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Abstract— A robotic system’s hardware and control policy
must be co-optimized to ensure they complement each other
to interact robustly with the environment. However, this com-
bined search is extremely high-dimensional and intractable
without a suitable underlying representation. This paper uses
environmental constraints to structure the co-design space for
manipulation. We show that task-relevant constraints encode
regions of the search space containing reasonable co-design
solutions. Furthermore, this underlying representation renders
a co-design space amenable to gradient-based optimization. For
efficient search, we present the co-design Jacobian that describes
how the robot’s motion varies with control as well as hardware
design changes. This Jacobian exploits the structure induced
by environmental constraints for iterative design updates in the
co-design space. Using these two conceptual tools, we co-design
manipulators, grippers, and multi-fingered hands, showing that
environmental constraints are an effective representation for co-
designing diverse manipulation systems. Our methodology also
scales well with increased co-design parameters, rendering the
co-design of complex, high-dimensional manipulation systems
feasible.

I. INTRODUCTION

The capabilities of a robotic system depend on how well
the hardware and the control policy complement each other.
Therefore, we must co-design hardware and control strate-
gies to ensure synergistic performance. However, the search
space spanned by hardware and control parameters is high-
dimensional, rendering the co-design problem extremely
challenging. Furthermore, we still lack established practices
that make co-design effective for complex robotic systems.
Therefore, outlining fundamental principles that make this
high-dimensional search tractable will help us design more
competent robots. We investigate this in the context of robot
manipulation involving contact.

We present two conceptual tools for co-designing complex
manipulation systems. Firstly, we propose to structure the
high-dimensional design space, spanned by the hardware
and control parameters, using the notion of environmental
constraints [1]. Environmental constraints (ECs) implicitly
capture the combined effect of the pertinent hardware and
control parameters, thereby encoding the task-relevant fea-
tures of the search space. Furthermore, we show that an
underlying representation based on ECs produces a co-design
space amenable to gradient-based optimization.
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Fig. 1. High-dimensional co-design of manipulation systems is feasible
using task-relevant constraints. A randomly initialized point (

⊗
) in the co-

design space, spanned by hardware and control parameters, is directed to the
blue regions containing competent co-designs (

⊗
) that form task-relevant

constraints by gradient-ascent (dashed lines) using the co-design Jacobian.

The second tool we present is the co-design Jacobian that
exploits the structure induced by ECs. While the conven-
tional robot Jacobian describes how the robot’s motion varies
with changes in the control inputs, the co-design Jacobian
augments this with hardware parameters, capturing how the
robot’s motion varies with changes in hardware design and
control inputs. Together with the structure induced in the
search space by ECs, the co-design Jacobian is a conceptu-
ally intuitive and computationally efficient tool for efficient
gradient-based optimization in the co-design space.

We use these tools to co-design diverse manipulation
systems, like robot arms, grippers, and multi-fingered hands.
Our experiments demonstrate efficient co-design in 80-
dimensional spaces, taking less than 1.5 minutes on a single
3.50GHz CPU. The tools described here scale well in com-
putational complexity when we increase the dimensionality
of the co-design space to as high as 2560, more than enough
for practical robotic systems. Our results demonstrate that
ECs provide insights into the structure of the co-design
space, rendering the co-design of complex, high-dimensional
manipulation systems feasible.



II. RELATED WORK

We first discuss the need for task-specific priors like
environmental constraints (ECs) that impose an exploitable
structure on the high-dimensional search space, enabling
efficient co-design. We also review various optimization
methods and motivate a co-design approach that is concep-
tually intuitive and computationally efficient.

A. Environmental Constraint Exploitation

Co-design requires a search space spanned by hardware
design and control parameters. Researchers have explored
various design representations like primitive shapes [3],
parametrized meshes [4], design graphs [5], voxel grids [6],
cage-based deformations [7], and relied on a spectrum of
physics-based and data-driven models for control. These
design and control representations define an extremely high-
dimensional search space without encoding task-specific
information. For efficient search, a suitable representation
must also encode the task-relevant features of the design
space, guiding the search directly to pertinent co-designs.
Task-specific priors like gaits and foot contact timings were
useful for animating animal locomotion [8] as well as co-
designing legged robots [9], [10]. These priors render the
co-design of legged locomotion effective by imposing an
exploitable structure to the search space. However, no such
candidate offers insights into the structure of co-design space
for manipulation.

We propose using environmental constraints (ECs) to
structure the co-design space for manipulation systems. EC
exploitation refers to processes that leverage the environment
to reduce uncertainty in state variables [1]. It has proven to
be an effective tool for designing both hardware [19] and
control strategies [20], [21] for manipulation. We argue that
task-relevant ECs capture the combined effect of pertinent
hardware and control and their interaction with the envi-
ronment. Therefore, an underlying representation based on
ECs encodes the regions of the co-design space relevant to
manipulation tasks.

B. Optimization Methods in Co-design

Researchers have employed various optimization methods
for co-designing synthetic agents. Evolutionary algorithms
like particle swarm optimization [4] and evolutionary strate-
gies [6] directly search for globally optimal co-designs. Aug-
mented with gradients, they emulate the intertwined process
of evolution and learning through a nested optimization: the
outer loop samples a population of hardware designs, and
the inner loop asynchronously optimizes a neural network-
based control policy [3], [11], [12]. However, this approach
decouples the functional relationship between hardware and
control. The notion of a ”hardware policy” maintains this
relationship by simultaneously propagating gradients con-
cerning both hardware and control parameters through the
computational graph [13]. These gradient-based co-design
approaches are computationally more efficient than gradient-
free optimizations [13], [7], but only return locally optimal
co-designs.

Differentiable physics simulators compute gradients con-
cerning various simulation parameters. There are differ-
entiable simulators developed for co-designing soft robot
locomotion [14], locomotion in diverse environments [15],
and aerial robots [5]. Simulators built for contact-rich manip-
ulation achieve competent co-designs in fewer episodes than
evolutionary strategies or reinforcement learning [7]. How-
ever, differentiable simulators require significant software
development resources, and differentiable contacts are tricky
to model [16]. We aim for an intuitive and efficient co-design
approach using the proposed co-design Jacobian. Similar
methods that co-optimize design and trajectory parameters
rely on an augmented Jacobian [17], [18]. However, with the
structure induced by ECs, the co-design Jacobian enables the
co-design of manipulation systems for contact-rich tasks.

III. CONSTRAINT-GUIDED CO-DESIGN

We propose structuring the co-design space using Environ-
mental constraints (ECs). To effectively impose this struc-
ture, we evaluate the task performance of a constraint gener-
ated by a co-design. To efficiently leverage this structure, we
compute the gradients of this performance for iterative design
updates in the co-design space. Since evaluating the gradients
is critical, we first outline a template for formulating co-
design problems suitable for gradient-based optimization. We
then use this template to formulate gradient-based co-designs
of manipulation systems in search spaces structured by ECs.

A. Template for Gradient-Based Co-Design

We present a template outlining the algorithmic compo-
nents of co-designs suitable for gradient-based optimization:

1) Search Space: The search space, S is an
(m+ n)-dimensional continuous space spanned by control
parameters, (θ)m and hardware parameters, (h)n.

2) Quality Function: The task imposes a structure on S
that a quality function, f , must quantify. f should ideally
render a smooth optimization landscape depicting the task
relevance of co-designs in S, forming peaks in the task-
relevant regions while penalizing task-irrelevant ones. f can
also incorporate costs associated with co-designs in S.

3) Optimization Method: Gradient-based methods are
ideal for navigating the landscape rendered by f in high-
dimensional, continuous search spaces like S. However, f
must be differentiable for evaluating gradients,

(
∂f
∂θi
, ∂f∂hi

)
.

Furthermore, we can only reach the local maxima by itera-
tively updating θi and hi from a point in S.

B. Constraint-Guided, Gradient-Based Co-Design

We describe our methodology using the algorithmic com-
ponents discussed in section III-A. First, we qualitatively de-
scribe how ECs structure the co-design space, S. We evaluate
the task relevance of a constraint using a candidate quality
function, f . Finally, we present the co-design Jacobian that
exploits the structure induced by ECs to reach locally optimal
co-designs in the search space.



1) Search Space: ECs form patches in S as shown in
Fig. 1. Their boundary separates the manipulation-relevant
co-designs that interact with the environment (blue regions)
from co-designs that do not.

2) Quality Function: Ideally, f must generate a smooth
optimization landscape over S for its gradients to achieve
two purposes: a) Outside the EC patches in S, they guide
the search to a local EC patch. b) Within an EC patch, they
lead to co-designs forming constraints better suited to the
task. To define f , we use the forward kinematic equations
describing the end-effector pose, x, as a function of co-design
parameters, qc. We show that the inverse kinematics equation
of a redundant manipulator [22], described in Eqn. 1, encodes
the two purposes.

x = f(qc)

∂qc = J+
c ∂x+

(
I − J+

c Jc
)
κ

(1)

Here, x is the current Cartesian pose of the end-effector,
and ∂x is the error from the required end-effector pose. Jc is
the co-design Jacobian described in the next section, while
J+
c is its pseudoinverse. As we will show, the former term
J+
c ∂x directs the search towards the constraint patches in S.

The latter term (I − J+
c Jc)κ corresponds to internal changes

in qc that do not result in end-effector motion. We choose
κ = α ∂T

∂qc
, where α is a constant, and T is the the task-

compatibility index [22] described in Eqn. (2).

T =

l∑
i=1

wi
[
uTi
(
JJT

)
ui
]±1︸ ︷︷ ︸

Force

+

m∑
j=l+1

wj

[
uTj
(
JJT

)−1
uj

]±1

︸ ︷︷ ︸
Velocity

(2)
Here, J is the robot Jacobian. ui, uj are the directions

of interest for force and velocity transmission. A + sign is
used when the resolution of force/velocity transmission is of
interest, whereas a − sign is used when the magnitude is of
interest. wi, wj weigh the relative importance of m tasks. This
index measures the robot’s ability to generate constraints that
transmit forces and velocities in the directions dictated by the
task. Thus, the latter term in Eqn. (1) adjusts the co-design
parameters to form constraints better suited to the task.

3) Optimization Method: The conventional robot Jaco-
bian, J , captures how changes in control inputs, θi lead to
changes in robot motion, x. For co-design, we formulate an
augmented co-design Jacobian, Jc that captures how changes
in either control, θi or hardware, hi parameters lead to
changes in robot motion, x. Jc exploits the structure induced
by ECs to improve the co-design parameters, qc = {hi, θi}.
Jc is conceptually similar to the conventional robot Jacobian,
making co-design conceptually intuitive and approachable to
roboticists. Eqn. (3) describes both the Jacobians.

J =

[
∂x

∂θ

]
, Jc =

[
∂x

∂θ
,
∂x

∂h

]
(3)

Fig. 2. A 7-dimensional co-design of a manipulator guided by the constraint formed during the task of writing on a horizontal surface using a pen at
its end-effector. a) The initial arm configuration. The manipulator requires a high vertical force resolution (F) and horizontal velocity resolution (V) for
the best writing performance. The final co-designs and their force ellipsoids are shown for different optimization scenarios in b-g. b) Control parameters
optimized without task constraints lead to a robot configuration that doesn’t fulfill the task requirements. c) Control optimization with a fixed robot base.
d) Control optimization with an additional hardware parameter that moves the robot base. e) Hardware optimization. f) Co-designing hardware and control.
g) Co-designing hardware and control with an additional parameter that moves the robot base. h) Task-compatibility progression of co-designs in b-g.



IV. EXPERIMENTATION

We first show that environmental constraints (ECs) encode
the regions of the co-design space relevant to manipulation.
To demonstrate this, we compare the performance of robots
designed with and without the insights of task-relevant con-
straints. In the process, we show that the co-design Jacobian
is a simple but effective tool that exploits the structure
imposed by ECs to reach competent co-designs. We also
study how random initialization affects the ensuing gradient-
based co-design. Finally, we evaluate how our methodology
scales for complex, high-dimensional co-designs.

A. Redundant Manipulator Co-Design

In this experiment, we co-design a 3-dof redundant manip-
ulator to write on a horizontal surface using a pen at its end-
effector, as shown in Fig. 2a. As we will show, without the
insight of task-relevant EC, the optimization leads to a robot
configuration that does not fulfill the task. We then leverage
the task-relevant EC to co-design multiple manipulators.

The optimization intitializes with hardware and control pa-
rameters taken from [22], and shown in Fig. 2a: link lengths,
hi = [0, 1, 1, 0.5], and joint angles, θi = [160°, 90°,−90°].
The total link length, (h1+h2+h3) is maintained to be 2.5
throughout all optimizations. To co-design a robot forming a
constraint suitable for the task of writing, we choose m = 2
for two tasks: high force resolution in the vertical direction
and a high-velocity resolution in the horizontal direction,
depicted by F and V in Fig. 2a. The corresponding directions
of interest are u1 = [0,1]T, u2 = [1,0]T. The relative weights,
w1 = 0.8, and w2 = 0.2, are chosen by trial and error.
The co-design parameters qc are updated for 100 iterations
with α = 0.1 in all experiments. The progression of task
compatibilities, T , is shown in Fig. 2h.

First, we optimize co-design parameters without the task-
relevant EC. We update the control parameters of manipula-
tor, θi using the gradients, ∂T∂θi computed using Eqn. (2). The
resulting arm pose is shown in Fig. 2b. While T increases
to 2.29, the pen doesn’t make contact with the surface,

and the manipulator fails to form a task-relevant constraint.
Thus, the manipulator will not be effective at writing, and
the task is unaccomplished. For further experiments, we
impose the task-relevant constraint during co-design. The
manipulator forms a constraint against the surface in its
initial configuration. To maintain this constraint, we must
search within the null space of the manipulator. We substitute
κ = α ∂T

∂qc
in Eqn. (1) to compute the new updates, ∂qc.

We use these ∂qc for 5 different optimizations using
different subsets of the 7 co-design parameters and show
the results in Fig. 2c-g. First, we consider only the control
parameters {θi} corresponding to the three joint angles. The
resulting posture resembles a human arm while writing [22],
as shown in Fig. 2c, and has T = 1.26. Optimization with an
additional hardware parameter, h0, that translates the robot
base horizontally improves T to 1.34 as shown in Fig. 2d.
In Fig. 2e, we only optimize the hardware parameters hi.
This results in no change in robot configuration, as there
is no way to maintain the end-effector configuration with
fixed control parameters. In Fig. 2f, we co-design using 3
control, {θ1, θ2, θ3} and 3 hardware, {h1, h2, h3} parameters
which improves T to 1.82. In Fig. 2g, we co-design using
all 7 parameters, {θi} and {hi}. T improves significantly
to 2.56, showing that co-optimizing all parameters using the
task-relevant constraints yields the best result compared to
optimization limited to either hardware or control domains.

B. Gripper Co-design

We co-design a gripper with two key differences from
the previous section. Firstly, the initial co-design parameters
do not form a task-relevant constraint. Thus, the co-design
Jacobian must lead the search towards regions of the co-
design space containing designs making task-relevant con-
straints. Secondly, as we will show, a constraint optimized
through a high-dimensional co-design represents a family of
task-relevant co-designs differing in performance and control
complexities. We introduce an informed method to guide this
discrete search. Finally, we evaluate the effect of random
initialization on our gradient-based co-design approach.

Fig. 3. The co-design of a two-fingered gripper shows that task-relevant constraints structure the co-design space, and the co-design Jacobian exploits this
structure to reach competent designs. a) Each finger must form a constraint capable of applying forces in the shown directions, N and F , at two points
to rotate the blue object on its palm. b) Each finger has eight co-design parameters forming the shown kinematic chain. c) Gripper design progression.
d) Progression of task compatibility, T and the Cartesian error, ∂x during the optimization.



Fig. 4. Discrete co-design of grippers by fixing a subset of co-design parameters to form the fixed hardware, while the rest are controllable during the
task. a) The individual task-compatibility contribution of each co-design parameter. b) We design four grippers by selecting a subset of the 8 co-design
parameters that can be controlled during the task to render task compatibilities, T . There is a trade-off between the resulting performance and the rendered
control complexity. c) Effect of initialization of parameters in the co-design space on the resulting task compatibility. Our approach is susceptible to seeking
out local maxima, making reasonable initialization essential to ensure competent results.

1) Constraint Formation: In this section, we co-design
a gripper to rotate an object in its palm. We require two
fingers forming constraints adept at applying normal forces
for grasping and tangential forces to rotate the object at two
points along the top edge of the object, depicted by N and F
in Fig. 3a. We update the co-design parameters using Eq. (2)
but add squared parsimonious penalties for small link lengths
in f . Two kinematic chains with different a0 are initialized
using the Denavit-Hartenberg parameters described in Ta-
ble. I and shown graphically in Fig. 3b. The co-design param-
eters, qi are initialized to (0, 0, 90°,−45°,−45°, 0, 0, 0). The
Cartesian error in this configuration, ∂x, is not zero; there-
fore, the object does not constrain the robot. On updating
the co-design parameters using Eq. 1, the term J+

c ∂x guides
search to a design forming task-relevant constraint. The latter
term adjusts the finger design to apply forces in directions
dictated by the task. Fig. 3c shows the design progression
during the 50 optimization steps. The corresponding task
compatibility measure, T , and Cartesian error, ∂x, are plotted
in Fig. 3d. This experiment shows that on initializing at a
point outside the (blue) constraint patches described in Fig. 1,
the co-design Jacobian exploits the structure induced by task-
relevant constraints to reach locally optimal co-designs.

TABLE I
DENAVIT-HARTENBERG PARAMETERS FOR GRIPPER CO-DESIGN

i ai θi di αi

0 ±1 q0 0 0
1 0 q1 0 90°
2 q5 q2 0 0
3 q6 q3 0 0
4 q7 q4 0 0

2) Discrete Co-design: In the previous section, an 8-
dimensional co-design results in a task-relevant constraint.
We freeze a subset of 8 parameters to form the immutable
hardware, while the rest are controllable during the task.
Therefore, we can co-design 28 gripper fingers with varying

performance and rendered control complexity based on the
parameters chosen for control. We formulate an informed
discrete search amongst these finger designs by plotting
the individual task compatibility contributions of all the co-
design parameters in Fig. 4a. We see that q0 and q1 are best
for imparting tangential forces to the object, while q2 and q7
are adept at imparting normal forces.

We design four grippers by choosing at least one control
parameter adept at producing forces in either direction. These
designs and their task compatibilities, T as shown in Fig. 4b.
The gripper where {q1, q2, q3, q4} form the control param-
eters achieves the best task-compatibility index of 1.50.
However, this comes at the cost of a high control complexity
requiring four parameters. The gripper where {q1, q2} are
the control parameters has a close compatibility of 1.32 but
a simpler control complexity requiring only two parameters.
This experiment shows that n co-design parameters represent
2n designs with varying performance and control complex-
ities. We compare the individual contribution of each co-
design parameter to the performance and select those best
suited for the task to form the control parameters, whereas
the rest form the fixed hardware. However, this requires us
to balance the trade-off between the required performance
and the rendered control complexity.

3) Effect of Initialization: In the final experiment, we
evaluate the effect of initialization on our method. We
randomly initialize at 100 points in the 8-dimensional co-
design space and optimize using the methodology described
in section IV-B.1. Fig. 4c shows the resulting task com-
patibilities as a function of two parameters, q0 and q1.
We observe that while we get good task performance in
reasonable co-designs, our gradient-based co-design method
is susceptible to seeking out local maxima, making good
initialization essential for a competent co-design solution.
However, this is a common problem with gradient-based
optimization.



Fig. 5. Our optimization method using the co-design Jacobian scales well
with increased co-design parameters, n. The time taken per optimization
step scales linearly with n (R2 = 0.92), using a single Jacobian (red) or
multiple Jacobians (blue).

Fig. 6. High-dimensional co-designs are feasible when guided by con-
straints. We co-design an 80-dimensional multi-fingered hand guided by
a precision grasp, exerting forces (F) at four points on the blue object.
The green fingers are initialized with the same parameters, whereas the red
finger initializes at a 120° angle from them. The figure shows the design
progression during 50 iterations and the final hand design based on servo
motors.

C. Multi-Fingered Hand Co-design

We extend our methodology to high-dimensional co-
designs. Firstly, we examine the computational complex-
ity of our method by increasing the number of co-design
parameters, n = {4, 8, 16, 32, 64, 128, 256, 512}. We solve
Eq. 1 for 100 steps on a single 3.50GHz CPU and measure
the average time taken per optimization step. We form a
x × n dimensional Jacobian where x is the task space
dimension and equals 3. Gradient ascent using this Jaco-
bian renders a complexity of n as shown by red markers
in Fig. 5. Next, we use multiple Jacobians. We choose
n = {20, 40, 80, 160, 320, 640, 1280, 2560}, resulting in n

20
number of x × 20 dimensional Jacobians. Updating the co-
design parameters sequentially using these Jacobians renders
a linear time complexity, shown by blue markers in Fig. 5.
Computing these multiple Jacobians in parallel can further
improve this time complexity. Thus, our method scales well
with increased dimensions of the co-design space.

Next, we use our methodology to co-design a multi-
fingered hand. We initialize 80 co-design parameters equally
distributed amongst 4 fingers. 3 fingers are initialized using
the 20 parameters described in Table. I and the same initial
configuration as in section IV-B.1. The thumb is initialized
with q0 = 60°, as shown by the red point on the palm
in Fig. 6. Constraints formed during a precision grasp that
impart large forces, F, in directions normal to the object at
four points guide this co-design, shown in Fig. 6. The co-
design parameters are updated for 50 steps using Eqn. (1).
High design costs are added to the quality function to restrict
changes in αi or di that guide the optimization towards
an anthropomorphic hand design. This co-design takes 86
seconds using a single 3.50Ghz CPU core. The hand design
progression and a final hand design based on servo motors
are shown in Fig. 6. This experiment shows that high-
dimensional co-design of manipulation systems is feasible
when guided by task-relevant constraints.

V. CONCLUSION

We present two conceptual tools for making high-
dimensional co-design tractable. Firstly, we use environmen-
tal constraints (EC) as an underlying representation for co-
design and show its effectiveness in structuring the co-design
space for manipulation systems. Secondly, we present the co-
design Jacobian that leverages the structure induced by ECs
for efficient gradient-based optimization. These two tools
were effective in co-designing diverse manipulation systems.
Furthermore, the methodology scales well with increased pa-
rameters, making high-dimensional co-design feasible. Sev-
eral directions can be pursued in the future based on the two
basic principles described in this study. Firstly, this work can
be supplemented by a methodology that provides reasonable
initialization in the co-design space, essential for gradient-
based optimization. Secondly, the structure rendered by ECs
in the co-design space can also be verified using alternate
quality functions for complex dynamic manipulation tasks.
Lastly, this methodology can be extended to multi-objective
tasks and manipulation in diverse environments.
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