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Abstract— The compliance of soft actuators makes manip-
ulation safer and simplifies control. But their high flexibility
also makes sensorization challenging. From the large space of
possible deformations not all are equally important. We present
a method for sensorization of soft actuators that, for a given
application, finds an effective layout from a set of sensors. It
starts from a redundant sensor layout and iteratively reduces
the number of sensors. Applying the method to the PneuFlex
actuators of the RBO Hand 2, we identify a layout of four liquid
metal strain sensors and one pressure sensor to predict actuator
deformation in three dimensions: flexional, lateral, and twist.
Finally, the layout is used to build a sensorized RBO Hand 2. It
can detect passive shape adaptation while grasping and reveals
failure cases during manipulation, e.g. slipping fingers while
opening a door.

I. INTRODUCTION

Soft robotics has had significant impact in a number of

areas of robotics, ranging from grasping [1] to locomo-

tion [2]. This impact stems from desirable properties of

soft robotic systems: they are inherently safe and, when

properly designed, increase robustness to uncertainty while

reducing the requirements for perception and control. This

is maybe most easily seen in robotic hands, where the use

of softness has become the standard design paradigm [1],

[3], [4]. When grasping with these hands, their softness lets

the hand passively adapt to the shape of the grasped object,

without explicit sensing or control.

But there is also a price to pay for softness when it comes

to sensing. Due to their ability to deform in many different

ways, the configuration of a soft robotic system can only be

described accurately with a very large number of parameters.

Many sensors would be required to determine all of them.

In addition, most traditional sensor technology, e.g. joint and

motor encoders [5] or inelastic tactile sensing [6], are not

suitable for the integration with soft actuators because of

the softness of the materials. At the same time, extrinsic

sensing, e.g. through visual tracking [7], [8], limits the field

of operation and is susceptible to (self-) occlusions. Still,

there is an unbroken need for sensing in soft systems. As we

will see in Section IV, even applications particularly well-

suited for the soft robotics paradigm still benefit substantially

from sensing. Taken together, sensing—and in particular

proprioception—remains an open problem in soft robotics.

In this paper we present a method for sensorizing soft

actuators. Recognizing the fact that a very large number of
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Fig. 1. Using our method we sensorized the RBO Hand 2, enabling
detection of deformations that commonly occur during manipulation.

sensors would be required to fully reconstruct the shape of

the actuator, we propose a method by which we identify the

most appropriate placement of sensors, given a number of

target deformation modes of particular relevance in a given

application. Starting from a redundant sensor configuration,

the layout is iteratively reduced to a simpler set of sensors,

while minimizing the prediction error.

While the method itself is agnostic to the specific sensor

type, we demonstrate it using soft, flexible and stretchable

strain sensors that can be integrated into soft actuators with-

out negatively affecting their advantageous properties. We

validate the proposed method in the context of grasping with

the RBO Hand 2 [1]. Given three deformation modes deemed

important for manipulation, we determine an appropriate

sensor layout and confirm it in real-world experiments. Our

results demonstrate that the method we propose enables the

sensorization of soft actuators for applications in which it is

not necessary to reconstruct all aspects of deformation.

II. RELATED WORK

The compliance of soft actuators introduces new require-

ments for the sensor technologies. The sensors need to be

as flexible as the actuator to not restrict them. For the

human hand several flexible sensors have been developed.

They measure contact and bending by means of bi-metallic

strips and dielectric stretchable thin-metal films [9], [10].

However, soft actuators often exhibit stretch of more than

200% [1], which these sensors can not achieve. Other flexible

sensors based on carbon-infused silicone are capable of

greater elongation [11], but exhibit unfavorable time effects

due to their viscoelastic material properties.

Recently, the use of liquid metal made it possible to build

highly stretchable strain sensors with maximum elongations



comparable to soft actuators. Metal alloys, like eutectic

gallium-indium (EGaIn), are liquid at room temperature and

can be used to detect strain through change in resistance.

Various patterns have been proposed to sense contact and

multi-axial strain using silicone-embedded EGaIn [12]–[15].

These sensors are promising candidates for the integration

with soft actuators.

Only very few studies of sensorized soft actuators have

been published. Homberg et al. [16] presented a three-

fingered pneumatic hand, equipped with commercially avail-

able resistive flex sensors. A single sensor in each finger pro-

vides feedback about its curvature, which is used to recognize

objects during grasping. Bilodeau et al. [17] included liquid

metal strain sensors directly into the fabrication process

of a pneumatic four-fingered gripper. They use the sensor

measurements in conjunction with the actuation pressure to

detect if an object was grasped. Farrow and Correll [18]

published a design for an easily customizable liquid metal

strain sensor. They inject EGaIn into prefabricated silicon

tubes for simple and robust manufacturing. Attached to

a pneumatic actuator they use the sensor to estimate the

diameter of cylindrical objects. All of these solutions use

only a single sensor per actuator and can consequently only

detect movement in the plane of actuation. However, the key

feature of soft actuators is their passive compliance. For this

reason most interactions cause deformations in more than

one dimension. For many manipulation tasks perception of

additional deformation dimensions offers valuable insights

about the grasp. Depending on the expected tasks, additional

sensing is therefore required.

There have been efforts to create computational methods

to optimize sensor placement on soft structures for higher

dimensional deformations [19], [20]. These are, however,

based on (approximate) actuator models which often are

not available. We therefore propose a method that uses

experimentally gathered data instead of a model, to identify

an effective sensor layout for a given task.

III. SENSORIZATION METHOD

To be able to fully reconstruct the shape of a soft actuator,

a very large number of sensors would be necessary. In many

applications, however, the space of relevant deformations

is only a subset of all possible deformations. We therefore

propose a method to sensorize soft actuators which, given a

specific application, finds the most appropriate sensor layout.

This section describes the general process for any soft

actuator in six steps. In Section IV the same steps are applied

to sensorize the RBO Hand 2.

1) Target Selection: Initially, all application-relevant vari-

ations to the actuator’s state have to be identified. For many

manipulation tasks this will be some form of deformation of

the actuator. But any other measurable physical property, e.g.

contact location, is permissible. For the grasping application,

we chose to sensorize the RBO Hand 2 to detect the

deformation modes shown in Fig. 2.

(a) Pulling on a door
handle

(b) Pushing against a
wall

(c) Lifting a heavy
bottle

(d) Flexional (e) Lateral (f) Twist

Fig. 2. Deformations during common manipulation tasks: (a) flexional
deformation while pulling on a door handle, (b) lateral deformation caused
by pushing against a wall, (c) combined twist and lateral deformation while
lifting a heavy bottle. (d-f) individual deformation modes

2) Redundant Sensor Layout: Approximate modeling and

human intuition is used to generate an initial, redundant lay-

out of sensors for the selected deformations. Through minor

variation in the placement of similar sensors redundancy is

introduced. Fig. 3 shows the redundant sensor layout that

was selected for the PneuFlex actuators of the RBO Hand 2.

3) Obtaining Training Data: In order to perform su-

pervised learning in the next step, labeled training data is

required. For this the soft actuator is manipulated in ways

that are expected to occur in the envisioned application.

Meanwhile the sensor data and ground truth of the target

deformation are recorded. Part of the recorded training data

is shown in Fig. 4.

4) Supervised Learning: The training data is used to

learn a mapping from sensor data to the deformation of

the actuator. The choice of learning algorithm depends on

the type of target data. The quality of the sensor layout is

evaluated with the prediction error of the trained model on

an independent validation set. Fig. 5 shows an excerpt of the

learned PneuFlex deformation estimation.

5) Layout Reduction: The redundant sensor layout is

reduced to find the most appropriate set of sensors for the

task. For this a variant of the Recursive Feature Elimination

(RFE) algorithm [21] is applied, which excludes the least

relevant sensor in each iteration. By using a subset of the

already recorded data, no new measurements are needed. The

reduction is repeated until only a single sensor is left. Two

steps of the applied layout reduction are shown in Fig. 6.

6) Final Layout: The validation error of each intermediate

layout during the reduction steps indicates its quality. The

sensor layout with the lowest error offers the most accurate

mapping of sensor data to deformations. It is chosen as the

final layout. Fig. 8 illustrates the resulting layout for the

PneuFlex actuator.



IV. APPLICATION TO THE RBO HAND 2

We now apply the proposed method to the RBO Hand 2. It

consists of seven highly underactuated, pneumatic actuators,

called PneuFlex [1]. During grasping and manipulation they

constantly adapt their shape when interacting with object

and environment. To perceive these changes sensorization

is necessary. The four fingers of the RBO Hand 2 are

identical PneuFlex actuators. We use our method to find an

effective sensor layout that can detect commonly occurring

deformations. (We do not consider the palm and thumb

actuators here, as they have different geometries.)

Each step corresponds to the respective step of the sen-

sorization method described in Section III.

1) Target Selection: To determine the relevant deforma-

tion we observed the RBO Hand 2 during common manip-

ulation tasks (Fig. 2). From all possible deformations, the

following three best describe the actuator state:

• Flexional: A displacement in the actuated direction.

• Lateral: The finger bends to the side.

• Twist: A rotation about the longitudinal axis.

2) Redundant Sensor Layout: Farrow and Correll [18]

presented a highly stretchable liquid metal strain sensor that

works well with PneuFlex-like actuators. Its thin design has

little influence on the actuator’s compliance and can easily be

adapted to specific sensor shapes. Additionally we measure

the air pressure of the actuator. Because this is required for

actuation anyway, it adds no further complexity to the setup.

With a proper model of the actuator we could analytically

identify good sensor positions. However, for the PneuFlex

actuator no reliable information exists on the deformation

behavior. Instead we have to create the initial, redundant

sensor layout based on intuition and observations. For each

deformation mode we observe the path of maximum stretch

by studying the rubber hull of the actuator. We then introduce

redundancy by placing multiple strain sensors with slight

variations along this path. The resulting initial sensor layout

(Fig. 3) consists of ten strain sensors: two on the back, three

on the sides, and five wrapped around the finger diagonally.

3) Obtaining Training Data: To obtain the ground truth

about the actuator shape we use a motion capture system

(MoCap) by Motion Analysis. With markers on the base and

the fingertip we track the deformation of the actuator in 3D-

space. The magnitude of each deformation mode is extracted

from the MoCap data by calculating the transformation

between the initial resting position of the actuator’s fingertip

and its current pose in each frame. Flexional deformation

is expressed as the angle of the fingertip’s rotation in the

actuation pane. Lateral deformation is quantified as the offset

of the fingertip in millimeters that occurs perpendicular to

the actuation pane. Twist is the angle of rotation about the

actuators longitudinal axis (base to fingertip).

We use a data acquisition system from LabJack to record

the data from the strain and pressure sensors.

We performed the experiment in five identically struc-

tured trials. Each trial consists of five different inflation

steps. Pressures are selected equidistant from 0 kPa (deflated,
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Fig. 3. The redundant sensor layout for the PneuFlex actuator (dashed parts
hidden by the actuator)—Sensor names: 1–right (full length), 2–left (full
length), 3–right (half length), 4–top (full length), 5–top (half length), 6–
single twist (ulnar), 7–single twist (radial), 8–multi twist (proximal), 9–multi
twist (middle), 10–multi twist (distal)

straight) to 200 kPa (maximally inflated). We randomized the

step order to eliminate the risk of temporal effects. Before

each step we perform a calibration movement–one complete

inflation and deflation–to account for small sensor offsets

caused by unreliable electrical sensor connections.

At each pressure level the actuator is deformed manually

by applying forces to the fingertip. The movements are

chosen to mimic the deformations observed during grasping

experiments. They include both individual and combined

occurrences of the three deformation modes.1

Fig. 4 shows the recorded data for a single pressure step.

Vertical lines indicate calibration, inflation, deformation, and

deflation segments. The IDs correspond to those in Fig. 3,

with ”P” denoting the pressure sensor.

4) Supervised Learning: We apply polynomial regression

learning methods from the Scikit-learn toolbox [22] to the

recorded training data. Of the five complete trials, one trial

is randomly selected as test set. The remaining four trials are

used in a leave-one-out cross-validation scheme. The predic-

tion error is determined as the average of the four cross-

validation mean squared errors (MSE). Because the best

degree of polynomial regression is not known beforehand,

we vary it from 1 to 4 and compare the results. Both the

full polynomial expansion with all polynomial combinations

of features and the interaction only setting, which considers

only combinations between different features, are investi-

gated. For brevity we will abbreviate the regression methods

using the shorthand XY , where X refers to the polynomial

degree and Y denotes ”all combinations (A)” or ”interaction

only (I)”, respectively.

Fig. 5 shows the result for a 2I-regression (2nd degree,

interactions only). Data from all 11 sensors are used to pre-

dict the three deformation modes. The original deformations

recorded in the MoCap are plotted in black.

5) Layout Reduction: Our implementation of the RFE

algorithm works by comparing n alternative layouts of n−1

sensors, where n is the number of sensors at the beginning

1Example video available at https://youtu.be/Rvkl-5AEKLs

https://youtu.be/Rvkl-5AEKLs
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Fig. 4. Training data of a single pressure step (Horizontal segments
indicate: I–Calibration, II–Inflation, III–Manual deformation, IV–Deflation)
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Fig. 5. Deformation estimation using all eleven sensors and a 2I-regression

of each iteration. In each layout one sensor is left out. The

layout with the lowest MSE across all regression methods

is selected and used in the next iteration. This repeats until

only one sensor is left.

Fig. 6 shows the results for the first reduction to five

sensors and a later iteration to find the best five-sensor layout.

Each column represents one reduced layout, where the label

indicates which sensor has been left out. Each row is for

a different regression method. The MSE for each layout

and algorithm is represented by a colormap. The yellow ’X’

highlights the lowest MSE and thereby the best combination

of regression method and sensor layout. This layout is then

used in the next reduction step.

6) Final Layout: The result of the layout reduction is

summarized in Fig. 7. For each number of sensors it shows

the MSE of the best layout-regression combination. The
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(b) 5-sensor layout reduction

Fig. 6. The MSE of each combination of layout and regression method
for two feature elimination steps (See text for explanation of labels)
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Fig. 7. Validation curve of the sensor layout reduction, highlighting the
final combination of layout and model

lowest value across all sensor sets is marked with an arrow.

This represents the layout that most effectively predicts the

chosen three deformation modes. When using fewer sensors

not enough variation in the data can be explained and both

training and validation error increase. When using more

sensors, however, the divergence of the two errors indicates

an over-fitting of the regression to the training data.

The final sensor layout (Fig. 8) chosen by our method for

the three deformation modes of the PneuFlex actuator has

a total of five sensors: the four strain sensors 2–left (full

length), 3–right (half length), 5–top (half length), and 7–

single twist (radial), plus the pressure sensor.

V. EVALUATION OF THE SENSORIZED RBO HAND 2

We sensorized the RBO Hand 2 with the goal of gaining

additional insights on interactions during manipulation tasks.

To evaluate if the sensorization was able to accomplish that,

we use the hand in two example tasks: A compliant grasp of

a spherical object and the pulling of a door handle (Fig. 9).

1) Grasping: When grasping an object with the compliant

RBO Hand 2 the fingers passively adapt their shapes. This

passive deformation should be visible in the deformation

data. Fig. 10 shows the estimated deformations during the

grasp of a spherical object. Each subplot shows one de-

formation mode for all four fingers. Three observations are

highlighted in the plots:

• Arrow I: The index finger has a noticeably larger

flexional deformation compared to the other fingers.

This indicates that it is not participating in the grasp.



(a) Final sensor layout (b) Sensorized PneuFlex acutator

Fig. 8. The four strain sensors of the final layout are fabricated in a single
layer and placed on the PneuFlex actuator. (Sensor IDs as in Fig. 3)

(a) Grasping a sphere (b) Pulling a door handle

Fig. 9. The sensorized RBO Hand 2 is evaluated in two manipulation
tasks. Full videos are available in the paper attachment and at https:
//youtu.be/H8p4WbFqtgQ.
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Fig. 10. While grasping a sphere the sensorized RBO Hand 2 estimates
the deformation. The three marked observations are discussed in V-.1
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Fig. 11. The deformation of the sensorized RBO Hand 2 is estimated while
pulling on a door handle. The four marked sections are discussed in V-.2.

• Arrow II: All four fingers show different levels of

lateral deformation. The slight slope in the graph of the

little finger, however, indicates that the finger is slowly

slipping.

• Arrow III: The twist of the middle finger can be seen

in the last subplot. This is a good example of passively

compliant grasping.

2) Pulling: In a second manipulation task we use the

sensorized RBO Hand 2 to pull the handle of a door.

The soft fingers are not strong enough to hold on to the

handle and start to slip. With successful sensorization, the

estimated deformations should show the slippage in the

flexional component as the fingers bend away and finally

slip off the handle. In Fig. 11 each subplot shows the three

deformations of one of the four fingers during the task. Four

notable situations are highlighted:

• Situation I: Three fingers make contact with the door

handle. The little finger shows no additional deforma-

tion because it misses the handle.

• Situation II: The three fingers close around the handle

and start pulling. They begin to slip, which can be seen

in the decreasing flexional deformation.

• Situation III: The middle and ring finger slowly twist

away. Then the ring finger slips off the handle. (The

temporary drop in lateral deformation and twist of the

ring finger at second 12 can be attributed to a pinched-

off strain sensor at the fingertip.)

• Situation IV: The middle finger also slips off the

handle and bumps into the ring finger. Both fingers show

sudden deformations.

VI. DISCUSSION

In the ideal case each orthogonal deformation mode would

require exactly one separate sensor to detect it. For the three

specified deformations in our use case we found a layout

that consists of four strain sensors. This indicates that their

positions on the actuator are close to ideal. By using even

more redundant sensors initially this result could possibly

https://youtu.be/H8p4WbFqtgQ
https://youtu.be/H8p4WbFqtgQ


be improved further. Alternatively a more accurate actuator

model will help to make better informed decisions of where

to place sensors. However, even highly detailed models will

never capture every aspect of physical interaction, so that the

proposed method will stay relevant.

For other applications different or additional deformation

modes may be relevant, e.g. detecting the location of contact

or failure cases like buckling of the actuator due to high

loads. With proper feature representation the same sensoriza-

tion method can be used for many more applications.

While the method itself is hardware-agnostic, one tech-

nical issue we encountered were faulty sensor readings due

to the error prone connection between the liquid metal core

and the required wiring. However, there have been promising

advances in the material sciences, investigating for example

biphasic metal films [23], that have the potential to resolve

theses issues.

VII. CONCLUSION

The compliance of soft actuators is beneficial in many

applications. At the same time, mechanical softness makes

sensorization of those actuators challenging. We presented

a method for the sensorization of soft actuators that–given

a specific set of relevant deformations–identifies a sensor

layout to detect these. The method recursively reduces an ini-

tially redundant set of sensors, by minimizing the prediction

error of the mapping from sensor data to the relevant subset

of deformation modes. We apply this method to PneuFlex

actuator, used in the RBO hand 2 for grasping. In this

application the three main deformation modes of the actuator

are: flexional deformation, lateral deformation, and twist. Our

method identified a layout consisting of four liquid metal

strain sensors and one pressure sensor.

We used the resulting sensorized actuators to build an

RBO Hand 2 with four sensorized fingers. In two manip-

ulation tasks we demonstrated the benefit of sensorization:

During compliant grasps, the sensorized hand can detect

passive object adaptation of the fingers. The sensor data also

reveals grasp failures, caused by soft fingers slipping off a

door handle. Our results show that it is possible to perform

task-relevant sensing with a small number of sensors in soft

actuators, even though their inherent deformation space is

extremely high-dimensional.
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