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Abstract

We propose a sensorization method for soft pneumatic actuators that uses an embedded microphone and speaker

to measure different actuator properties. The physical state of the actuator determines the specific modulation of

sound as it travels through the structure. Using simple machine learning, we create a computational sensor that

infers the corresponding state from sound recordings. We demonstrate the acoustic sensor on a soft pneumatic

continuum actuator and use it to measure contact locations, contact forces, object materials, actuator inflation, and

actuator temperature. We show that the sensor is reliable (average classification rate for six contact locations of 93 %),

precise (mean spatial accuracy of 3.7 mm), and robust against common disturbances like background noise. Finally,

we compare different sounds and learning methods and achieve best results with 20 ms of white noise and a support

vector classifier as the sensor model.
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1 Introduction

We present sound-based sensing for soft robotic actuators.

The underlying principle is simple: An object’s physical

state affects how sound is propagated through the object.

The sound is modulated by the object’s shape, its contacts

with other objects, or forces exerted onto it. We show that

a recording of this modulated sound permits the accurate

reconstruction of the object’s physical state. Acoustic

sensing works with sound produced by interactions of the

object with its environment (passive acoustic sensing) or by

playing sounds from a small loudspeaker embedded into or

attached to the object (active acoustic sensing). Using passive

or active acoustic sensing, one might say that it is possible to

”hear” the object’s state.

Acoustic sensing is particularly well-suited for soft

actuators and soft robots. Soft bodies change their state

substantially as a result of actuation or compliant interactions

with the environment. These changes have significant effects

on the propagated sound, making the reconstruction of

state from sound easier. Also, unlike most traditional

sensing technologies, acoustic sensing does not constrain

the actuator’s morphology, thus permitting it to take full

advantage of clever mechanical design and soft-material

compliance. Furthermore, acoustic sensing eliminates the

need to incorporate multiple special-purpose sensors (e.g.

proprioception and contact sensors). We will show that

acoustic sensing can emulate a variety of signal-specific

sensors by recovering the different types of sensor

information directly from sound.

In this paper, we provide a comprehensive description of

how to deploy acoustic sensing in the context of soft robotics.

We also present an in-depth experimental evaluation of

acoustic sensing with three types of experiments: First, we

demonstrate the high accuracy and range of the sensor.

a b
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Figure 1. The acoustic sensor hardware inside a PneuFlex actuator:

(a) microphone (left) and the speaker (right), (b) placement of the

audio components inside the actuator, (c) manual and (d) automated

data recording and test setup with the RBO Hand 2

Then, we show the sensor’s robustness against disturbances.

Finally, we evaluate the effect of different sensor parameters.

The acoustic sensor achieves classification rates of up to

100 % and a regression error as low as 3.7 mm. The same

sensor hardware measures different properties, like contact

location and forces, as well as object materials and actuator
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inflation. At the same time, the acoustic sensor remains

unaffected by background noises up to 90 dB.

We believe that acoustic sensing is an extremely powerful,

simple, and robust approach to sensing, particularly well-

suited for soft robotics. We hope that the comprehensive

treatment of this sensing approach presented in this paper

lays the foundation for further advancing acoustic sensing

technology and for exploring novel applications.

The work in this article extends our previous publications

on acoustic sensing (Zöller et al. 2018, 2020) with insights

on the influence of several sensor parameters. We

analyze different types of active sounds and the required

sound volume. We compare different machine learning

methods and evaluate the transferability of sensor models

between different actuators. Furthermore, we add a novel

demonstration of the sensor’s capability to measure the

actuator’s temperature, as well as simultaneously measuring

different actuator parameters from a single sound recording.

2 Related Work

Suitable sensorization for soft robotic actuators provides

relevant measurements without negatively affecting com-

pliance. We first review existing sensorization approaches

for soft actuators and the degree to which they accomplish

these goals, and then we survey prior approaches to acoustic

sensing in robotics.

2.1 Sensing for Soft Robotic Actuators

Yousef et al. (2011), Kappassov et al. (2015), Amjadi et al.

(2016), and Wang et al. (2018) offer comprehensive reviews

of sensing for soft actuators. Here, we summarize the most

relevant sensorization approaches.

Strain sensors measure the deformation of soft actuators

through changes in sensor length (Farrow and Correll 2015;

Park et al. 2012; Vogt et al. 2013; Tapia et al. 2020). Based

on such measurements it is possible to infer information

about the actuator’s state including contact location and

forces (Wall and Brock 2019). Strain sensors are usually

highly stretchable, reducing the negative effect on the overall

compliance of the actuator. However, measurements contain

information that is aggregated along the entire length of

the sensor, which limits the spatial accuracy. Also, the

most appropriate sensor placement is often task-specific but

cannot easily be adapted.

Tactile sensors for soft surfaces collect information

about the intensity and location of contacts for a desired

sensing area by measuring the deformation of the surface

through various means (Weigel et al. 2015; Gerratt et al.

2015; Visentin et al. 2016; Büscher et al. 2015; Pannen et al.

2022). However, this usually requires the sensor to be placed

directly at the point of measurement. So when sensorizing

large surfaces, the additional material of the sensor hardware

will negatively affect the compliance of the soft actuator.

Optical waveguides measure the curvature of soft

actuators by detecting changes in light intensity or

frequency (To et al. 2018; Zhao et al. 2016; Galloway et al.

2019). When the waveguide is made from an elastic material,

the influence on the actuator’s compliance is minimal. But,

like strain sensors, measurements aggregate over the whole

length of the sensor, making it difficult to determine the exact

origin of measurement. Alternatives, such as fiber bragg-

grating (Park et al. 2007), offer high precision, but they are

much less compliant and require expensive read-out devices.

Embedded cameras use light to measure the deformation

of soft actuators. By visually observing the backside of

contact surfaces, for example measuring the light intensity or

optical flow, highly detailed information about interactions

can be obtained (Nakao et al. 1990; Ward-Cherrier et al.

2018; Sferrazza et al. 2019). And without the need for

physical contact with the camera, the surface compliance

remains unaffected. However, the sensor requires a line-of-

sight to the point of measurement, which is problematic

in structures with significant deformations, like continuum

actuators which can have bend angles of over 180◦.

In summary, current sensing approaches for soft actuators

either provide limited detail due to the aggregation

of measurements or significantly restrict the actuator’s

compliance. Furthermore, most sensors measure only a

single actuator property. In contrast, our acoustic sensing

approach has little effect on compliance and measures many

different properties with high accuracy and at the same time.

2.2 Acoustic Sensing in Robotics

Sound is used to measure a wide range of different

properties in both industry and research. For example,

acoustic sensing has long been employed for fault detec-

tion in machines (Takata et al. 1986), railway infrastruc-

ture (Lee et al. 2016), and high-power insulators (Park et al.

2017). As another example, the term “Distributed Acoustic

Sensing” describes the measurement of geomechanical strain

in boreholes by observing minimal oscillations of fiber

optic cables. Such “acoustic antennas” can measure rock

displacements of less than 1 nm (Becker et al. 2020). In the

medical field, sound has long been used for many different

procedures, like ultrasound imaging (Wells 2006). For this

paper, however, we focus on previous approaches to acoustic

sensing in robotic applications, the range of properties that

can be measured, and its applicability to soft materials.

Sound Contains Diverse Information On the one hand,

acoustic sensing can be used for exteroceptive sensing,

i.e. measuring properties of other objects. Several approaches

use sounds recorded while tapping, shaking, holding,

etc., to recognize and classify objects (Schenck et al.

2014; Sinapov et al. 2011; Kroemer et al. 2011;

Tomoaki Nakamura et al. 2007; Richmond and Pai 2000;

Luo et al. 2017). Recordings of sound have also been used

to determine object materials (Krotkov et al. 1997), surface

properties (Cuneyitoglu Ozkul et al. 2013), and the distance

from objects while grasping (Jiang and Smith 2012). Even

features like the flow rate of granular material (Clarke et al.

2018) or the ambient temperature (Cai et al. 2021) have been

measured using sound.

On the other hand, acoustic sensing also provides

proprioceptive sensing capabilities, i.e. measurements about

the sensorized object itself. For example, novel touch

interfaces were developed using sound/vibration recorded on

rigid surfaces (Collins 2009; Harrison et al. 2011; Liu et al.

2017; Paradiso et al. 2002). Furthermore, Ono et al. (2013)

recognized touch gestures on arbitrarily shaped objects

Prepared using sagej.cls
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using sound and could even measure the configuration of a

structure built from Lego/Duplo blocks.

In this paper, we transfer these ideas from the domain of

traditional “hard” robotics to the field of soft robots and show

that the soft materials of pneumatic actuators are well suited

for exteroceptive and proprioceptive measurements of object

and actuator properties using acoustic sensing.

Sound Turns Whole Objects Into Sensors Because

sound travels through structures, the recording location

can be different from the origin of sound. This way,

whole objects become sensors, as the structure transports

information from anywhere on and in the object to the

location of sound recording (Ono et al. 2013; Collins 2009;

Harrison et al. 2011; Paradiso et al. 2002). In contrast to

previous approaches that used rigid structures, we apply this

idea to a soft actuator. There it enables us to sense contact

anywhere on the actuator while placing the microphone

where it least influences the actuator’s compliance.

Sound Is Suitable For Soft Structures Acoustic sensing

has been shown to work well in “soft” structures. The small

size of commercially available audio components makes

it easy to embed acoustic sensing without affecting their

compliance significantly. Amento et al. (2002) used bone-

conducted sound on human hands to recognize fingertip

gestures. But without bones in pneumatic actuators, we

cannot rely on them for sound modulation. In pneumatic

actuators, Takaki et al. (2019) used sound to measure the

actuator’s length by modeling the frequency response.

However, for less symmetrical actuator shapes this is not

feasible (Rompf 2019). Mikogai et al. (2020) use sounds

induced by a compressor to train a convolutional neural

network that localizes contact on the supply tube of a

pneumatic actuator. In our approach, we sensorize the

actuator itself and use an embedded speaker directly inside

its air chamber to actively choose which sound to play.

Furthermore, in addition to contact locations, our sensor

measures contact forces, object materials, inflation levels,

and actuator temperature.

3 Acoustic Sensorization

In this section, we first summarize the working principle of

the acoustic sensor, before we present the implementation

of the sensor’s two core components: the physical sensor

hardware and the computational component which extracts

the desired measurements. Finally, we discuss two modes of

sensing: passive and active.

3.1 Acoustic Sensing Principle

The key property of the acoustic sensing principle is the

fact that sound that travels through an object gets modulated

by it (Cremer et al. 2005). And when certain properties of

the object change, the modulation changes as well. Such

properties include the object’s shape and internal forces,

but also interactions with the environment. Essentially, any

change to the object which affects the physical transmission

of sound waves. Additionally, the exact way that the sound

is modulated is deterministic and often characteristic for one

specific state of the object (where “state” means the space

of all modulation-affecting object properties, like shape,
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Figure 2. We record sound samples and convert them into

frequency spectra. In the frequency domain, we observe a contact-

dependent shift of the resonance peaks. (a) The frequency spectrum

of a ’sweep’ sound that serves as input to the speaker (blue) and

the resulting spectrum of the sound as recorded by the microphone

(orange) (b) The magnified peaks of spectra from different contact

locations are noticeably shifted.

interactions, etc.) Consequently, it is possible to infer the

object state from a given sound modulation. So by recording

sound within the object, we can observe a given modulation

and use that to determine the current state of the object.

But this mapping between object state and sound

modulation is complex. Many object properties will affect

it. The creation of an analytic model will only work for

very simple relations, such as the change of the resonance

frequency when the cavity size is changed (Takaki et al.

2019). But other effects, like changes due to deformation or

contact, are too complicated to model accurately, especially

for soft material objects with asymmetric shapes (Rompf

2019). Instead, we propose to use machine learning

techniques to solve the inverse problem. Using data-driven

supervised learning methods, we create empirical models to

map from recorded sounds to measured object properties.

Such a combination of a physical sensor signal and

the subsequent extraction of the relevant measurement

through calculation is called a “computational sen-

sor” (Van der Spiegel 1996). With it, the measured property

no longer depends on the specific sensor hardware. Instead,

a more generic sensor signal, e.g. a microphone recording,

is converted into the desired sensor measurement via a com-

putational interpretation of the data. Such a computational
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sensor can emulate a wide range of different sensor types,

like a contact sensor, force sensor, inflation, and even tem-

perature, all while using the same, simple sensor hardware,

which in our case is an embedded microphone.

The whole acoustic sensing principle is based on the sound

modulation in objects. As a result, it can be applied to

any sound-conducting structure. As such, it has been used

to sensorize objects as diverse as Lego blocks (Ono et al.

2013), the human hand (Amento et al. 2002), or storefront

windows (Paradiso et al. 2002). Many other applications

are possible. In this paper, we demonstrate the application

of the acoustic sensing principle to the domain of soft

robotic actuators. The unintrusive design, as well as the large

range of measurable properties, make it a highly versatile

sensorization approach.

3.2 Design and Fabrication of the Sensor

Hardware

The physical component of the acoustic sensor consists of

a microphone and speaker that must be placed in or on

the actuator. We pursue two main goals: First, we want to

minimize the detrimental effect on compliance, and second,

we want to allow for substantial sound modulation when

sound propagates inside the actuator.

We sensorize a PneuFlex actuator (Deimel and Brock

2013). This pneumatic continuum actuator is made of highly-

flexible silicone rubber with an air chamber that spans the

full length of the finger. The audio components are embedded

into the actuator during fabrication before the air chamber

is sealed. To maximize the travel distance of the sound,

we place the speaker and the microphone at opposite ends

of the actuator’s air chamber. The microphone is placed at

the base of the actuator because there is more space and

compliance is less affected. Both components are attached to

the actuator using silicone adhesive (Sil-Poxy). The speaker

cables are guided through the air chamber with sufficient

slack to allow for actuator deformations (Fig. 1b). Cables

exit the air chamber at the base of the actuator, where a thin

coating of silicone on the cables ensures air-tightness.

We embed a MEMS (micro-electro-mechanical system)

condenser microphone (Adafruit SPW2430) into the

actuator. It has a wide frequency range (linear response

between 100 Hz and 10 kHz) and a small form factor (see

Fig. 1a). The breakout board also includes a convenient on-

board 3 V power regulator. To further reduce its size, we file

off any unnecessary parts of the board (Fig 1b).

We also embed a balanced armature speaker (Knowles

RAB-32063-000) into the actuator. It has a comparable

frequency range (80 Hz to 10.8 kHz) and is small in size.

A USB audio interface (MAYA44 USB+) drives both audio

components at a sample rate of 48 kHz with 32 bit precision.

3.3 Creating the Sensor Model

The computational component of the sensor transforms the

recorded sound signal into the sensor measurement of the

computational acoustic sensor. This process consists of three

parts: data pre-processing, training of the sensor model, and

evaluation of the model.

First, we pre-process the recorded sound samples by

trimming them to the same length and converting them into

the frequency domain using a Discrete Fourier Transform.

The frequency representation exposes the resonance effects

of the air chamber. We use only the real-valued amplitude

spectrum and disregard the complex-valued phase spectrum.

This simplifies the signal as temporal patterns are ignored.

In the future, we will use the phase spectrum to extract

additional information. The resulting feature vector contains

the amplitude of each frequency in the signal from 1 Hz

to 24 kHz. Even though this vector can be quite large (24k

values/sec), we observed no need for down-sampling in our

experiments. Figure 2a shows an example sound recording

converted into the frequency spectrum.

If we had an analytical model of the actuator’s acoustic

behavior, we could now directly calculate the origin of the

observed modulation. However, as Rompf (2019) has found,

the complex shape and material of soft actuators make it

infeasible to create reliable analytical models. Instead, we

use supervised learning to train an empirical sensor model.

Figure 2b) shows an example of the frequency shift that

appears in sound signals from different contact states. This

is the result of the state-dependent sound modulation of the

actuator and is highly repeatable. Hence, we can train the

sensor model to recognize these state-dependent patterns.

We use a simple k-nearest neighbor (KNN) classifier. It

is extremely fast to “train,” because it simply remembers

the training samples, and requires only a small number of

samples per class. In our experiments, we use between 5

and 25 samples per class.

In Section 6.4 we analyze if more complex learning

methods lead to increased sensor accuracy. However, for the

remainder of the paper, we will use the KNN predictor as

a lower bound. We use the default implementation of the

KNN classifier from the scikit-learn library (Pedregosa et al.

2011): n = 5 neighbors and a Euclidean distance metric.

Finally, we evaluate the sensor model on a separate test set.

We split each data set 3:2 into training and test data while

maintaining equal class distributions. The results are given

as the average classification rate (ACR) across all classes,

evaluated on the previously unseen test data.∗.

The trained sensor model together with the physical

hardware described in the previous section comprises the

proposed computational acoustic sensor.

3.4 Two Sensing Modes: Passive and Active

The proposed computational acoustic sensor requires sound

to work. We consider two different sound sources: In passive

sensing, the sound comes from the environment, either from

external noises or from an impact of the actuator with its

environment. As we will show, even light contacts create

distinct sounds inside the air chamber. In active sensing, the

sound is created by the embedded speaker. This way, we have

full control over the sound that serves as input to our sensor.

We can generate it at any time to probe the system state, and

we can select it based on the sensing task.

∗All code and data sets are available at this link:

http://dx.doi.org/10.14279/depositonce-11059.2

Additionally, we provide an “Acoustic Sensing Starter Kit” to easily create

your own acoustic sensor: https://www.tu.berlin/go24089/
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Figure 3. Contact location sensing: (a) We define six contact locations distributed across the PneuFlex actuator. (b) Confusion matrix for

passive sensing with environmental noise, (c) dynamic sensing with contact sounds, (d) and active sound played by the embedded speaker.

The active sensor achieves the best results with an average classification rate of 93 %.

4 Experimental Validation of the Emulated

Sensor Types

In this section, we demonstrate the effectiveness of

the acoustic sensor by presenting several proprioceptive

and exteroceptive sensing examples. These experiments

highlight the diversity and accuracy achievable with acoustic

sensing. In the sections afterward, we then analyze the

sensor’s robustness against common disturbances (Section 5)

and the influence of different sensor parameters (Section 6),

before discussing the limitations of the approach (Section 7).

4.1 Acquisition of Training and Test Data

Before we can create sensor models, we must obtain labeled

sound samples from the different classes of actuator states.

We attach the sensorized actuator as the index finger to

an RBO Hand 2 and record sounds using the embedded

microphone. For each data point, the actuator is brought into

the corresponding contact state and the active and/or passive

sound is recorded. The recording order of the different

classes is randomized to eliminate any temporal effects.

Figures 1c-d show the two recording setups we use: In

the “manual” setup, we attach a handle to the hand for a

human operator, who can place the actuator into any desired

configuration, without being restricted by a limiting robot

workspace. In the “automated” setup, we mount the hand on

a 7-DoF Panda robot arm and use pre-recorded robot poses

to bring the actuator into contact with the object. While this

setup takes more effort to prepare, it is more accurate and

simplifies the recording of large data sets.

To ensure that the speaker sound for the active sensor

contains all relevant frequencies, even though we have no

reliable acoustic model for the actuator (Rompf 2019), we

chose to generate sounds that span the complete range

of frequencies the microphone can record. We use two

different sounds: a logarithmic frequency sweep from 20 Hz

to 20 kHz, and random white noise. (Additional sounds are

evaluated in Section 6.1). In the sweep, each frequency

appears sequentially, which may lead to more distinct

resonance effects. The white noise contains all frequencies

simultaneously, which simplifies sample alignment and

reduction of sample length. We generate the sounds using

the LibROSA Python library (McFee et al. 2015). For

synchronized playback and recording of sounds, we use the

open-source software QjackCtl† and Zita-Jacktools‡.

4.2 Sensing Contact Locations With 93 %

Classification Rate

We start with an experiment that demonstrates the acoustic

sensor’s core functionality: reliably measuring relevant

actuator states from sound recordings. We train the sensor to

differentiate between six contact locations distributed across

the whole hull of the actuator. Such contact measurements

provide valuable feedback for any robotic application that

uses tactile feedback, e.g. to reduce the uncertainty during

motion planning (Páll et al. 2018) or to further improve

robustness during in-hand manipulation (Bhatt et al. 2021).

We use the manual recording setup for this experiment.

We define six contact location categories on the actuator:

base, middle, tip, left, right, and top (see Fig. 3a). We record

separate data sets for active and passive acoustic sensing.

We further distinguish between completely passive sounds

(only from the environment) and dynamic sounds (no active

sound, but the actuator is tapped against the object once,

which creates a contact sound). The active sound is a 1 s

sweep. Each data set consists of 150 samples (six contact

locations × 25 repeats). The KNN-classifier is created from

the converted training data set (see Section 3.3).

Using the trained KNN-classifier on the test set provides

prediction results summarized in the confusion matrices

in Figures 3b-d for passive, dynamic, and active acoustic

sensing, respectively. The results are normalized, showing

the ratio of predictions per class. High values on the diagonal

represent a good classification. That is the case for the active

sensor, with an average classification rate (ACR) of 93 %.

Only four of the 60 test samples were misclassified.

The passive and dynamic sensors achieve slightly lower

average classification rates, 47 % and 52 %, respectively§.

Interestingly, however, even the passive sensor using only

environmental noises performs significantly above the

baseline of random chance (17 %). This shows that in

all three sensing modes—passive, dynamic, and active—

the acoustic sensor can pick up on small regularities in

the recorded sounds and use these to extract the relevant

information about the location of contact.

†https://qjackctl.sourceforge.io/

‡http://kokkinizita.linuxaudio.org/

§Using support vector classification instead further improves the dynamic

sensing ACR to 74.7 % (Zöller et al. (2018)). We consider KNN a lower

bound and compare different learning methods in Sec. 6.4.
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Figure 4. Contact location accuracy evaluation: (a) We record

samples for 30 contact points along the actuator. (b) The passive

sensing measurements (orange squares) are not very accurate

(RMSE: 18.0 mm). The measurements with the active sensor (green

circles) show only small deviations from the target (blue line) which

demonstrates high accuracy (RMSE: 3.7 mm).

4.3 Sensing With 3.7 mm Spatial Accuracy

We evaluate the achievable spatial accuracy of our acoustic

sensing setup by performing a contact location regression

along the actuator. A low average error will indicate a high

spatial accuracy of the sensor.

We mark 30 locations along the palmar side of the

actuator, 3 mm apart (see Fig. 4a). Using the manual

recording setup, we record each location five times with

separate data sets for passive and active sensing. The active

sound is a 1 s sweep. For the model, we use a KNN-

regressor (n = 5 neighbors, uniform weights, Euclidean

distance metric). This allows the prediction of the contact

location on a continuous scale.

In Figure 4b, the true and predicted contact locations of

the 60 test samples are compared. The passive predictions

deviate noticeably from the target line with a root-mean-

square error (RMSE) of 18.0 mm. The passive sounds

from vibrations and noises appear too limited in their

expressiveness for an accurate prediction of the contact

location. In the case of active sensing, however, the

predictions are very close to the target with an RMSE of

only 3.7 mm. This demonstrates the high spatial accuracy

that is achievable with only a single microphone and speaker

embedded into the actuator.

4.4 Sensing Contact Forces With 98 %

Classification Rate

We now demonstrate the potential of acoustic sensing to

emulate different types of sensors. Using the same sensor

hardware, we change the sensor model to measure a different

actuator property: the contact force. Proprioceptive sensing

of contact forces is a useful tool for soft robotics because the

complex deformation during interactions makes it difficult

to use other force sensors. And it is especially useful in

applications that require a soft touch, e.g. for human-robot

interaction (Knoop et al. 2017) or pick-and-place of delicate

fruits and vegetables (Mnyusiwalla et al. 2020).

We use the active sensor in the automated recording setup.

The active sound is 20 ms of white noise. Additionally, we

mount a force/torque sensor in between hand and wrist.

We collect data for three forces: 0.5 N (light contact), 1.5 N

(medium contact), and 3 N (strong contact). A single contact

location (’middle’) is used. The actuator makes contact with

the wooden object from three sides. We record 225 samples

in total and create a KNN classifier from the training data.

Figure 5a shows the confusion matrix for active sensing

of the contact force. The high values on the diagonal show

that for almost every test sample the contact force was

measured correctly with a classification rate of 98 %. This

demonstrates that besides the location of a contact, also the

force of contact results in distinctive modulation of sound

by the actuator. With our data-driven training approach, we

can create sensor models that recognize the force-specific

patterns in the sound’s frequency spectrum.

4.5 Sensing Object Material With 82 %

Classification Rate

Next, we evaluate the sensor’s ability to measure the

material of the touched object. Even though this property

is not directly related to the actuator itself, it nonetheless

becomes observable through contact. During contact, the

acoustic properties of the touched object also affect the

modulation of sound within the actuator. This is similar

to the sound difference that is observable when objects

of different material are tapped or struck (Krotkov et al.

1997). We use this to determine the object material using

the acoustic sensor. In an application, such measurements

could help to characterize grasped objects during exploration

tasks (Kroemer et al. 2011; Sinapov et al. 2011).

We record data for contact with three different objects: a

block of wood, a block of silicone, and an aluminum rod.

All other properties (contact locations, contact force, etc.)

are kept identical. We record six static contact locations

for each object, using the manual recording setup and a 1 s

sweep as active sound. Each contact location is recorded five

times in random order, totaling 450 recordings. From the

training data, we create a support vector machine (SVM)-

classifier with the following parameters: linear kernel, C =

100, γ =’scale’. For a comparison of different machine

learning algorithms see Section 6.4.

Figure 5b shows the confusion matrix of the material

sensing. The three materials are recognized with high

reliability with a mean classification rate of 81.6 %. While

this result is slightly lower than the contact location

and contact force classifications, it nonetheless shows

the impressive ability of the acoustic sensor to perform

exteroceptive sensing of objects in contact with the actuator,

by using sound recorded within the actuator’s air chamber.
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Figure 5. Acoustic Sensing of different properties (a) Contact force sensing: Three contact force classes are measured reliably (ACR

98 %). (b) Object material sensing: Three object materials are distinguished well (ACR 82 %). (c) Temperature sensing: The passive

sensor (orange squares) measures the rough region of the actuator temperature (RMSE 10.9 ◦C). The active acoustic sensor measurements

(green circles) show only small deviations from the target (blue line), demonstrating high temperature accuracy (RMSE 4.5 ◦C). These

results illustrate the high versatility of the acoustic sensing approach, using only audio components and computation to measure a wide

range of properties.

4.6 Sensing Temperature With a Mean

Accuracy of 4.5 ◦C

Temperature is another measurable property, whose connec-

tion to the acoustic modulation within the actuator might not

be immediately obvious. But both microphone and speaker,

as well as the air chamber and the surrounding silicone

material, appear to be affected by changes in temperature.

In this experiment, we evaluate the accuracy with which the

acoustic sensor can measure temperature.

We place the actuator in an electric oven and gradually

adjust the temperature between 20 ◦C and 95 ◦C. Every 15 s

we record samples for both passive and active sensing. In the

passive case, the only sound comes from the oven fan. For

the active case, we use the 1 s white noise signal. We use an

infrared thermometer to record the ground truth temperature

information. For each case, we record 250 samples, which

are shuffled and randomly split into two-thirds training

and one-third test data. For the sensor model, we use a

simple KNN-regressor (n = 5 neighbors, uniform weights,

Euclidean distance metric).

Figure 5c shows the true and predicted temperature

measurements. The passive acoustic sensor achieves a

root-mean-square error (RMSE) of 10.9 ◦C, while the

active acoustic sensor achieves an RMSE of 4.5 ◦C. This

demonstrates that some component in the complex structure

of the actuator is affected by the temperature change in a

way, that the recorded sound is noticeably altered. While

our learning-based approach cannot identify which specific

component is most affected, the data shows that the system

as a whole is able to measure its temperature. And while a

specialized temperature sensor would likely be more precise

and targeted, we nonetheless believe that this proves the high

versatility of the acoustic sensing approach, using only the

embedded audio components to measure the approximate

actuator temperature.

4.7 Simultaneous Sensing of Location, Force,

and Inflation With Classification Rates of

95 %, 97 %, and 100 %

The goal of this experiment is to show that contact location,

contact force, and actuator inflation can be measured at

the same time by the acoustic sensor. A single sound

sample aggregates information about all three actuator

parameters. By creating sensor models with different internal

computations, we interpret the sensor signal in different

ways to predict multiple actuator parameters simultaneously.

At the same time, this experiment demonstrates that the

sensor models are not affected by the other parameters.

For example, the prediction of the contact location works

regardless of the current contact force or actuator inflation.

This is important for applications in which multiple actuator

properties need to be evaluated together to make a decision.

For example, to evaluate the stability of a grasp, we may want

to know the contact location as well as the contact force.

The data is recorded using the automated setup with the

Panda robot and an active sound of 20 ms white noise. We use

six contact locations (tip, middle, and base on both front and

back of the finger) plus a seventh, “no contact” case. Each

contact is recorded at two contact forces: 1 N and 3 N. The

“no contact” case is considered as the third class with 0 N.

Furthermore, we record data at two inflation levels: 0 kPa and

30 kPa. Each condition is recorded 25 times, for a total of 700

samples in the data set (7 locations × 2 forces × 2 inflation

pressures × 25 repeats).

For each property—location, force, and inflation—we

create separate KNN sensor models that each use the

complete training data. That means, for example, that each

contact location class contains samples from all contact

forces and all inflation pressures and vice versa. Each sensor

model separately predicts the whole test set.

Figures 6a-c show the three confusion matrices for sensing

the contact location, contact force, and inflation pressure.

All plots show high values on the diagonals, indicating

good prediction results. The contact location is predicted

with a mean classification rate of 95 %, which is slightly

better than the active sensing results for contact locations

in Section 4.2, demonstrating that the active sensor is not

negatively affected by having to generalize across different

contact forces and inflation pressures. The same is true

for the prediction of contact forces (97 % classification

rate) and inflation pressures (100 % classification rate).

This demonstrates that the same sound recording can be

interpreted by different sensor models to measure three
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Figure 6. Combined sensing of multiple properties: Using the same sound sample, we train separate sensor models to predict (a) contact

locations (ACR 95 %), (b) contact forces (ACR 97 %), and (c) inflation pressure (ACR 100 %). These results demonstrate that different

actuator properties can reliably be measured at the same time.

actuator properties simultaneously. And while this test

cannot evaluate the influence of each property on the sound,

the fact that each model still achieves high classification

rates regardless of the other properties shows that contact

locations, contact forces, and actuator inflations each appear

to modulate the sound along different, distinct frequencies,

which do not interfere with the other sensor models.

5 Acoustic Sensing is Robust Against

Common Disturbances

Successful sensorization for soft actuators must be robust to

common disturbances. For acoustic sensing, external sounds

or vibrations may be an issue. We show that acoustic sensing

is robust to environmental noise, motor vibrations of the

robot arm, as well as sounds by neighboring acoustic sensors.

Given this robustness, acoustic sensing is well-suited for

real-world robotic applications, even in noisy environments.

5.1 No Influence of Background Noise

To demonstrate the sensor’s robustness against external

noises, we repeat the location sensing experiments in the

presence of loud noise and analyze the effect on the sensor’s

classification rate. If the background noise affects the sensor,

we would expect to see a decrease in the classification rate

as the noise levels increase.

The experimental setup is identical to the manual contact

location recordings (Sec. 4.2), with the addition of a pair

of desktop speakers placed in a distance of 10 cm from

the sensorized actuator. The external speakers emit white

noise at three volumes: 50 dB, 70 dB, and 90 dB. We

record a baseline data set in a quiet room (30 dB) and

use it to train a location-predicting sensor model. With

that model, we predict the “noisy” samples and report the

average prediction accuracy across all contact locations. We

repeat the experiment for the three sensing modes: passive,

dynamic, and active.

Additionally, we estimate the signal-to-noise ratio (SNR)

within the actuator by using the active recording as the

signal and the passive recording as the internal noise. For the

baseline in a quiet room, the SNR is 47 dB. With increasing

background noise, the SNR remains at 47 dB and 48 dB,

before dropping slightly to 43 dB for the loudest case. These

values indicate that the influence of external noise on the

internal recordings is minimal.

This can also be seen in Figure 7a, where the results

show consistent classification rates across all noise levels.

This demonstrates that the acoustic sensor is unaffected by

background noises. The active sensor’s classification rate

even increases slightly with louder noise, which might be due

to the noise drowning out other, more systematic distractions.

We believe that the silicone hull of the actuator acts as an

acoustic insulator, shielding the embedded microphone and

allowing the sensor to function, even for noise levels near the

pain threshold of human hearing.

5.2 Ignoring Pose-Specific Robot Noises

The motors and gears of the robot arm, to which

the sensorized actuator is mounted, produce noticeable

vibrations. We show that the sensor model picks up on robot-

pose specific noise patterns in the data, which leads to worse

results when sensing in new poses. However, this can be

improved by training on data from different robot poses.

We use the automated recording setup with a wooden

contact object, an active sound of 1 s white noise, and

seven contact classes (six contact locations, one “no contact”

class). We record data for six workspace poses of the robot:

the hand touches the object from the top, left, and right side,

once close to the robot’s base and once with the arm stretched

out. For each workspace pose we record 175 samples. We

train separate Support vector classifiers (SVC) using the

parameters identified by the grid search in section 6.4.

Additionally, we train classifiers on all combinations of data

sets from two, three, and four different workspace poses.
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Figure 7. Robustness evaluation of the acoustic sensor: (a) Background noise does not affect acoustic sensing. Sensor models trained in a

quiet room (30 dB) achieve identical or even slightly improved average prediction rates at high background noise levels (90 dB). (b) Sensor

models trained on a single workspace pose tend to overfit, i.e. high ACR on data from the same pose (blue line) and slightly lower ACR on

other poses (orange line). By training on two or more different poses, the transfer to unseen poses is improved. The shaded area indicates

the standard error of the mean across different pose combinations.

In Figure 7b, we evaluate the sensor’s robustness to pose

variations by comparing the classification rates of test data

from the same workspace poses as the classifier’s training

data (blue, “Same as Training”) and test data from the other

workspace poses, which the classifier has not seen before

(orange, “Transferred”). A pose-agnostic acoustic sensor

should show little difference between the two cases. It can

be seen that for classifiers trained on a single workspace

pose, the prediction of data from the same pose is at 100 %,

while the transfer to the other poses results in an average

classification rate of only 82 %. This indicates that the sensor

model overfits to robot noises, i.e. the acoustic sensor learns

to identify the pose-specific noises of the robot! However,

when combining data from two or more different workspace

poses, the transfer results improve up to 96 % for four data

sets. This shows that the acoustic sensor can learn to ignore

pose-specific robot noises with more diverse training data.

5.3 Neighboring Sensors Do Not Interfere

A special case of extraneous noises are sounds from other

active sensors. For example, a sensorized robot hand could

have several fingers in close proximity, which may play the

same active sounds. Nonetheless, we show that sounds from

other active sensors do not interfere with the acoustic sensor.

We mount three additional sensorized fingers next to the

sensorized index finger of the RBO Hand 2, each equipped

with its own embedded speaker. Using the automated

recording setup with six contact locations on the index finger,

we record 150 samples. All four fingers are active, i.e. all

speakers simultaneously play the 1 s sweep sound. We train

a KNN sensor model to classify the six contact locations on

the index finger and compare the average classification rate

to the location sensing results from the previous section.

Previously, when using only a single active finger, the

mean contact location classification rate was up to 100 % (see

Sec. 5.2). Now, when all four fingers are actively playing a

sound, the acoustic sensor in the index finger still achieves

a classification rate of 96.7 %. This shows that neighboring

active sensors do not significantly influence the classification

rate, making it possible to use them in parallel on hands like

the RBO Hand 2.

6 Analyzing Sensor Design Choices

We now investigate how design choices for the computa-

tional acoustic sensor affect its performance. We analyze the

influence of different types and volumes of active sounds on

sensing performance, test the transferability of trained sensor

models between PneuFlex actuators, and compare different

machine learning methods for determining sensor models.

6.1 Sensing Results Are Largely Unaffected

by the Type and Duration of the Active

Sound

An active acoustic sensor uses a sound to “probe” the

actuator’s state. We investigate how the choice of active

sound affects sensing performance.

We compare four types of sounds:

1. Logarithmic frequency sweep from 20 Hz to 20 kHz:

This sound contains all frequencies of the speaker’s

range in sequential order. The logarithmic distribution

emphasizes the lower frequencies, which we observed

to be beneficial.

2. White noise: This randomly generated sound has

(statistically) uniform intensity across all frequencies.

But unlike the sweep, there is no temporal order to

the frequencies; they are shuffled randomly. For better

comparability, the random signal is created once and

then reused for all recordings.

3. Band-limited white noise: This sound is based on

white noise, but is bandpass-filtered to contain only

frequencies between 2 kHz and 4 kHz. This frequency

range corresponds to the biggest peak in the spectrum

and contains noticeable shifts between contact classes.

We suspect this to be the most relevant region.

4. Sine wave with a frequency of 2580 Hz: To test if

a single frequency might suffice, we generate a sine

wave signal. Its frequency coincides with the biggest

peak, i.e. resonance, in the recorded spectra.

In addition to the four sound types, we also investigate the

effect of the sound duration. Each sound is evaluated in five

lengths: 5 ms, 20 ms, 50 ms, 500 ms, and 1 s. For each sound
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Figure 8. Evaluation of different active sounds: (a) The sensing

performance is largely independent of the specific type and duration

of the sound played by the embedded speaker. (b) By reducing the

volume of the active sound to 25 %, we minimize the external noise

while maintaining high sensing accuracy.

type and duration, we repeat the automated contact location

experiment, with seven contact classes recorded using the

Panda robot arm. Each data set consists of 175 samples. We

use the average test set classification rate to judge the success

of each sound.

The plot in Figure 8a shows the average classification

rates for the four sound types and five durations. There is

little difference between the different types of sound, with

the single sine wave achieving the lowest average of 97.4 %

and white noise the highest average of 99.7 %. Similarly, the

duration of the sound has almost no influence, with only

a small decrease of the classification rate for the shortest

sounds at 5 ms. Overall, these experiments show that the

active acoustic sensor’s ability to identify the actuator’s state-

dependent modulation is largely independent of the type and

duration of the sound played. However, the best results are

achieved by wide-frequencies sounds, like sweep and white

noise, and a duration of at least 20 ms.

6.2 Sensing Performance Remains High at

25 % Sound Volume

We initially set the sound volume of the embedded speaker

to the highest value that did not create clipping in the

microphone. This maximizes the detail in the recorded

samples, making it easier to identify the state-dependent

changes in sound modulation. At that level, the active sound

is audible on the outside of the actuator. We investigate

how the sound volume affects the prediction accuracy, to

find a value that minimizes noise while keeping the sensor

performance high.

We define the maximum volume (100 %) as the loudest

speaker signal without any clipping in the microphone signal.

Additionally, we record data sets at 50 %, 25 %, 10 %, 5 %,

2 %, 1 %, and 0 %. The latter is identical with passive

sensing, where no active sound is emitted. The sound type

is white noise with a duration of 20 ms. The automated setup

is used to record 25 samples at six contact locations, for a

total of 150 samples at each sound volume. Separate sensor

models are trained for each volume and compared via the

average contact location classification rate.

Figure 8b shows that the prediction rate remains high for

sound volumes of 25 % and higher. Below that it starts to

drop rapidly. This logarithmic profile corresponds nicely to

the decibel scale of the sound pressure level and indicates

that the sensor’s performance depends on the energy of the

active signal. At 25 % of the maximum sound volume, the

acoustic sensor still maintains its high sensing accuracy,

while minimizing its external noise.

6.3 Actuator-Specific Acoustic Properties

Make Transfer of Sensor Models Difficult

The acoustic properties of different actuators will likely

differ to some degree as a result of the manufacturing

process. To evaluate how this affects the transferability of

trained sensor models between actuators, we record data for

five actuators and compare their sensor models.

Using the automated experimental setup, we record

samples for four contact classes (tip, middle, base, and no

contact) for the five actuators. Each class is sampled 25

times, for 100 samples in total per actuator. The active sound

is 20 ms of white noise. For each actuator, we train a separate

sensor model using 60 training samples and the default KNN

classifier. Additionally, we create four combined models,

trained on data from two or three different actuators.

The results in Figure 9a show high classification rates

for same-actuator measurements, i.e. for the actuators the

models were trained on, with an average of 97 % for both

single-actuator and multi-actuator models. However, the

cross-actuator measurements, i.e. for data from actuators

the models were not trained on, are significantly worse. At

35 % ACR the single-actuator transfer result is just above the

random guessing baseline of 25 %. When training on more

than one actuator, the model transfer results are improved

slightly, but with 47 % ACR still comparatively low. This

indicates that the acoustic differences between actuators are

significant and sensor models trained on one actuator do not

transfer well to others. In the future, we plan to identify

a calibration procedure to normalize the spectra of each

actuator. For now, we create separate sensor models for each

actuator, similar to the factory-calibration of other sensors.

6.4 Improving Sensing Results With More

Complex Learning Methods

One of the key components of the acoustic sensor is

the sensor model’s mapping from sound to measurement.

In most experiments, we used a basic k-nearest neighbor
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Figure 9. Evaluation of model transfer and different learning methods: (a) Sensor models do not transfer well between different actuators.

Cross-actuator sensing (solid bars) achieves classification rates close to random guessing. When training sensor models on data from

multiple actuators we achieve a small improvement for cross-actuator prediction. (b) Grid search result for material sensing: While the

KNN model is only slightly better than random chance, other machine learning methods achieve high classification rates. This indicates

that more complex computation helps to extract the relevant information from the modulated sound.

classifier and achieved high classification rates for a large

range of measurable properties. To see if more complex

predictors will further improve the sensor measurements,

we now compare different machine learning methods. As a

benchmark problem, we use the sensing of “object materials”

(Sec. 4.5) for which the basic KNN classifier did not perform

well. For all other problems, the classification rates were high

and we would expect less distinctive results.

We reuse the data recorded for the “sensing object

material”-experiment and perform individual grid searches

for the following learning methods (searched parameters in

brackets, best in bold):

1. K-nearest neighbor classifier (KNN)

n neighbors=[1, 2, 3, 5, 10], distance metric=[L1, L2]

2. Support vector classifier (SVC)

(kernel=[linear, rbf], C=10[-2..10], gamma: [scale, auto])

3. Random forest (RF)

(n estimators=[10, 50, 100, 500], max features=[sqrt, log2],

max depth=[5, 10, full])

4. Multi-layer perceptron (MLP)

hidden layers=[(100), (200,200), (300,300,300)],

alpha=[0.001, 0.1, 1]

For each method, we identify the best parameters using

scikit-learn’s cross-validated grid search function on the 270

training samples. Each best model is evaluated on a separate

test set of 180 samples.

The ACR of each method’s best parameter model is shown

in Figure 9b. The material sensing results of the basic KNN

model are significantly improved by the other models. The

support vector classifier achieves the highest score with an

ACR of 82 %. This indicates that we can further improve the

performance of the acoustic sensor by using more complex

computation methods. Hence, the already very good results

of the KNN models can be considered as lower bounds of

what the acoustic sensor can measure.

7 Limitations of Acoustic Sensing

In our experiments, acoustic sensing has proven to be a

simple, versatile, and robust approach to the sensorization

of soft actuators. We now discuss when it should not be used

and which aspects still require further research.

Because the sensorization method is based on recognizing

small variations in the recorded sound, it may fail when

objects produce sound themselves. Upon contact with such

an object, the sound could be transmitted into the actuator’s

air chamber and get recorded by the microphone. If that

sound is not in the training data, the sensor model will likely

be unable to extract the correct actuator measurement.

Another limitation results from the poor transferability of

sensor models across different actuators. This could possibly

be overcome with a short routine that consists of playing

specific “calibration sounds” to identify and compensate

acoustic differences. This is similar to the initial factory

calibration of other sensors. However, this makes acoustic

sensing a less desirable technology for applications in which

sensorized parts of the robot have to be replaced routinely.

Our acoustic sensor relies on the observable modulation

of sound. But not all actuator states and interactions affect

the modulation equally. While some actuator properties,

e.g. contact location, create distinct sound modulations

which enable high classification rates, other properties, like

the object material, appear to affect the sound modulation

less and may require more complex machine learning

techniques to detect reliably. It is important to identify a

sensor model that works well for a desired measurement.

Novel state properties might become accessible with dif-

ferent representations of the recorded sounds. We currently

use simple frequency spectra, which are fast to compute and

appear to contain relevant information. Other acoustic sens-

ing approaches successfully employed different representa-

tions. Spectrograms, for example, additionally contain infor-

mation about frequency attenuation (Krotkov et al. 1997;

Harrison et al. 2011; Mikogai et al. 2020). The exploration
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of different sound representations and matching learning

methods may lead to additional actuator properties becoming

measurable.

Finally, there is the number of simultaneously measurable

actuator parameters. We showed that a single acoustic sensor

can reliably measure the contact location, contact force,

and actuator inflation at the same time (Sec. 4.7). It should

be possible to include additional measurements, as long as

their sound modulations are unambiguous. However, the

current implementation requires recording training samples

for each parameter combination. To avoid this combinatorial

explosion, it might be beneficial to use a hierarchical sensor

structure instead. The output of one sensor model could

be used as a simplifying prior to the next model. Future

research will have to determine the best structure of such a

hierarchical sensor network.

8 Conclusion

We proposed active and passive acoustic sensing as a

simple, robust, and versatile sensorization method for soft

actuators. As sound travels through the actuator, it is

modulated depending on the actuator’s current physical state

(e.g. shape, forces, contact). From small changes in the

sound’s frequency spectrum, we infer the corresponding

actuator property using machine learning. Our acoustic

sensor thus consists of physical components which record

the modulated sound (embedded microphone and speaker),

and a computational component which extracts the desired

measurement from sound (trained sensor model). Such a

“computational sensor” can use the same physical hardware

to emulate a range of special-purpose sensors, like contact

and force sensors. This acoustic sensing principle has a wide

range of possible applications, especially in soft robotics

where sensors need to be flexible and functional.

We demonstrated the effectiveness of acoustic sensing

in the context of a soft, pneumatic PneuFlex actuator. The

sensor achieved reliable and accurate measurements for

contact location, contact force, and actuator inflation. From a

single sound recording, all three properties can be predicted

simultaneously. Additionally, the sensor was capable of

recognizing the material of contact objects and measuring

the actuator’s temperature, all from recordings of the internal

sound. At the same time, the rubber hull of the actuator

shields the microphone from external sounds, so that even

loud background noises do not affect the measurements.

All this makes acoustic sensing a versatile approach for the

sensorization of soft pneumatic actuators.
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