Sensor-Based, Task-Constrained Motion Generation Under Uncertainty

Arne Sieverling

Abstract— Mobile manipulation targets applications in dy-
namic and unstructured environments. Motion generation
methods suitable for these applications must account for end-
effector task constraints, must reason about environment un-
certainty, i.e. the fact that the exact state of the dynamic
environment cannot be known to the robot, and should do so
only using their on-board sensors. We present the Expected-
Shortest-Path Elastic Roadmap (ESPER) planner as a motion
generation method suitable for mobile manipulation. It inte-
grates task-constrained, whole-body, reactive motion generation
in high-dimensional configuration space with reasoning about
uncertainty. In our experiments, we generate task-consistent
motion in uncertain environments on a real-world mobile
manipulator only relying on on-board sensors.

I. INTRODUCTION

A successful motion generation system for mobile ma-
nipulation in unstructured environments must—in addition
to generating global, task-consistent motion—also address
issues of uncertainty and perception. Each of these problems
has received significant attention in the robotics community,
however, little work in mobile manipulation attempts to
address all three at the same time in practical, real-world
scenarios. This is the goal of this paper.

We will start from a seemingly restrictive assumption,
namely, that the mobile manipulator will not have a complete
model of the world and can only rely on high-quality on-
board sensors for perception. As we will see, this assump-
tion enables us to address issues of uncertainty efficiently,
by adapting a polynomial-time algorithm for the expected-
shortest-path problem [1]. Relying on our previous work on
elastic roadmaps [2], which achieves global, task-consistent
motion in dynamic environments, we develop an approach
to global, task-consistent motion under uncertainty, informed
solely by on-board sensing.

We establish the following requirements for motion gen-
eration under uncertainty in the context of mobile manipu-
lation:

R1 Motion: The robot must perform global, collision-free
motion while maintaining task constraints, e.g., move
to the kitchen while holding a glass of water.

R2 Uncertainty: The robot must reason about the uncer-
tainty associated with unstructured environments.

R3 Perception: The robot may only derive information
about the world from on-board sensors.

We gratefully acknowledge the funding provided by the Alexander von
Humboldt foundation and the Federal Ministry of Education and Research
(BMBF) and through the First-MM project (European Commission, FP7-
ICT-248258). We thank SimLab for their support.

! All authors are members of the Robotics and Biology Laboratory at the
Technische Universitit Berlin, Germany.

Nicolas Kuhnen

Oliver Brock!

Fig. 1.
uncertain environment. The robot has to move the end-effector on a virtual
pink line. Additionally, it has to perceive and avoid three obstacles with
its onboard sensors: a rolling chair, a sign hanging from the ceiling, and a
moving person.

A motion generation problem for a mobile manipulator in an

Satisfying any single one of these requirements already
is challenging. Motion planning (R1) was proven to be
PSPACE-complete [3]. POMDPs are a general framework
for addressing uncertainty (R2), but the computation of exact
solutions 1is intractable, even for small state spaces [4].
And complete perception of the world (R3) with only local
sensors is physically impossible. We therefore know that we
cannot hope for complete solutions but instead must resort
to approximations and heuristics to be able to address real-
world problems.

In the remainder of this paper, we will present a practical
approach to motion generation under uncertainty for mobile
manipulation, and we will demonstrate the effectiveness of
this approach on a real-world robotic platform. The key
contributions of this paper are (i) the formulation of a
practical approach for combining task constrained whole-
body motion with efficient reasoning about uncertainty and
(i) to demonstrate the effectiveness of this approach in
simulation and in real-world experiments.

II. RELATED WORK

We first revisit the motion and perception components of
current mobile manipulation systems and analyse how they
handle uncertainty. Then, we introduce planning methods
under uncertainty and discuss their real-world applications.

A. Mobile manipulation planning systems

First we analyze the motion generation capabilities of two
state-of-the-art mobile manipulation systems [5, 6]. Both
systems handle unstructured environments by constructing
an environmental representation during task execution. To
account for unforeseen obstacles, they monitor motion ex-
ecution and replan in case of invalidated solutions. Apart
from grasp planning (which is not covered in this paper),
the generation of robot motion does not actively consider
uncertainty. In addition, unlike our approach, these systems
generate motion for arm and base separately. For base
navigation, three-dimensional obstacles were taken into ac-
count [7].

Belief space HPN (hierarchical task and motion planning
in the now) [8] is an integrated task and motion planning
method under uncertainty. The method plans sensing and
motion actions for complex interactions with the environment
by planning on symbolic abstractions of the belief space.
Belief space planning is in general of high computational
complexity; as a result, this method is not well-suited for
applications in dynamic environments, where new plans
must be generated several times per second. Our method is
complementary to this approach. We generate robot motion
that satisfies the constraints associated with manipulation
tasks without the necessity to reason in the high-dimensional
belief spaces that arise in manipulation planning.

B. Planning under uncertainty

Now we will introduce planning methods that reason about
uncertainty and discuss successful applications to robotics. In
this discussion, we will distinguish four kinds of uncertainty:
sensing uncertainty (sensor measurements are noisy), action
uncertainty (actions are stochastic), state uncertainty (the
state is not known exactly), and environment uncertainty (the
world model is not known exactly). Most approaches address
only some of these; in contrast, the method presented in his
paper addresses all types of uncertainty while at the same
time remaining computationally efficient.

Planning with feedback: Feedback plans map each state
of the robot to an action [9, 10]. As a result, feedback
plans accommodate action uncertainty: no matter what the
outcome of an action, the plan specifies a next step to make
progress towards the goal. FIRM [11] generates a feedback
motion plan as a roadmap of controllers over the belief space,
addressing the robot’s state uncertainty. Feedback motion
planners rely on known and static environments. Our method
instantiates a similar graph-based composition of controllers
based on the Elastic Roadmap framework [2] for whole-
body, task-consistent motion in dynamic environments. We
do not plan in belief space but we will continuously employ
feedback to adapt the plan relative to sensed obstacles.

Planning with Markov Decision Processes: Markov
Decision Processes (MDP) [12] model actions with stochas-
tic outcomes. Several approaches use this formulation to
compute motion policies under action uncertainty [13, 14], or
environment uncertainty [15, 16]. Value iteration minimizes

expected costs efficiently but does not explicitly account for
the robots sensing limitations.

The Expected Shortest Path (ESP) problem [1] is of
particular relevance in the context of this paper. It is also
formulated as an MDP but instead of action uncertainty it
handles environment uncertainty. The ESP computes a policy
that returns the action with minimal expected costs for each
sensory input. This differs from the other MDP approaches,
which do not consider the robot’s ability to gather informa-
tion during motion when computing the expected costs.

Planning with partial observability: The partially ob-
servable MDP (POMDP) extends the MDP formulation with
uncertainty about the current and future states of the robot.
Solving POMDPs requires solving an MDP over an expo-
nentially large belief space and is in general intractable [4].
Approximate solutions were successfully applied to 2D mo-
bile robot navigation [17] and motion planning under sensing
and action uncertainty [18].

A related, exponentially complex approach models the
state of each edge in the MDP as a Markov Chain so as to
address environment uncertainty. Policies for 2D navigation
were found by planning in the belief space over a reduced
graph [19], or by iterating over discrete time-steps [20].
We also model the state of an edge in the MDP as a
continuous time Markov Chain, but we only consider a class
of environments for which a polynomial-time solution exists.

III. EXPECTED SHORTEST PATH ELASTIC ROADMAP

Now we will present the core concepts of the Expected
Shortest Path Elastic Roadmap planner (ESPER). First, we
will recapitulate the main ideas of the Elastic Roadmap
framework to show how it addresses requirement R1 and
addresses state uncertainty. We then extend the Elastic
Roadmap with an efficient planning algorithm in uncertain
environments to address requirement R2. Finally, we show
how ESPER addresses requirement R3 by instantiating an
elastic roadmap based on local sensor data.

A. The Elastic Roadmap

The previously published Elastic Roadmap framework [2]
is an efficient, incomplete feedback motion planning ap-
proach that generates reactive, task-constrained, whole-body
motion for mobile manipulation tasks. It captures the connec-
tivity of the workspace in a roadmap that is incrementally
modified in response to perceived changes in the environ-
ment. As these changes in the environment move milestones
and edges of the roadmap, it appears to be “elastic”, hence
the name.

An Elastic Roadmap is a graph G = (V,E), consisting
of a set of milestones (vertices) V = {vi,vs,...} and edges
ejj = (vi,v;) € E. An edge ¢;; indicates that the milestone
v; is in the region of attraction of the controller associated
with v}, i.e. invoking v;’s controller while the robot is in
state v; will cause the robot to move to v;. The controllers
used in the Elastic Roadmap are task-consistent, whole-body,
operational-space controllers. Task constraints are therefore
maintained automatically as the robot moves through the

roadmap. This roadmap captures important, task-relevant
aspects of the workspace connectivity.

To achieve the elastic effect, every milestone v; is main-
tained by a separate task-consistent, whole-body controller,
whose attractor is associated with environmental features.
As a result, each milestone represents a task-consistent via
point in configuration space. When obstacles move, nearby
milestones will move with them while maintaining task
constraints. As milestones move, the planner updates the
connectivity between milestones continuously, maintaining
the roadmap.

Fig. 2. Two milestones v; and v; of an Elastic Roadmap and an edge e¢;;
connecting them: the funnels visualize the controllers’ domain of attraction;
the exit of the funnel is the controller’s attractor; a roadmap represents a
feedback plan as a network of funnels.

The Elastic Roadmap planner covers large parts of the con-
figuration space with the regions of attractions of milestones,
using workspace information to identify task-relevant config-
uration space regions. The roadmap G define a feedback plan
over the state space (see Fig. 2). Coverage of configuration
space will never be complete, and hence the Elastic Roadmap
provides no completeness guarantees. It consciously gives up
completeness to satisfy the real-time requirements for motion
in dynamic environments.'

The Elastic Roadmap planner addresses current and future
state uncertainty, action uncertainty, and sensing uncertainty
through the use of feedback control. The controllers asso-
ciated with milestones continuously transfer states in their
regions of attraction into the attractor states. The attractor
state itself also adapts to the uncertain or dynamic environ-
ment and keeps milestones valid for long periods of time. As
the robot moves from attractor to attractor, we assume that
every underlying controller uses feedback on environmental
features. We assume no uncertainty about the robots position
with respect to the next intermediate goal. This assumption
is justified, if the environment provides sufficient features
for each controller to uniquely identify its attractor from
sensor data. This assumption is mostly likely valid in the
cluttered environments of mobile manipulation applications.
Effectively, controllers continuously reduce state uncertainty
as the robot moves through the roadmap. We exploit this

'Completeness guarantees can only be useful when the state of the world
is perfectly known; this will never be the case in our application domain.

assumption and do not reason about robot state uncertainty
during planning.

B. Planning under environment uncertainty

In this section, we extend the Elastic Roadmap planner to
incorporate environment uncertainty. Planning in uncertain
environments is a hard problem. To solve it optimally,
a planner would need to plan on belief space capturing
all possible states of the world. This is computationally
infeasible. We reduce the complexity of the problem by
making a simple, appropriate, and justified assumption about
the sensor capabilities of the robot: we assume that a mobile
manipulator can only obtain information about the world
through its onboard sensors. We also assume that the robot
possesses some kind of global map about the environment,
containing only stationary obstacles. (This map could also
be acquired by the robot online; for the sake of clarity, we
will assume the availability of a static map.)

Based on these two assumptions, we decompose plan-
ning under uncertainty in two sub-problems: /) reasoning
about uncertainty within the local, perceivable region, and
2) reasoning about uncertainty in the remainder of the space.
The local region around the robot is bounded by a “horizon
of relevance”, influenced by the sensor range, acceleration
capabilities, and the environment. In this local region, we
rely on sensor feedback to address uncertainty, as explained
in the previous section. In the global region, we explicitly
reason about environment uncertainty, as will be explained
in this section.

Local region: In the local region, the robot can decide if
a given motion alternative will violate task-constraints, result
in collision, or will be valid. We call this decision a local
decision. The robot can perform local decisions efficiently
based on timely sensor data. The decisions affect only on-
going actions. We execute these local decisions continuously
with the sensor update rate of 10 Hz. The constant use of
feedback eliminates the need to explicitly reason about state,
action, and sensing uncertainty.

Global region (Time-Dependent Expected Shortest
Path): What does it mean to reason about uncertainty in the
global region? We have a global map of the static part of the
environment. Within this map, we have an elastic roadmap,
capturing the connectivity of the space. Uncertainty stems
from the possibility of any of the edges of the roadmap being
blocked by unobserved, moving obstacles. We associate with
each edge in the roadmap information about it’s “blocking
characteristics” (defined in detail below).

Reasoning about uncertainty during the planning process
can now be viewed as follows (please refer to Figure 3):
In the local region around milestone n, we use sensor
information to make local decisions. The cost of going to
milestones a,b, and c¢ is known, as the costs [,; between
milestones n and i can be determined from sensor data.
However, the overall expected cost to the goal, which our
algorithm seeks to minimize, also depends on the remainder
of the path to the goal milestone g. The key now is to reason
about the expected cost Ej to travel through the roadmap

from each of the three milestone a,b,c to the goal g. The
parts of the elastic roadmap that have to be traversed after
the local decision has been made, are shown as clouds in
Figure 3).

local global

Fig. 3. Local decisions for a problem with three alternatives. The robot
is at node n. The clouds represent the multitude of paths to the goal, after
reaching a, b, or c. Knowledge about the expected outcome of future actions
is reflected in Ej,.

The expected cost E;, depends on the graph structure
of the roadmap and the blocking probabilities of the edges
contained in it. It is easy to see how blocking probabilities
affect the cost, as blocked edges cannot be traversed and may
lead to detours. Figure 4 illustrates the effect of the graph
structure on the expected cost. Assuming equal blocking
probabilities for all edges, the route from v, to v, through
v1 has lower expected cost than the route through v;, as
the probability of both routes following v being blocked is
lower than the probability of the the edge following v, being
blocked.

Fig. 4. Effect of graph structure on expected costs: The path from vy to
vg via v1 provides two alternative paths to g with equal length, while the
path via v, provides only one. The expected cost of the path via vy is lower
because the robot can avoid one possibly blocked edge following vy.

In our setting, we use time as the cost, seeking to minimize
the time to reach the goal. To estimate the expected travel
duration along the entire path, we derive a model for the
blocking probability of edges from sensor observations.
We model the unknown state of an unobserved edge as a
continuous-time Markov Chain with two states: blocked and
free. Three parameters characterize every edge e = (i, j):

o l;;: the expected time it takes to traverse e,

o tB: the expected duration the edge is blocked, and

o tf: the expected duration the edge is free.

In the current setting, determining the expected cost
requires long-term reasoning about the state of edges.

That means that we have to reason about all possible
blocked/unblocked states of all edges based on the robots ob-
servation history. This forces us into a POMDP scenario [19],
making the solution too computationally complex to be
applied to dynamic environments. However, our assumption
that the world consists of a static map and moving obstacles
allows us to devise a more effective solution. We assume that
edges are never blocked for time periods much longer than
the robot requires to move along the edge, i.e. tﬁ; < I;j for
all pairs of edges (i, j), (i,k). And we remove edges that are
blocked for very long time periods from the roadmap. Addi-
tionally, we remove edges which are blocked so frequently
that they can not be traversed safely (ti’; < l;j). Also, once
the robot observes the state of an edge, it is not considered
to change again. Based on these assumptions, it suffices
to reason about the currently known state of the world,
as opposed to all possible states. This is the key step to
addressing environment uncertainty efficiently.

Given this assumption, the probability p;; that an edge
is traversable is given by the stationary distribution of the

Markov chain:
tE

ij

Pij il 1
Now p;; and /;; are known, and we can apply the polynomial-
time Expected Shortest Path (ESP) algorithm, which is based
on dynamic programming, to compute the expected cost E;,
for every node i [1].

We can add an additional source of information to improve
the policies of the Expected Shortest Path algorithm: in our
time-dependent model, the robot can estimate the time each
blocked edge (i,j) takes to become unblocked by ti';.. This
time estimate enables an additional motion alternative: wait
for a promising edge to become unblocked. For each edge
the robot has two options:

« If the edge is free, the robot can move along it right
away. This action is possible with probability p;; and
takes time /;;.

o If the edge is blocked, the robot can wait until it
becomes unblocked and then move along it.> This is
possible with probability 1 and we estimate the time by
lij—i—tg-.

The optimal policy follows immediately: The robot exe-

cutes the controller associated with milestone k, where

b argmin{ Li+Eig and (n,i) is free

and (n,i) is blocked @

Tv | lit+th+Eg
In the second case, the robot will wait until the edge state
changes from blocked to free.

The ESP without the new waiting actions can be solved
in O(|E]|-1log(|V])) with a label-correcting algorithm [21].
Adding the waiting actions doubles the amount of edges,
but does not increase the runtime.

2These actions replace the waiting edges (i,i) of the original expected
shortest path (ESP) algorithm. They capture a new option for the robot that
is not possible with the original ESP formulation: it might be useful to wait
a short time for an edge to become unblocked instead of taking the next
best free edge.

C. Perception

An important part of the proposed algorithm is the integra-
tion with real-world sensing. To be suitable for mobile ma-
nipulation applications, a motion generation method should
only rely on onboard sensor information during execution.

ESPER uses onboard sensor information to place and
adjust milestones in the roadmap. To place milestones effi-
ciently, it needs to be able to recognize obstacle boundaries.
To use the feedback capabilities of the milestones it also
needs to track dynamic obstacles with high frequencies and
update the milestone controllers accordingly.

ESPER instantiates the obstacle-based roadmap with a
simple and fast obstacle tracking method based on RGB-D
data. For background subtraction (including the floor) ES-
PER uses a pre-recorded 3D-occupancy grid of the static
part of the environment. Then it aligns the depth data from
a RGB-D sensor to this occupancy grid. To align with
the global grid it uses a laser range finder and Adaptive
Monte Carlo Localization [22]. ESPER then detects all 3D
points of the sensor point cloud that do not appear in the
occupancy grid and clusters them into point cloud regions
(see Fig. 5). Each of these point clusters is considered to
be an an obstacle. Note that the global localization is only
used for two parts in the ESPER framework: for background
subtraction and for the execution of globally defined tasks.
In general, ESPER does not depend on global localization
because milestones are only defined relative to environmental
features and not with respect to global coordinates.

(a) Point cloud

(b) Bounding boxes

Fig. 5. a) Point cloud obtained with the robot’s on-board sensor, colored
by depth (b) two bounding boxes returned by the segmentation algorithm
around dynamic obstacles not contained in the map

The algorithm tracks dynamic obstacles by comparing the
centroids of the point cloud regions to the position of regions
in the previous frame. The segmentation processes 10 frames
per second and is able to track obstacles moving at 1 m/s.
The ESPER planner computes an axis-aligned bounding-
box around the point cloud region and places milestones
at the corners of each box. We instantiate each milestone
with a multi-priority, whole-body controller to obtain task-
consistent intermediate configurations that dynamically avoid
obstacles (see Section IV for details). Using these milestones,
we can then estimate the edge parameters t5 and tf . To

mn mn*
estimate if an edge is traversable, we observe the amount

of free workspace between two milestones. In our world
representation, we cast rays between sampled points on the
milestone configurations and check for collisions with the
bounding boxes. We do these tests continuously for each
edge whenever it is inside the sensor range and store the
duration that each edge is consecutively blocked or free. We
compute the expected durations ¢5, and tf, by averaging
over all of these time measurements.

IV. EXPERIMENTS

Now we will present three experiments to show that ES-
PER satisfies the three initially stated main requirements. The
first experiment concerns requirement R1: task-consistent
whole-body motion in dynamic environments. The second
experiment will show how learning a probabilistic transition
model and reasoning about uncertainty generates faster and
safer motion, showing that requirement R2 is addressed.
The third experiment shows how all necessary information
for ESPER can be extracted from on-board sensor data
(requirement R3) and how motion is executed on a real
mobile manipulator.

All experiments are based on a C++ implementation of the
ESPER planner on a standard Windows desktop PC. For the
first two experiments, the motion is executed in simulation
(the dynamic simulation runs on a different PC). In the
third experiment, we use a mobile manipulation platform,
consisting of holonomic base (Nomadic XR4000) and a
seven degree-of-freedom manipulator (Barrett WAM). The
planner continuously plans at 1 Hz. The majority of runtime
is spent on milestone maintenance, the time for computing
the Expected Shortest Path never exceeds 100 ms.

Milestone maintenance is performed using multi-objective
control at acceleration level [23]. For motion execution, we
employ control primitives that realize four objectives each
on a different level of priority: the end-effector task is the
highest priority, obstacle avoidance, sensor orientation to-
wards the goal, and null space posture on lower priorities. We
implement task constraints, obstacle avoidance, and sensor
orientation as attractive or repulsive potentials with velocity
saturation. The line task, used in the third experiment, is a
2D controller acting on the end-effector. Obstacle avoidance
is realized with repulsive potentials acting on base and elbow
of the robot. The sensor orientation is maintained using a po-
tential function acting on the rotational joint of the base. We
realized the posture constraint as an interpolated joint space
controller to achieve smooth behavior in the nullspace of all
other objectives. We obtain the desired intermediate postures
from the converged milestone controllers. All controllers and
the dynamic simulation are implemented in RoboticsLab, a
robotic tool kit by SimLab.

A. Reactive task-consistent whole-body motion

In this simulated experiment, we demonstrates that ES-
PER generates task-consistent whole-body motion (require-
ment R1). A stationary seven-DOF manipulator has to move
a box mounted to its end-effector from left to right over
a moving conveyor belt containing red obstacles. The task

also requires the orientation of the box to remain fixed. We
deliberately use a stationary manipulator in this experiment
to show that it has to use all of its seven degrees of
freedom to avoid obstacles while executing the task. It also
demonstrates that ESPER can successfully be applied to
stationary scenarios.

(a) Motion via intermediate mile- (b) Motion below the obstacle while
stones above the obstacle avoiding it with the elbow

Fig. 6. Motion execution for a stationary manipulator moving a wooden
box among dynamic red obstacles using ESPER: the robot has to move the
box from its initial position s to the final position g; the milestone at the
goal configuration is shown in blue; ESPER generates different motions in
response to changes in the environment; the task constraint is maintained
throughout the entire motion.

Figures 6(a) and 6(b) show how the whole kinematic chain
avoids the dynamic obstacles. When the obstacles block
the lower path, the global plan guides the arm above the
obstacles to avoid collisions. When the obstacles move to
the upper level, the motion instantly adapts. Now the robot
reactively avoids colliding with the boxes with its elbow
using all of its seven degrees of freedom to execute the task.
Still, during the complete motion, the end-effector orientation
remains constant.

This experiment shows that ESPER generates whole-
body motion under task constraints in scenarios without
uncertainty. Similar results can be achieved with mobile
manipulators [2].

B. Reasoning about uncertain environments

In this experiment, we will show how requirement R2—
explicit handling of uncertainty—reduces execution time and
collision rates compared to uncertainty-unaware planning. A
ten-DOF mobile manipulator moves in a dynamic environ-
ment (Fig. 7(a)), while holding a tray with objects level. Two
obstacles, O; and O,, move from wall to wall but always
keep a fixed distance d. In this scenario, both the paths above
(referring to the figure) O and below O, are invalid about
half of the time.

ESPER places milestones around the two dynamic obsta-
cles. It observes the moving obstacles for 10 seconds and
then computes a higher collision probability for the upper
and lower edges shown in yellow. The path between the
two obstacles is valid all the time and thus has a lower
collision probability (shown by the red lines). Fig. 7(b)
shows a snapshot of the roadmap created with ESPER during
execution. The edge probabilities qualitatively match the
expected behavior from Fig. 7(a).

We compared ESPER to an uncertainty-unaware imple-
mentation of the Elastic Roadmap (ER). This planner uses

the shortest path over the milestones it believes to be passable
at planning time and recomputes a new path every second.
We executed the motion in 50 simulation experiments with
randomized obstacle positions.

For low obstacle velocities, both planners perform roughly
equal and both planners choose paths above O and between
01 and O,. For higher obstacle velocities, the path above
0O becomes blocked often. The uncertainty-unaware elastic
roadmap planner still chooses both paths, depending on the
exact obstacle positions. (Fig. 7(c)). In 20% of the runs with
high velocities, the robot gets stuck between the upper wall
and O, leading to a collision. In contrast, the ESPER planner
always chooses the path between the obstacles, which is safe
even at high obstacle velocities (no collisions). The overall
motion time for the non-colliding runs is also lower for the
uncertainty-unaware planner (see Fig. 7(d)).

This experiment shows that explicit handling of environ-
ment uncertainty reduces motion time and can even help to
reduce the probability of collisions.

C. Sensor-based planning and execution

In the last experiment, we will combine the established
requirements R1 and R2 with the requirement for perceiving
the world only with on-board sensors. Our experimental
platform is a 7-DOF Barrett WAM robotics arm mounted on
a Nomadic XR-4000 holonomic mobile base. The platform
has two onboard sensors: a SICK laser range finder and an
Asus Xtion RGB-D sensor. The robot is placed in the starting
configuration shown in Figure 8(a) and receives the task to
move 4 meters forwards while keeping its end-effector on a
virtual line.

The robot creates a static map from its sensor data con-
sisting of the floor, the sign on the ceiling, and the columns
for localization and background filtering. Afterwards two un-
known obstacles: a chair and a person, enter the environment.
The rolling chair is in front of the robot and static for the
rest of the experiment. The ESPER planner generates task-
consistent intermediate milestones on both sides of the chair.
In front of the chair the person moves continuously on the
right side of the line. Initially, the robot observes this scene
for 20 seconds. During this time, the robot observes the
person. The planner estimates the edge parameters ¢/ and
tB, which it uses in the computation of the expected shortest
path. The resulting roadmap from Figure 8(a) shows a higher
value for 2 on the edges that were blocked by the person
(visible by the lighter shade). Then we start computing the
expected shortest path with the observed parameters. Within
the first iteration (under 1 second), it computes a path which
guides the robot to the other side of the chair, avoiding
the edges that were previously blocked by the person (see
Fig. 8(b)). On this path, the intermediate milestone guides
the robot to lower its elbow to avoid collision with the sign.
This shows the whole-body capabilities of the controllers.
After crossing the chair and avoiding the sign, the person
unexpectedly crosses the line to the other side (Fig. 8(c)).
The robot avoids the collision by moving the milestones,
replanning, and adapting its path (Fig. 8(d)). Fig. 9(b) shows

Successful executions and chosen path Motion time

——ER

—+— ER middle
o ——ESPER >

—e— ESPER middle
=== ER upper
--0-- ESPER upper

05 1
obstacle vel. / robot vel.

: = 0.5 1
| | obstacle vel. / robot vel.

(a) Expected behavior (b) ESPER during execution (c) Chosen path percentage (d) Average motion time

Fig. 7. (a) Illustration of an elastic roadmap in a scene with two dynamic obstacles (only a subset of roadmap edges is shown): d remains constant
throughout the up-and-down motion of obstacles O and O;; the dashed edges have high collision probabilities because the obstacles move near the upper
and lower walls; the solid edges have low collision probability; depending on the probabilities the expected shortest path is either above O; or between
0O; and 0. (b) Screenshot of the execution of the ESPER planner. (c) and (d): In both graphs the x-axis represents the obstacle to robot velocity ratio;

the y-axis in (c) represents the success rates for different paths (numbers do not add up to 100% for uncertainty-unaware planning due to collisions) and

in (d) the average execution time.

(a) The initial robot configuration.
The robot has to move its end-effector
on a line towards the camera.

path underneath the sign.

Fig. 8.

est path which guides the robot on the blocks the current path to the goal.

(b) ESP computes the expected short- (c) The person changes the side and (d) the robot replans fast enough

to avoid the person without slowing
down.

a) Execution on a mobile manipulation platform. Shown below the screenshots from the execution are on the left: the current state of the ESPER

planner. The task is shown as a pink line; The bounding boxes of the observed obstacles are shown green; The blue robot shapes are all task-consistent
milestones; Shown in red is the current milestone with lowest expected cost. On the right we show the matching point cloud view from the robots

perspective. The segmented obstacles are shown in color.

the executed trajectory of the robot. During motion the end-
effector error with respect to the base localization never
exceeds 6 cm (see Fig. 9(a)).

All requirements R1 to R3 were present in this experiment.
The robot motion was subject to task constraints and whole-
body motion was required to avoid the sign (R1). The robot
reasoned about the uncertain occurrence of the person, which
let it move on a path that avoids the person early on, avoiding
collision and reducing the expected motion duration (R2).
Finally, the motion was generated based on on-board sensor
data using a both an RGB-D sensor and a laser range finder
(R3).

V. CONCLUSION

We presented the Expected Shortest Path Elastic Roadmap
(ESPER) planner, an approach for the sensor-based genera-
tion of task-constrained, whole-body motion under uncer-
tainty. In simulated experiments with stationary and mobile
manipulation platforms and in a real-world experiment with
a mobile manipulator, we demonstrated the planner’s ability

to execute collision-free mobile manipulation tasks while
reasoning about environmental uncertainty. In our real-world
experiment, the robot can only perceive its environment using
on-board sensors. It is this restriction to on-board sensors
that facilitates the treatment of uncertainty by the ESPER
planner. We show that in the region inaccessible to on-board
sensors, uncertainty can be handled using a polynomial-time
expected shortest path algorithm. The presented experiments
demonstrate that—in the context of mobile manipulation—
the ESPER planner satisfies the requirements of motion
generation, handling of uncertainty, and perception.

REFERENCES

[1] A.J. Briggs, C. Detweiler, D. Scharstein, and A. Vandenberg-Rodes,
“Expected shortest paths for landmark-based robot navigation,” The
International Journal of Robotics Research, vol. 23, no. 7-8, pp. 717—
728, Aug. 2004.

[2] Y. Yang and O. Brock, “Elastic roadmaps—motion generation for
autonomous mobile manipulation,” Autonomous Robots, vol. 28, no. 1,
pp. 113-130, Jan. 2010.

[3] J. F. Canny, Complexity of robot motion planning. MIT press, 1988.

[4] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of markov

Fig. 9.

Task error

0.1
0.05
E
5 0
o
-0.05
0.1
0 5 10 15 20 25 30
time (s)
(a) Task error
Trajectory (top-down)
5 || —base
— end-effector
4
3
E
>
2
1
0
-1.5 -1 -0.5 0 0.5 1 15

X (m)

(b) Base and end-effector trajectory

Task error and base trajectory for the motion of Fig. 8. The end-

effector position is constrained to be constant in x and z directions. The task
error never exceeds 6 cm.

[5]

[6]

decision processes,” Mathematics of operations research, vol. 12,
no. 3, pp. 441-450, 1987.

S. S. Srinivasa, D. Ferguson, C. J. Helfrich, D. Berenson, A. Collet,
R. Diankov, G. Gallagher, G. Hollinger, J. Kuffner, and M. V. Weghe,
“Herb: a home exploring robotic butler,” Autonomous Robots, vol. 28,
no. 1, pp. 5-20, 2010.

S. Chitta, E. G. Jones, M. Ciocarlie, and K. Hsiao, “Mobile ma-
nipulation in unstructured environments: Perception, planning, and
execution,” Robotics & Automation Magazine, IEEE, vol. 19, no. 2,
pp. 58-71, 2012.

A. Hornung, M. Phillips, E. Jones, M. Bennewitz, M. Likhachev, and
S. Chitta, “Navigation in three-dimensional cluttered environments for

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

mobile manipulation,” in Robotics and Automation (ICRA), 2012 IEEE
International Conference on, 2012, pp. 423-429.

L. P. Kaelbling and T. Lozano-Pérez, “Integrated task and motion
planning in belief space,” The International Journal of Robotics
Research, vol. 32, no. 9-10, pp. 1194-1227, 2013.

R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential com-
position of dynamically dexterous robot behaviors,” The International
Journal of Robotics Research, vol. 18, no. 6, pp. 534-555, 1999.

L. Yang and S. LaValle, “The sampling-based neighborhood graph:
an approach to computing and executing feedback motion strategies,”
IEEE Transactions on Robotics and Automation, vol. 20, no. 3, pp.
419-432, June 2004.

A.-a. Agha-mohammadi, S. Chakravorty, and N. M. Amato, “Firm:
Sampling-based feedback motion planning under motion uncertainty
and imperfect measurements,” The International Journal of Robotics
Research, 2013.

D. P. Bertsekas, Dynamic programming and optimal control.
Scientific Belmont, MA, 1995.

R. Alterovitz, T. Siméon, and K. Goldberg, “The stochastic motion
roadmap: A sampling framework for planning with markov motion
uncertainty,” in Robotics: Science and Systems, 2007, pp. 246-253.
I. A. Sucan and L. E. Kavraki, “Accounting for uncertainty in simul-
taneous task and motion planning using task motion multigraphs,” in
Robotics and Automation (ICRA), 2012 IEEE International Conference
on, 2012, pp. 4822-4828.

P. Missiuro and N. Roy, “Adapting probabilistic roadmaps to handle
uncertain maps,” in Robotics and Automation, 2006 IEEE International
Conference on, may 2006, pp. 1261 —1267.

B. Burns and O. Brock, “Sampling-based motion planning with
sensing uncertainty,” in Robotics and Automation (ICRA), 2007 IEEE
International Conference on. 1EEE, Apr. 2007, pp. 3313-3318.

R. Simmons and S. Koenig, “Probabilistic navigation in partially ob-
servable environments,” in International Joint Conference on Artificial
Intelligence (IJCAI), 1995, pp. 1080-1087.

H. Kurniawati, T. Bandyopadhyay, and N. M. Patrikalakis, “Global
motion planning under uncertain motion, sensing, and environment
map,” Autonomous Robots, vol. 33, no. 3, pp. 255-272, 2012.

B. Marthi, “Robust navigation execution by planning in belief space,”
in Robotics: Science and Systems, Sydney, Australia, July 2012.

S. Loibl, D. Meyer-Delius, and P. Pfaff, “Probabilistic time-dependent
models for mobile robot path planning in changing environments,” in
Robotics and Automation (ICRA), 2013 IEEE International Conference
on. IEEE, 2013, pp. 5545-5550.

A. Bar-Noy and B. Schieber, “The canadian traveller problem,” in
Proceedings of the second annual ACM-SIAM symposium on Discrete
algorithms, 1991, pp. 261-270.

S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

H. Sadeghian, L. Villani, M. Keshmiri, and B. Siciliano, “Dynamic
multi-priority control in redundant robotic systems,” Robotica, vol. 31,
no. 07, pp. 1155-1167, 2013.

Athena

