hand 2

setup.

VI. CONCLUSION

We proposed a microphone-based approach to the sen-

sorization of soft pneumatic actuators. We placed a mi-

crophone inside the air chamber of the actuator. Sound

(vibration) caused by contact events anywhere on the actuator

propagates through the actuator’s components and materials,

thereby producing sound signatures that contain informa-

tion about the event to be sensed. Using standard machine

learning methods, we were able to sense contact location,

contact force, and the material of the contacted object—

using a single microphone. In some way, this microphone

can replace multiple sensor modalities and multiple sensors

of a single modality. We successfully validated the proposed

acoustic sensing in experiments with a specific type of

soft actuator, the PneuFlex actuator, but are convinced that

acoustic sensing is applicable to any soft-material, fluidically

powered actuator type.

The proposed method overcomes fundamental challenges

of sensorization in soft-material robotics. Sensors do not have

to be embedded into soft materials, which may adversely

effect desirable material properties and complicate the de-

sign. Instead, we can place a microphone at any convenient

location. In our approach, the number and placement of

sensors do not have to be chosen in a task-specific manner.

Instead, a single sensor detects contact events and locations

anywhere on the actuator, as long as the contact event

produces sound.

This is a first proof of concept and the proposed method

still has limitations. Designing actuators for helpful sound

propagation and actuator abilities at the same time is more

difficult than designing for one of the criteria alone. Also,

with the current sensorization method, it is only possible to

detect sound-causing events—but not steady-state contact,

contact forces, or contact normals. However, we regard

the present paper as a first step. We believe that a better

understanding of how to design discriminative sound prop-

agation into soft-material robots, how to exploit multiple

microphones, and how to employ active sound sensing will

turn this proof-of-concept demonstration into a powerful

sensorization method for soft robotics.



(a) Setup (b) Tip contact

(c) Middle contact (d) Base contact (e) Sound signal and class prediction probability over time

Fig. 8. Setup and results of the application experiment: (a) An RBO Hand 2 is equipped with a acoustic sensor in its index finger (red) and trained to
sense contact locations with a wooden door handle (green). Over the course of the experiment, the hand makes contact with the door handle three times:
At the tip (b), middle (c) and base (d) of the index finger. The contact location is predicted on the sound signal in real-time using a moving window of
1s. The onset of the three events is marked with a vertical red line in the sound signal (e, top) and the class probabilities (e, bottom). Directly afterwards,
the corresponding classes are predicted with varying success. Albeit preliminary, this indicates the contact location can be detected online on real-world
hardware. A video of the experiment can be found here: https://youtu.be/92KaQClofyc

REFERENCES

[1] R. Deimel and O. Brock, “A novel type of compliant and underactuated
robotic hand for dexterous grasping,” The International Journal of

Robotics Research, vol. 35, no. 1-3, pp. 161–185, 2016.
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