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Abstract— We create a virtual 2D tactile array for soft
pneumatic actuators using embedded audio components. We
detect contact-specific changes in sound modulation to infer
tactile information. We evaluate different sound representations
and learning methods to detect even small contact variations.
We demonstrate the acoustic tactile sensor array by the example
of a PneuFlex actuator and use a Braille display to individually
control the contact of 29 x 4 pins with the actuator’s 90 x 10 mm
palmar surface. Evaluating the spatial resolution, the acoustic
sensor localizes edges in x- and y-direction with a root-mean-
square regression error of 1.67mm and 0.0 mm, respectively.
Even light contacts of a single Braille pin with a lifting
force of 0.17 N are measured with high accuracy. Finally, we
demonstrate the sensor’s sensitivity to complex contact shapes
by successfully reading the 26 letters of the Braille alphabet
from a single display cell with a classification rate of 88 %.

I. INTRODUCTION

We present a sensorization approach for measuring two-
dimensional contact patterns on soft pneumatic actuators
using embedded, off-the-shelf audio components. This ap-
proach builds upon our previously published “Active Acous-
tic Sensor” [1] and demonstrates how to apply the method to
create a 2D tactile array on the actuator’s surface, all without
any changes to the sensor hardware itself.

In previous work, we demonstrated the surprising ver-
satility of the acoustic sensing approach. With only an
embedded microphone and speaker, we were able to measure
a wide range of different actuator properties, including the
contact location and force and even the temperature of the
actuator [2]. All these measurements are obtained using
the same sensor hardware. In this paper, we extend the
acoustic sensing approach to a new application domain:
two-dimensional tactile sensing. The two key features we
focus on are the sensor’s ability to measure contact as a
two-dimensional tactile image, and the possibility to easily
reconfigure in software the shape and size of the tactile pixels
(taxels) without changing the hardware.

Sensorization addresses the challenge of using soft robotic
hands and actuators in the real world, where their inherent
compliance makes modeling interaction behaviors infeasible.
Tactile feedback allows handling the uncertainty of soft
manipulation by observing contact and reacting accordingly.
Especially in contact-rich tasks like in-hand manipulation [3],
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Fig. 1.

We demonstrate our virtual, two-dimensional tactile array on
a PneuFlex actuator with a Braille display. Using acoustic sensing, we
measure even small changes in contact patterns created by the 32 x 4 pins.

a good estimate of the object position in the hand allows to
select the appropriate control strategy. And since manipula-
tion tasks inherently involve a lot of visual occlusions, it is
much preferable to have embedded, onboard sensors.

We demonstrate the acoustic tactile sensing approach on
the PneuFlex actuator [4] using a modular Braille display to
create various contact patterns (Fig. 1). We explain how to
adapt the sensing method to handle the small differences in
recorded sounds to measure fine contact details. As a result,
we can show that the acoustic tactile array achieves a 2D
contact location accuracy of 1.67 mm and 0.0 mm root-mean-
square errors in X- and y-direction, respectively. We further
demonstrate that a surface area of 2.5 x 5mm is enough to
read Braille letters with 88 % average classification rate.

The great advantage of the acoustic sensing approach is
that it effectively turns the whole actuator into a tactile
sensor, without the need for dedicated tactile sensing hard-
ware. Using only the embedded microphone and speaker,
we can emulate not only sensors for contact location and
force, object material, and actuator temperature (as shown
previously), but also a tactile contact sensor on the whole
actuator surface. This further manifests the great versatility
and wide application range of the acoustic sensing approach.

II. RELATED WORK

In recent years, many promising new technologies for
tactile sensing have been developed. A good overview of the
different functioning principles can be found in the reviews
by Zou et al. [5], Chi et al. [6], and Park et al. [7]. In
this paper, we focus our attention on approaches that either
measure contacts in form of tactile pixels (taxels), as well as
those that employ acoustic sensing.

©2022 IEEE. Accepted at 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

DOI: TBA



Camera-based sensors like GelSight [8], TacTip [9], and
Insight [10] obtain high-resolution tactile measurements by
visually observing contact surfaces, which leaves the sur-
face compliance of the sensorized object largely unaffected.
However, the camera requires a line-of-sight connection to
the point of contact, which makes it infeasible for continuum
actuators with large deformations.

In our lab, we previously developed a tactile sensor using
piezoresistive fabric and flex PCBs that is highly sensitive
and easy to manufacture [11]. But it has a fixed number
of taxels and is placed on the actuator’s surface, which
negatively affects its surface properties. Other approaches
use thin, flexible electronics to create 2D sensor arrays.
Kaltenbrunner et al. created an ultra-lightweight sensor con-
sisting of 12x12 taxels, each roughly 6.6 mm wide [12].
Nela et al. presented a design with 16x16 taxels, each circa
4mm wide [13]. And Wang et al. demonstrate a stretchable
transistor array with a 10x10 taxel sensor with a width of
2mm each [14]. Such solutions are very thin and highly
flexible, which is ideal for soft surfaces like human hands
and soft robots. However, the fabrication is difficult and the
sensor patches require many electrical connections, resulting
in a complex net of wires that would constrain soft actuators.

The second relevant research area is that of acoustic sens-
ing. This promising sensing approach uses audio components
to measure various different properties of sensorized objects,
with high accuracy and minimal influence on the object’s
compliance behavior. As Ono et al. and Harrison et al. have
shown, sounds that travel through objects incur small vari-
ations in modulation [15], [16]. These variations in sound
can be used to detect contact locations along air tubes [17],
the bend angle of pneumatic actuators [18], and grasping
force during minimally invasive surgery [19]. Because many
different properties affect the sound propagation, acoustic
sensing can even be used for visual scene reconstruction [20]
and temperature measurements on smartphones [21]. This
demonstrates the large range of different properties that
acoustic sensors can measure.

In our previous work, we have used these properties to
sensorize pneumatic actuators to measure the contact location
and contact forces, as well as the inflation level of the
actuator, the material of objects the actuator touched, and
the temperature of the actuator [2]. Building upon these
results, in this paper we demonstrate that the acoustic sensing
approach can be extended to create a two-dimensional tactile
array. We use the same sensor hardware and apply the
acoustic sensing principle to measure small variations in
complex contact patterns.

III. ADAPTING THE ACOUSTIC SENSING PRINCIPLE FOR
2D TACTILE ARRAYS

In this paper, we present how to use acoustic sensing for
tactile sensing on soft actuators. For this, we first summarize
the general principle of acoustic sensing and then explain
the key improvements that enable us to create a virtual, two-
dimensional tactile sensing array with it.
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Fig. 2.  Different sound representations of the same 1s sweep audio
recording: We compare the a) waveform, b) frequency spectra, c) spectro-
gram, d) Mel-scaled spectrogram, and e) Mel-frequency cepstral coefficients
(MFCCs) to identify which works best to extract tactile information.

A. Acoustic Sensing Principle

Acoustic sensing is based on two key observations: 1.
Sound that travels through structures gets modulated. 2. The
exact modulation depends on the contact properties of the
structure [22]. Consequently, by detecting small variations in
sound, we can learn to infer the contact property that caused
that change in modulation. Practically, this can be achieved
by generating a known sound with an embedded speaker,
and recording the sound with an embedded microphone
after the structure modulated it. Using data-driven supervised
learning approaches, we then create sensor models that map
sound recordings to corresponding contact states. But when
attempting to use this approach to create a tactile sensing
array, the challenge is that the differences in modulation can
become quite small. Therefore, we need to carefully select
a sound representation that maintains small differences, and
a learning method capable of detecting them.

B. Sound Representations

The objective of selecting a sound representation is to
capture all relevant details of the sound, while also making
them easily accessible. However, due to the lack of reliable
acoustic models for soft actuators [2], it is unclear which
sound components carry the most information for acoustic
sensing. Instead, we try out several different representations
and select the one resulting in the best sensing performance.



Figure 2 shows examples of the representations we eval-
uated. The “waveform” is directly what the microphone
records. To visualize different resonance frequencies more
clearly, the “frequency spectrum” is calculated using a fast
Fourier transform. This is the representation we have previ-
ously used. However, we observed that data could be quite
noisy and large. To address this, we calculate a “smoothed
spectrum” by summing up the short-time Fourier Transform
over time. This results in significantly less noise and fewer
data points, without losing much detail. Another commonly
used sound representation for audio classification is the
“spectrogram”. It adds a time dimension to the spectrum and
therefore captures how the frequencies change over time. A
variant of this is the “Mel-scaled spectrogram” which uses
the Mel scale to emphasize lower frequency ranges. Finally,
the “Mel-frequency cepstral coefficients”’(MFCCs) represent
the short-term power spectrum of the sound and are said to
capture both linear and non-linear sound properties.

Comparing the tactile sensing performance of different
sound representations, we found that the “smooth spectrum”
performed best. We discuss our insights in Section V and
use the “smooth spectrum” for all reported results.

C. Learning Methods

We want to create sensor models that can detect and
attribute specific sound modulations to the corresponding
tactile event. We use a data-driven approach in that we
use training samples to train or set up our model, which
we then test on a separate, previously unseen set of test
samples. Similar to the sound representations, it is not
obvious which learning method is best suited to identify the
relevant modulation differences. So again we evaluate a range
of different methods: k-nearest neighbors (KNN), support-
vector machines (SVM), basic fully-connected neural net-
works (NN), and convolutional neural networks (CNN).
KNNs are simple and fast but weight equally the whole
feature vector. SVMs can learn class boundaries, but the
choice of kernel function is challenging. NNs are very
powerful, but require good tuning and many training samples.
CNNs might work well with the “image”-like properties of
the spectrogram representations. But they tend to ignore the
temporal order of the spectrogram image and have many
parameters to tune. We implemented the KNN and SVM
models using the scikit-learn framework! and the NN and
CNN models using PyTorch?.

IV. EXPERIMENTAL VALIDATION

So far we have explained the acoustic sensing principle
and how to adapt it to two-dimensional tactile sensing. We
now demonstrate our approach in practical experiments. For
this, we use a PneuFlex actuator [4] and a programmable
Braille display (Fig. 1). The soft materials of this pneumatic
continuum actuator make it inherently flexible, which makes
traditional, “hard” sensors infeasible. Additionally, the ac-
tuator’s air chamber provides sufficient space to embed the
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audio components. The Braille display consists of 32 x 4
individually controllable pins which allows us to easily create
different contact patterns on the surface of the actuator with
low delay and high repeatability.

A. Experimental Setup Using a Braille Display

The fabrication steps of the “Acoustic Sensing” PneuFlex
actuator remain identical to our previous publications [1]: We
attach a MEMS condenser microphone (Adafruit SPW2430)
at the base of the actuator’s air chamber, and a balanced
armature speaker (Knowles RAB-32063-000) at the tip. Both
components have a similar linear response range of 100 Hz—
10KHz. The speaker emits a 1s frequency sweep. The
placement on opposite ends of the air chamber maximizes the
travel distance of the sound, increasing the contact-dependent
modulation effects. A USB audio interface (MAYA44 USB+)
drives both audio components at a sample rate of 48 kHz with
32 bit precision. The finished actuator has a palmar surface
area of approximately 90 x 10 mm.

The Braille display consists of two stacked modules with
eight Braille cells each (Metec AG, Flat PCB 8) for a total
of 32x4 pins on an area of 103x10 mm. Between two cells
the space is approximately 6.42 mm. Within each cell, the
pins have a spacing of 2.45 mm. Each pin has an extended
height of 0.7mm and a lifting force of 0.17N. We use a
RapsberryPi to control each pin individually.

We mount the sensorized PneuFlex actuator on top of the
Braille display. The 90 mm long actuator overlaps with 15
of the 16 Braille cells. Due to the manual fabrication, the
actuator’s palmar surface is not completely even. To ensure
pin contact everywhere, we apply a small downward force
during the mounting so that the whole surface makes contact
with the Braille display. All recorded sound samples are
converted into smoothed spectra, split into training and test
sets, and finally used to train and evaluate the sensor models.

B. Resolution Analysis in X- And Y-Direction Shows Root-
Mean-Square Errors of 1.67 mm And 0.0 mm

We start by analyzing the spatial resolution of the acoustic
tactile sensor array in x and y-direction. Ideally, it would
identify the exact location of contact in both dimensions.

Additionally, this demonstrates another key feature of us-
ing acoustics for tactile sensing: Because the sensor hardware
is not made up of physical taxels, we can effectively change
the shape of the virtual taxels by training on a different
dataset. We demonstrate this here with two separate sensor
models for detecting edges in x and y-direction.

We use the Braille display to record two datasets: One
with 29 lines of pins along the x-dimension, and another
one with 4 lines of pins along the y-dimension. The exact
distance between two lines is determined by the pin-spacing
of the Braille display of 2.45 mm within cells and 3.97 mm
between cells. For the 29 x-lines, we record 200 samples per
class and for the 4 y-lines, we record 125 samples per class.
Data are split 3:2 into training and test samples. For both
datasets, we perform a separate grid-search for a k-nearest-
neighbor-regression model.
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Fig. 3. Spatial resolution in the x- and y-direction of the tactile array:
Using a Braille display to create line patterns with a spacing of 2.45 mm,
the acoustic sensor achieves an RMSE of 1.67 mm in the x-direction and a
perfect RMSE of 0.0 mm in the y-direction.

The regression plots in Figure 3 show the high accuracy
of the acoustic sensor. Along the longer x-dimension, the
root-mean-square error (RMSE) across the 2320 test samples
is 1.67mm. And in the shorter y-dimension, all 200 test
samples were predicted exactly for an RMSE of Omm. In
addition to demonstrating high sensing resolution, this also
highlights how easily the “shape” of our virtual sensing
taxels can be reconfigured, simply by using a different dataset
when training the sensor model.

C. Sensitivity Analysis Shows High Accuracy Even For Low-
Force Contacts

Next, we evaluate the sensitivity of the 2D tactile array
to light contacts. This is potentially difficult for an acoustic
sensor, as light contacts likely result in only small changes
to the actuator’s sound modulation properties. We test this
with a single point of contact and calculate the distance
between true and measured contact location on the 2D tactile
surface. Additionally, this will tell us if there are regions of
the surface that offer different sensing accuracy.

To generate the dataset, we again use the Braille display to
make contact with the actuator at known locations. A single
pin of the Braille display has a lifting force of only 0.17 N.
For the first dataset, we record 500 randomly sampled contact
points, each with a single pin extended. To test if higher
contact forces improve sensing accuracy, we additionally

(a) Example pattern with a single pin

(b) Example pattern with a 2x2 patch
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Fig. 4.  Sensitivity analysis using single pins and 2x2 pin patterns: A
single pin of the Braille display has only a small lifting force of 0.17 N.
Nonetheless, the acoustic tactile array achieves an average classification rate
of 76 % and 79 % in x and y-direction, respectively. Using the larger 2x2
pin pattern, the prediction rate is increased to 85 % and 94 %. The bottom
two plots show the mean error distance for each taxel across the tactile array
(blank taxels had no samples in the test data set). The average error distance
for single and 2x2 pin sensing are 0.80 and 0.39 taxels, respectively.

record a second dataset of 2000 random samples using a
2x2 pin pattern to increase the pushing force and size of the
contact patch (see Figures 4a and b). We split both datasets
2:1 into training and test sets and perform grid searches for
two support-vector-classifier models.

Figure 4 shows the average classification rates for the
“single pin” and “2x2 pins” cases, indicating the percentage
of exactly correct measurements split into the x- and y-
direction. The measurement of the x-position (blue) can
be seen to be slightly worse than the y-position (orange)
in both cases. This matches the findings in the previous
section. Nevertheless, the data shows that in 76 % and 79 %
of samples, the x- and y-position, respectively, are correctly
identified given only a single pin of the Braille display
making contact. As expected, the x- and y-accuracy increases
further to 85% and 94 %, respectively, when the contact
patch consists of a 2x2 pin pattern.

Additionally, Figures 4(d) and 4(e) visualize the average
error distance for each virtual taxel for the single and 2x2 pin
dataset. Low values (dark blue) indicate good measurements
as the predicted contact point is close to the true contact

I no date

1




A B CDEF H 1l J KL
00 60 00 00 00 00 00 O® Ce 60 60
00 €0 00 O® 0@ 80 e0 60 00 OO 60
00 00 00 00 00 00 00 00 00 @0 @0
N OP QRS UVv WwX Y
L X N ) o0 00 060 OO0 OO 00 00O OO 00 o0
oce 00 ©0 00 00 00 OO €0 00 OO O®
00 00 0 60 60 60O 066 60 OO 00 00
(a) The Braille alphabet
°
o0

(b) Example of Braille display for the letter ’z’

a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 l(J
T {000 [ .00 0:00 0.00 001 000 000 000 0.0 001 0.0 000 000 000 000 000 000 000 000 V1 000 0:00 0.00 0.00 000
{000 0.00 JRB 0.00 0.00 0.00 000 000 000 000 000 0.0 0.0 000 000 000 0.00 000 000 000 000 .00 000 000 000 000
{000 0.00 0.00 JR 0,00 0.00 000 0.00 0.0 0.0 000 0.0 000 000 000 000 000 000 00D 000 000 DV 000 0.00 0,00 000
4000 000 0.00 0.00 [ 0.0 0.00 0.00 000 0.00 000 0.00 0.00 000 0.00 000 G.00 000 000 000 0.00 .00 0.00 0.0 000 0.00
£ 4000 0.00 000 0.00 .00 (B 000 0:00 000 0.00 000 0.00 000 0:00 000 0.00 000 0.00 000 0:00 000 .00 000 000 000 0.00 0.8
{00 020 00 00 000 0.0 000 000 06 09 00 00 000 00 00 000 000 000 00 030 00 0 00 00 010
11 {000 000 0.00 0.00 000 000 .00 [ 000 000 000 0.00 0.00 000 000 0.00 6.00 000 0.00 000 0.00 .00 000 0.0 0.00 0.00 ©
4000 0.00 000000 000 0.00 0.00 0.00 [ 0.00 0:00 000 000 000 0.00 000 000 000 000 0:00 000 000 000 0.00 0.00 0.00 =
oy {0 000 000 00 000 000 03 000 0o [0 000 600 600 000 000 600 000 000 000 000 000 000 000 000 00 o
& k000 0.00 0.00 0.00 0.00 000 000 0.00 .00 .00 [l 000 0.00 000 0.00 0.00 0.00 0.00 0.00 000 0.04 000 0.00 0.00 0.00 000 0.6 ,8
1090 000 000 000 000 000 000 000 00 0.0 0.0 800 00 00 90 090 000 00 00 00 54809 090 00 000 =
) {00 000 000 0.0 020 000 0.0 00 000 0.0 00 0.0 [ 0.0 000 0.00 0.0 000 0.00 0.0 00 0.0 .00 T 090 0.0 =
£ 1) {000 0.00 0.0 0.0 0.0 0.0 000 000 000 000 000 0.00 0.00 I 000 0.00 0.00 0.00 0.00 0.00 0.00 0.0 000 .00 [ 0.00 %
B {099 090 000 99 09 00 00 099 090 090 000 090 090 000 [T 090 00 000 0 0 0.0 050 0 00 000 030 <
{0 0 000 000 000 06 000 000 00 0 000 000 000 000 0 0.1 [l 000 0w 605 00 00 0 00 01 000 <
11000 0.00 0.0 0.0 0.0 0.0 0.0 000 000 000 000 000 000 000 000 0:00 000 [REY 0.00 000 000 000 000 000 0.0 000 e
4000 0.00 0.0 0.0 0.0 0.0 0.0 000 000 000 000 000 000 000 000 0.00 000 000 [RE 001 0.00 000 000 0.0 0.0 0.00 <<
£, 4000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
00 00 00 020 020 00 00 020 00 00 021 00 00 00 00 00 00 00 0.0 0.0 [0 00 00 000 00] || )
W {000 000 000 000 00 00 000 000 090 000 000 000 090 000 000 000 00 000 00 000 000 000 [RBow 00 010
171000 000 0.0 000 00 0.0 000 000 000 000 000 .00 0.00 BB 000 0.00 0.00 0.00 0.00 000 0.00 0.00 0.0 0.00 [ 0.00
74000 0.00 0,00 0.00 0,00 0.00 0.00 0.00 0.0 0.0 0.0 000 000 000 0.10 000 000 000 .00 0100 0.00 0.00 0.0 0.0 mmm 0.0

abcdntghl] kiﬁlnopq rstuvwxyz
True letter

(c) Confusion matrix for Braille letter classification

Fig. 5. Reading Braille letters: We use a single cell of the Braille display
with a size of only 2.5 x Smm to show all 26 letters of the alphabet. The
acoustic tactile array successfully recognized the complex patterns with an
average classification rate of 88 %. The large values on the diagonal of the
confusion matrix demonstrate the sensor’s high accuracy with only a few
letters being mixed up.

point. This is the case for most of the sensor area, which
demonstrates high accuracy and mostly uniform distribution.
Large values (bright green), like in the top row, reveal that
measurements in this area are less precise. We believe that
these measurements can be improved by a) ensuring a good,
even contact between actuator and braille display and b)
recording additional samples for less accurate regions.

D. Reading Braille Letters with 88 % Accuracy

Finally, we demonstrate the sensor’s ability to differentiate
between complex contact patterns: the Braille alphabet. This
shows that even very small changes in the contact’s shape
result in a detectable difference in sound modulation.

For this experiment, only a single Braille cell is used to
display each letter of the alphabet in an area of approximately
2.5 x Smm. All other pins remain retracted (Fig. 5(b)). We
record a dataset with 200 samples per letter and split the
resulting 5200 total samples 3:2 into training and test set with
an equal class distribution. We use a support vector classifier
and perform a grid search over its hyper-parameters.

Figure 5(c) shows the confusion matrix for the 2080 test
samples. The high values on the diagonal demonstrate the

very reliable measurements of Braille letters using only the
2.5 x 5mm area of the acoustic tactile array. The average
classification rate of letters is 88 %. In Figure 6, we show
in which pins the misread Braille letters differed. It can be
seen, that the pin in the bottom right corner is involved in
most misclassifications. This also explains the four “pairs”
of often-confused letters: 1/v, m/x, n/y, and o/z. For each pair,
the only difference is the bottom right pin.

Taking the idea of read- .
ing Braille with the acous-
tic tactile sensor even a
bit further, we simulated i
the reading of a text made
up of the 3000 most com-
mon English words?. We .
randomly sampled 100 000
words and applied the
probabilities from the con-
fusion matrix in Fig. 5(c)
to simulate the misclassi-
fication of individual let-
ters. We then used a very
simple heuristic based on
the Hamming distance of
words, to find the most
likely word candidate. Us-
ing this strategy, the tactile sensor could identify the correct
word 95 % of the time. In less than 1 % a measurement error
results in a different existing word, in 5 % the heuristic fails
and returns a wrong word, but in 39 % the simple heuristic
successfully corrects a misread word back to the original.

In any case, the classification rate of 88 % for reading
Braille letters in a sensor area of 2.5 x 5 mm demonstrates
that the acoustic tactile sensor array measures even complex
contact patterns of Braille letters with high accuracy.

100

Predicted incorrectly

50

=0

Fig. 6. When comparing the pins
of misclassified Braille letters, it be-
comes obvious that the pin in the
bottom right is causing the most er-
rors. This is also the pin that is used
by the fewest letters (u-z). Additional
training samples may help to correct
this shortcoming.

V. DISCUSSION

The evaluation of different sound representations (Fig. 7)
yielded a surprising result: The two comparatively simple
frequency spectra outperformed the other (more complex)
representations, including those with additional information
via the temporal axis, e.g. the spectrogram. We believe that
this is due to the complexity of the passive shape adapta-
tion of the soft actuators which in turn results in distinct
changes in the sound modulation. The actuator’s compliance
effectively “embeds” the relevant tactile information into
the sound, making it unnecessary to use more complex
representations. We chose to use the smoothed spectrum, as it
performs similar to the regular spectrum, but is more robust
and significantly speeds up learning.

When comparing the different learning methods, we ob-
served that the simple KNN classifier worked well for
simpler problems like edge localization. But SVM achieved
the best results for complex problems like Braille character

3https://www.ef.com/wwen/english-resources/english-vocabulary/
top-3000-words/
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Fig. 7. When comparing the classification accuracy of Braille characters,
the support vector classifier shows good results for most sound representa-
tions, with the regular and smoothed frequency spectra achieving the highest
values of 90 % and 88 %, respectively.

recognition. We were unable to achieve comparable results
with the network-based methods, which may be due to the
limited number of training samples or our limited experience
with tuning network parameters. Neural nets have recently
been shown to perform well with contact microphones [20],
so they may still be useful for sensing problems where the
simple models fail to achieve good results.

Finally, it is worth noting that the experiments in this
paper aim to show the possibility to use acoustic sensing
to create accurate virtual tactile arrays. While the reading
of a Braille display may have limited practical applications,
it demonstrates that the acoustic sensor can extract detailed
tactile information from the surface of a soft actuator. Next,
we plan to investigate the sensing behavior with novel objects
and situations for practical use of the acoustic tactile sensor
with a dexterous soft hand, like the RBO Hand 3 [23].

VI. CONCLUSION

We presented a virtual two-dimensional tactile array based
on acoustic sensing. Audio components embedded into a soft
actuator record contact-depend changes in internal sounds
and a trained sensor model maps these sound changes to
contact patterns. We discussed different sound representa-
tions and learning methods to improve spatial resolution and
sensitivity to even small contact events.

We demonstrated the acoustic tactile array on the soft
PneuFlex actuator using a Braille display. We determined the
spatial resolution of the sensor in x- and y-direction to be
close to the 2.45 mm pin-spacing of the Braille display, with
root-mean-square regression errors of 1.67 mm and 0.0 mm,
respectively. Even for light contacts of a single Braille
display pin with a force of 0.17 N the x- and y-position were
correctly classified with 76 % and 79 % accuracy. Finally,
we showed that the acoustic tactile array could read all 26
letters of the Braille alphabet from a single Braille cell with
a classification rate of 88 %.

We believe these results demonstrate the impressive detail
achievable when using sound. The simple hardware and large
range of applications make acoustic sensing a highly versatile
approach for tactile sensing in soft robotics.
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