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Abstract— The space of all possible deformations of soft
robotic actuators is extremely large. It is impossible to explicitly
measure each internal degree of freedom, regardless of the
number and types of sensors. It is, however, possible to
measure a smaller subset of task-relevant deformations using
only a few well-placed sensors. But for a different task, the
soft actuator’s deformation behavior might differ significantly.
Instead of finding a new sensor placement for the new task,
which would result in a separate hand for every task, we
propose a method that maintains the original sensors and uses
prior knowledge about each task to extend the applicability of
the existing sensorized actuators to new tasks. We demonstrate
our approach by the example of a PneuFlex actuator of the
RBO Hand 2. When sensorizing the actuator for a single task,
the sensor model does not transfer well to other tasks. Using
our multi-task method, we train new sensor models that use
prior knowledge about the tasks. The new models improve
measurement accuracy for the new tasks without having to
change the sensor hardware.

I. INTRODUCTION

Soft actuators have many internal degrees of freedom due
to their compliant design. While this makes them ideal for
grasping and manipulation applications that require safety
and robustness [1], it also makes sensorization a challenge.
The space of all possible deformation states of a soft actuator
is extremely big, and no amount of sensors could measure
it exactly. However, many of the possible deformations do
not typically occur. For a given task, only a small set of
deformations can be expected to appear. This drastically
reduces the sensorization difficulty as only the subspace of
expected deformations needs to be assessed. When the task
is known, we can find a small set of sensors that measure
the task-relevant deformation features of the actuator [2].

For different tasks, however, the behavior of the soft
actuator may be very different [3]. The expected deforma-
tions may not lie in the same subspace. Instead of building
new sensorized actuators for each new tasks, it would be
preferable to reuse existing sensor hardware. But given the
complex deformation behaviors of soft actuators, it is likely
that the combined deformation subspaces of multiple tasks
can no longer be described with a simple sensor layout.

In this paper, we present a method that achieves multi-task
sensorization for soft actuators while maintaining simple sen-
sorization hardware. By using prior knowledge about which
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of the different tasks the actuator is currently performing,
we can reduce the space of expected deformations back to a
simple subspace. This allows us to interpret the sensor data
accordingly, without requiring complex sensor layouts. This
way we can use the same sensor hardware for multiple tasks
with different deformation behavior.

We demonstrate our approach on the PneuFlex actuator
of the RBO Hand 2 [4], [3]. We identify three manipulation
tasks and show that sensor models that successfully predict
deformations for one task, perform significantly worse for
other tasks. This confirms that the deformation behaviors
lie in separate subspaces. Subsequently, we employ our
multi-task sensorization method to maintain the sensor hard-
ware found for task one, while improving the deformation
prediction by a factor of 3 and 1.5 for tasks two and
three, respectively. This shows that we can reuse existing
sensorized actuators for new tasks by using prior knowledge
about the actuator’s expected deformation subspace.

II. RELATED WORK

The goal of sensorizing soft actuators is to measure the
relevant interactions with an object or the environment. This
feedback allows to compensate motion uncertainty and react
to unexpected contact events [5]. This requires novel, flexible
sensor technologies. Additionally, we need to identify where
to place those sensors on the actuator, as we can never
measure the complete state of a soft actuator.

A. Soft Sensor Technologies

With the rising interest in soft robotics, the field of flexible
sensors has also gained attention recently. A comprehensive
overview of various soft sensor technologies is given in [6]
and [7]. The collection of technologies ranges from strain
and contact sensing to deformation and curvature sensing.

In this paper, we use the PneuFlex actuator [4]. This
pneumatic actuator is made of highly flexible silicone. We
have found that liquid metal strain sensors are well-suited
for these actuators because they are very flexible and eas-
ily customizable [2]. However, the multi-task sensorization
method we present in this paper is independent of the sensor
type and applies to any sensorized actuator that has more
internal degrees of freedom than can be sensed directly.

Liquid metal strain sensors are based on metal alloys that
are liquid at room temperature, e.g. eutectic gallium-indium
(EGaIn). These sensors can be used to detect strain through
change in resistance [8]. The sensor can be embedded in the
actuator during the fabrication [9], or prepared separately and
attached as needed [10]. This gives a lot of freedom when
sensorizing a soft actuator. A flexible, manual fabrication



method was presented by Farrow and Correll [11]. It allows
for highly customized sensor layouts, without the need for
special equipment. We adopt this technique to create the
sensor layouts for our PneuFlex actuator.

B. Using Sensorized Soft Actuators

Even when the preferred sensor technology is chosen, we
still need to identify where to place the sensors on the actua-
tor. Because the complete space of possible deformations of
a soft actuator is too big to measure completely, any sensor
placement will need to consider the desired task and the
task-relevant subspace of actuator deformations.

Task-specific sensor placements are used to measure the
surface shape of an actuator [12] and to identify objects
by their shape and size by measuring the passive shape
adaptation of the actuator [13], [11]. Strain sensors on pneu-
matic actuators have also been used to implement force and
position control [14]. These applications identified a specific
sensor placement to achieve a specific task. More generally,
we have shown that for a given task it is possible to find a
small set of sensors to measure the subspace of task-relevant
actuator deformations [2]. However, the task imposes the
reduced deformation space that allows to use only few
sensors. When the task changes, the same sensorization may
no longer be able effective, because the deformation behavior
exists in a different subspace.

In this paper, we present a method that does not require
to change the sensor hardware in order to adapt a soft
actuator to new tasks. This is possible because we use
prior knowledge about the different subspaces of deformation
behaviors that correspond to the different tasks.

III. SELECTING TASKS AND TASK-RELEVANT
DEFORMATIONS

The method we are presenting is meant to enable an
existing sensorized actuator to be used for novel tasks. This
is only necessary if the deformation behavior of the actuator
is significantly different in these tasks. Then the old sensor
model can no longer be used. In this section, we describe
three common manipulation tasks that result in such varying
deformations of the actuator. Additionally, we identify a set
of relevant deformations for all three tasks. Using a set of
strain sensors, we will attempt to measure these ”interaction
features”. The accuracy by which the sensor model is able
to predict these features will be our metric to evaluate the
applicability of a given sensorization for a specific task.

A. Manipulation Tasks with Dissimilar Deformations

We are interested in tasks that are common in grasping
and manipulation applications and involve interactions of the
actuator with an object or the environment. Furthermore, the
tasks should involve different types of deformation of the
actuator, as this will make it difficult for a sensorization that
was designed for one task, to transfer to another.

In our lab, we use the RBO Hand 2 for several manip-
ulation applications. Its soft PneuFlex actuators are highly

(a) Task 1: Fingertip
interaction

(b) Task 2: Blunt inter-
action

(c) Task 3: Localizing
contact

Fig. 1. Three common manipulation tasks for the RBO Hand 2; Because
the hand interacts in different ways in each task, the deformation behavior
of the fingers is not the same.

compliant and underactuated, which allows exploiting con-
tact with the environment in various ways. The following
three tasks commonly occur during such applications and
benefit from sensor feedback (Figure 1):

Task 1 - Fingertip interaction: This task consists of
interactions of the hand with the environment, in which
the fingertips make contact. This often occurs when sliding
objects or during a pinch grasp [15].

Task 2 - Blunt interaction: The interactions during this
task involve higher forces, often localized around the central
part of the finger. This occurs during pushing and pulling
operations, and when lifting or holding a heavy object [16].

Task 3 - Localizing contact: In this task, the hand is
used to localize the edge of an object. By detecting the
relative position between object and hand we can compensate
perceptual and motion uncertainty [5].

B. Selecting Relevant Interaction Features
Exact reconstruction of the actuator’s shape is infeasible

in all of these tasks. The space of possible deformations
is too big. But to successfully perform the tasks, we only
need to measure certain aspects of the interactions between
actuator and object. In the following, we describe a 10-
dimensional vector of interaction features and explain why
these are relevant for the tasks (Figure 2):

Overall deformation (3D): The cumulative deformation
in flexional, lateral, and twist direction describes the overall
shape of the actuator. While this feature disregards where
along the actuator deformation occurs, it is a good indication
of grasp success and collisions.

Forces and torques (6D): Measuring interaction forces
helps to prevent damage, detect collisions, and reason about
object properties like weight. The reference frame is placed
at the base of the actuator, as this is where forces and torques
are transmitted to the mounting scaffold.

Contact location (1D): This feature describes where along
the side of the actuator a contact occurs. Knowing the
contact location allows compensating for other sources of
uncertainty, e.g. in perception or motion execution.

IV. SINGLE-TASK SENSOR PLACEMENT

Before introducing our method that extends existing sensor
layouts to additional tasks, we first need to find the sensor
placement for a single task. For this, we adopt the sensoriza-
tion method previously presented in [2].



(a) Overall defor-
mation (3D)

(b) Forces and
torques (6D)

(c) Contact loca-
tion (1D)

Fig. 2. The 10-dimensional vector of relevant interaction features illustrated
on the PneuFlex actuator

A. Layout of Liquid Metal Strain Sensors

The first step of the single-task sensorization is to create
a redundant sensor layout, from which the most useful
sensors can be selected. We distribute 16 liquid metal strain
sensors across the hull of the actuator. By covering sections
of the hull with multiple different sensors, we introduce
redundancy. For easier manufacturing, the strain sensors are
divided into three separate layers(Figure 3). Layer 1 consists
of three sensors that cover the full length of the actuator.
These sensors were chosen because they have the potential to
measure the overall shape of the actuator. Layer 2 consists of
four sensors that are placed diagonally at different angles and
sections of the actuator. These sensors were chosen because
they have the potential to measure twist, as well as detecting
a difference between tip and base deformations. Layer 3
consists of nine sensors, each focused on a different part of
the actuator’s hull. These sensors were chosen because they
have the potential to localize the contact location by detecting
variances in deformation along the actuator. All three layers
are attached to the hull of the PneuFlex actuator (Figure 3).
In addition to the 16 strain sensors, we measure the pressure
in the base and tip air chamber with two pressure sensors
(MPX4250DP). They are needed for actuation, anyway, and
have the potential to be used to measure forces or contact
locations through relative pressure changes.

B. Predicting Interaction Features from Sensor Data

The next step is to use the sensor information to predict
the task-relevant deformations. For this, we train a sensor
model that maps sensor data to interaction features. The pre-
vious sensorization method used polynomial regression [2].
However, the interaction features describing the force/torque
and contact location appear to be too complex for such a
simple approach. Instead, we use a basic multilayer per-
ceptron (MLP) which is better suited to encode these non-
linear interactions. Using the scikit-learn framework [17], we
performed a parameter search and identified the following
network parameters: 3 hidden layers of 64 nodes, a learning
rate of 0.01 for the “adam” solver, and early stopping with
a validation fraction of 0.1. The sensor data (input data) and
the interaction features (target data) are both normalized to
zero mean and unit variance.

Layer 1 Layer 2 Layer 3

TopLeft Right TopLeft Right TopLeft Right

(a) The 16 strain sensors across 3 layers cover different parts of
the actuator’s hull. Each color represents a separate sensor.

Tip 
air chamber

Base 
air chamber

(b) PneuFlex actuator with 16 strain sensors

Fig. 3. The redundant strain sensor layout and the sensorized prototype

To identify which sensors are most useful, we perform
an iterative construction of sensor sets. This is similar to
the recursive feature elimination of the original approach [2]
but reverses the direction. It starts by identifying the best
1-sensor layout, then adds the next best sensor and so on.
This emphasizes few-sensor layouts, which is what we are
usually interested in. Each sensor layout is evaluated with
3-fold cross-validation, using the mean squared error (MSE)
between ground truth and model-prediction, averaged over
the ten-dimensional normalized interaction features.

As a result of this procedure, we obtain the order of
usefulness of all 18 sensors (16 strain, 2 pressure) for a given
task. This order tells us the task-specific, most effective n-
sensor layout, where n is the number of sensors we choose
to use.

V. MULTI-TASK METHOD EXTENSION
USING PRIOR-KNOWLEDGE

In the previous section, we explained the sensorization
process for a single task. One possibility to approach the
sensorization for additional tasks would be to simply repeat
the process for each task. However, this would result in a
new sensor layout for each task. It would be preferable not
to build new hardware for each task. An alternative would be
to use the existing layout and train a sensor model to predict
deformations in both the old and the new tasks. But as the
experimental validation will show, the deformation spaces of
different tasks can be very different. Thus, a simple sensor
layout will not be able to describe both tasks at the same
time. Instead, we present a method that maintains an existing
sensorization from the first task but uses prior knowledge to
distinguish between different deformation subspaces.
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load cell

Sensorized Actuator Interaction Object
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Fig. 4. Experiment setup with sensorized PneuFlex prototype, tracking
markers, load cell, and interaction object

A. Using Prior-Knowledge in the Sensor Model

The prior knowledge we use consists of the information
which of the tasks is currently active. The active task
information is included as three additional input features
to the multilayer perceptron regressor. The three signals are
one-hot encoded inputs that indicate which of the three tasks
the sensor measurement originated from. Using the extended
sensor input we retrain the MLP on data from both the
original Task 1, as well as the new additions Task 2 and 3.
During this phase we keep the sensor sets fixed, that means
we do not change the hardware that was found for Task 1.

VI. EXPERIMENTAL VALIDATION

A. Gathering Ground Truth Data

The first step in validating our method is to record
ground truth data of sensor measurements and corresponding
interaction features. We use the data to train and evaluate the
different sensor models.

Hardware Setup: Figure 4 shows the setup of the exper-
iment. The sensorized PneuFlex prototype is equipped with
three sets of tracking markers: at the base, between the two
air chambers, and at the fingertip. A motion capture system
(Motion Analysis) records marker positions. The actuator is
mounted on top of a load cell (ATI Mini40) that measures
forces and torques at the actuator’s base. To measure where
along the actuator contact occurs, the interaction object is
also equipped with tracking markers. Finally, sensor data
from the 16 strain and the 2 pressure sensors are recorded
at 100 Hz using a data acquisition unit (LabJack U6).

Experimental Protocol: To test if the sensor models gen-
eralize over different actuator inflations, we record data at
nine pressure levels: [40,120,235] kPa for the base chamber,
combined with [20,105,200] kPa for the tip chamber. For
Task 1 - Fingertip interaction we push, pull, and twist the
tip of the actuator and recorded 100k samples (ca. 16 min).
For Task 2 - Blunt interaction we simulate the expected
interactions by pushing the midsection of the actuator with
a blunt object. We apply forces of various magnitudes (0–
8 N) and directions (−90 ◦ to 90 ◦). We recorded 50k samples
(ca. 8 min) for Task 2. For Task 3 - Localizing contact the
tip of an object is used to contact the actuator at different
positions along its palmar side. The force of the contact is
smaller compared to the blunt interaction task (<5 N). We

recorded 40k samples (ca. 6 min) for Task 3. Additionally,
we recorded separate test sets for each of the tasks with 25k
samples (ca. 4 min).

Data Pre-Processing: The 10-dimensional vector of in-
teraction features is determined from the measured ground
truth of motion tracking and load cell. The flexional, lateral,
and twist of the overall deformation (3D) is calculated as
the pitch, yaw, and roll angles, respectively, of the rotation
between the base frame and the fingertip frame, measured
by the tracking markers. The forces and torques (6D) are
directly measured with the load cell. The contact location
(1D) is calculated as the intersection point between the
tracked object and actuator, whenever the absolute force
value indicated any contact. Example segments of corre-
sponding sensor data and interaction features for each of
the three tasks are shown in Figure 5.

B. Comparing the Deformation Behaviors of Tasks

With the recorded data we can train task-specific sensor
models and evaluate their accuracy in predicting the observed
deformations. If it is indeed possible to measure the selected
subspace of task-relevant interaction features using only a
few sensors, we should see small prediction errors even
with a small number of sensors in the layout. We would
also expect that error decreases with more sensors, as more
information about the actuator is available. Figure 6 shows
the mean squared errors (MSE) of the model prediction on
the test data set. The shaded regions indicate the standard
error of the mean of the ten interaction features. We trained
a separate sensor model for each task and evaluated their
predictions for data samples from all three tasks.

The sensor models perform reasonably well for tasks they
were trained for, e.g. Task 1 in Figure 6(a). The fact that the
models predict the test data with a low MSE shows that a
lower-dimensional subspace of deformations exists and can
be measured with only a few sensors.

The second observation is the steady decline of the pre-
diction error with an increasing number of sensors. With
more sensor measurements available the prediction gets more
accurate. This points to an important trade-off: Prediction
accuracy versus number of sensors. While each additional
sensor improves the prediction, they also influence the ac-
tuator’s compliance, increase fabrication time, and introduce
additional failure points. This is a fundamental challenge in
the sensorization of soft actuators, which our method cannot
solve. However, by returning an importance-sorted list of
sensors the method enables an informed decision. Instead of
making this decision now, we will use the importance order
defined for the single-task case of Task 1 and assume it as
our fixed sensor order. This way we evaluate the usefulness
of prior knowledge for any n-sensor layout.

Finally, we analyze the prediction accuracy for tasks the
sensor model was not trained on. This test shows how similar
the deformation behavior is between tasks. In the case of
comparable deformation subspaces, the sensor model should
predict the other tasks equally well. However, the predictions
of untrained tasks in Figure 6 is noticeably worse. The only
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Fig. 5. Three example segments of sensor data and corresponding interaction features: The deformation behavior of the actuator is different from task to
task. This is visible in the distinct patterns of the interaction features and makes it unlikely that sensor models can be transferred between tasks.

exception is Task 3 in Figure 6(b), where the trained Task 2
and untrained Task 3 have similar prediction errors. But since
the opposite is not true, i.e. Task 2 is not predicted equally
well in Figure 6(c), the models are not interchangeable.
Altogether, it can be seen that sensor models that were
designed for one specific task, are not necessarily applicable
to measure the same interaction features for a different task.

C. Extending an Existing Sensorization to New Tasks
The final step of the validation of our sensorization method

is to evaluate the multi-task performance of sensor models
that use prior information about the tasks. We claim that
by providing data about which task is active, the sensor
model can focus on the task-specific subspace of deformation
behaviors and consequently improve its prediction accuracy.

To test this we first evaluate the extensions to Tasks 2
and 3 separately, and finally for all three tasks combined.
Each retraining of the sensor model with prior knowledge
is repeated three times. The plots in Figure 7 show the
average of the prediction MSE. The shaded area indicates
the standard error of the mean across the three repeats.

Comparing the difference in prediction error between
the single-task model and the prior knowledge model, the
improvement is clearly visible. For the extension to Task 2
(Fig. 7(a)), the MSE is reduced by a factor of 3. In the
case of Task 3 (Fig. 7(b)), the improvement is less drastic
but still notable at a factor of ca. 1.5. In both plots, the
performance of Task 1 stays almost the same. This means,
the addition of the other tasks does not influence the model’s
ability to predict Task 1 data, which is good. These results
validate our method and show that it is not necessary to
change the sensors of an existing sensorized actuator to use
it for novel tasks. By including prior knowledge about the
tasks, the sensor model can distinguish between the different
subspaces of expected deformation behavior of each task.

Finally, the third plot (Fig. 7(c)) shows the results when
both Task 2 and 3 are added to the model. Again, Task 2
is predicted nearly as well as Task 1. However, Task 3 only
improves for more than ten sensors. If the prior knowledge
model had truly learned to differentiate between the tasks, the
prediction in the three-task case should be comparable to the
two-task cases. The fact that the performance is worse—even
the Task 1 prediction deteriorates slightly—likely indicates
that the network size is too small, to account for all tasks at
the same time. Increasing the number of hidden layers and
nodes should alleviate this problem.

VII. CONCLUSION

We presented a method for the multi-task sensorization
of soft actuators that uses existing sensor hardware for
new tasks by using prior knowledge about the expected
actuator behavior. This is possible even though the space of
actuator deformations is high-dimensional because each task
corresponds to a smaller subspace of expected deformations.
By including prior knowledge about which task is active,
the sensor model used to predict the deformation is aware
of what subspace to expect and interprets the sensor data
accordingly. We demonstrated our approach for the PneuFlex
actuator of the RBO Hand 2. For three common grasping and
manipulation tasks (Fingertip interaction, Blunt interaction,
and Localizing contact) we identified task-relevant interac-
tion features (3D overall deformation, 6D forces and torques,
and 1D contact location). A multilayer perceptron regressor
maps data from up to 16 liquid metal strain sensors and
2 pressure sensors to the interaction features. The sensor
models trained with prior knowledge achieve a 3-fold and
1.5-fold reduction of the prediction errors for two new tasks
while maintaining the existing sensor hardware.
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Fig. 6. Prediction performance of single-task models (standard error of the mean indicated as shadow): Each model is trained for one task and evaluated
on all three. While the prediction error for the designated task is low, it is noticeably higher for the other tasks. This shows that sensor models can be
found for one task, but do not transfer well to other tasks.
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Fig. 7. Prediction performance of the prior knowledge models (original performance is shown with dotted lines, standard error of the mean indicated as
shadow): By including information about the task-specific deformation subspace, the sensor model improves prediction of new tasks without impacting the
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[2] V. Wall, G. Zöller, and O. Brock, “A method for sensorizing soft
actuators and its application to the RBO Hand 2,” in IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2017, pp.
4965–4970.

[3] R. Deimel and O. Brock, “A novel type of compliant and underactuated
robotic hand for dexterous grasping,” The International Journal of
Robotics Research, vol. 35, no. 1-3, pp. 161–185, March 2016.

[4] ——, “A Compliant Hand Based on a Novel Pneumatic Actuator,” in
IEEE International Conference on Robotics and Automation (ICRA),
2013, pp. 2047–2053.
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