
Exploiting Contact for Efficient
Motion Planning Under Uncertainty

Arne Sieverling Clemens Eppner Oliver Brock

Abstract—In this paper we want to argue for contact as an
enabler for efficient motion planning under uncertainty. Con-
trolled and desired contact can project a high dimensional belief
state to a lower-dimensional manifold. A robot can sequence
these projections to reduce uncertainty about its state. For
realistic applications, these uncertainty reducing actions must
be sequenced with uncertainty-increasing free space motion. We
present a sampling-based motion planner that searches a belief
state over configurations augmented with contact information.
The planner finds robust contact-exploiting policies under signif-
icant uncertainty in robot and world model. We validate these
policies on a seven-DoF robot manipulator in simulation and real
world experiments.

I. INTRODUCTION

Most state-of-the-art motion planning methods, including
sampling-based methods and optimization approaches, are
designed solely for contact avoidance. While solutions of these
planners are applicable in highly controlled settings, they often
fail in unstructured environments due to a high amount of
uncertainty. To overcome these limitations, planners include
uncertainty into the models of world and robot. The planners
then plan in belief space: the space of probability distributions
over robot and world state. Belief space planning allows to
find contact-free paths, even if the outcome of robot actions or
the environment are not known completely. However, planning
under uncertainty is a hard problem. If the robot does not have
access to its full state but must estimate it using uncertain
sensors, the planning problem becomes a POMDP which is
intractable to solve completely and hard to approximate for
realistic problem sizes.

We will show that an explicit reasoning about contact allows
for a tractable solution to the motion planning problem under
uncertainty that scales to realistic manipulation tasks in high-
dimensional configuration space. The key to the efficiency is
the assumption that contact sensing is uncertainty-free. From
this assumption follows that measurable contact eliminates
uncertainty completely in one dimension. From a belief space
planning perspective this is equivalent to a projection of the
n-dimensional belief state to a (n− 1)-dimensional manifold
(see Fig. 1). In the ideal case, these projections can be chained
until the belief collapses into a single point and uncertainty is
reduced completely. This chaining of compliant contact actions
is the basis for many real-world manipulation planners such
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Fig. 1. Contact reduces uncertainty by projecting a high dimensional belief
state onto a lower-dimensional contact manifold. Shown above is a 3-DOF
manipulator in three different configurations. There is uncertainty in the joint
positions which is sketched with dashed lines. Below is a sketch of the
configuration space for these three scenes. Shown in red is the distribution of
configurations. C1 and C2 are the manifolds that describe all configurations
in contact with the right or lower wall. In the first step, the robot moves
into contact with the right wall, which projects its initial uncertainty onto C1.
In the second step, the robot establishes contact with the lower wall, which
projects the distribution on intersection of C1 and C2.

as fine motion planning [12], sensorless manipulation [4], or
submodular tactile localization [6].

However, in reality every motion that is not constrained
by contact will also increase uncertainty. More specifically,
whenever moving, uncertainty increases in those dimensions
that are orthogonal to the contact normal. In this paper we pro-
pose the Contact-Exploiting Rapidly Exploring Random Tree
(CERRT), a manipulation planning algorithm that sequences
uncertainty reduction with free-space motion. To combine
these two objectives the planner searches in a combined space
of contact and configuration. In this work we will show that
this search is feasible using sampling-based motion planning
on a particle-based state representation.

This paper summarizes our findings presented in a
manuscript appearing later this year [16].

II. RELATED WORK

Planning free-space motion and planning contact are two
well-established research areas and we will briefly outline
our planner’s connection to related work in both fields. Our
planner balances free-space motion and contact by reasoning



about uncertainty, for which we will review related work in
the second half of this section.

Free-space motion: Sampling-based motion planners like
the RRT [11] search the collision-free configuration space
efficiently but assume no uncertainty and explicitly avoid
contact. Sampling-based motion planning can explore the
space of configurations in contact [7, 17, 3] but does not reason
about the uncertainty reducing capability.

Planning with uncertain actions: Markov Decision Pro-
cesses (MDP) model actions with uncertain outcome. This
framework allows robots to reason about the collision proba-
bility of actions and balance short and safe paths [1]. Particle-
RRTs [13, 14] represent the outcome of actions as a set of
particles, just like our planner. However, the particle-RRT
assumes perfect knowledge about robot state which CERRT
does not and our method explicitly seeks contact to reduce
uncertainty, while the particle-RRT just achieves contact ran-
domly.

POMDPs for manipulation: Once uncertainty exists in
action outcome and the robot can not fully observe its own
state, the planning problem is a Partially-Observable MDP
(POMDP). Sampling-based POMDP solvers [10, 19, 15] were
applied to low-dimensional versions of manipulation tasks
such as in-hand manipulation to localize an object [8, 9] or
pre-grasp manipulation [5, 2]. We will show the uncertainty-
reducing capabilities of our planner on the latter applica-
tion, solving the same problem in Section IV, but with the
difference that our method does not assume any a priori
discretization of state or action space.

III. CONTACT-EXPLOITING RRT (CERRT)

Our planner uses a combined state of belief over con-
figuration and fully-observable contact. When planning with
uncertainty and contact, belief states are shaped by the pro-
jections on contact manifolds and thus usually non-Gaussian
(see Fig. 1). Therefore, we represent the belief over the
configuration with a set of N particles. Thus our planner’s
state is given by x = {q1, . . .qN}, where each qi is a robot
configuration vector.

The planner finds strategies that combine free-space and
contact motion. CERRT assumes that free-space motion al-
ways increases uncertainty and therefore must be sequenced
with contact motions that reduce uncertainty. Fig. 2 shows an
example of a decision the planner must take. The robot can
not directly enter the narrow passage but must first contact the
wall to reduce uncertainty.

To find such strategies, we grow a tree in the combined
space of contact state and belief over configuration. This
search is based on a rapidly exploring tree planner, modi-
fied with actions that seek contact and slide along surfaces.
Particle-based RRT-search has been used before for mobile
robot navigation [13], and manipulation [14], although only
for uncertain action outcome and not for uncertain robot state.

The basic structure of the CERRT matches the RRT. In
each iteration, the planner draws a random sample (a), finds
the nearest node in the tree (b), chooses an action that moves
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enough to fit in the narrow passage.

Fig. 2. Example for the belief space planning problem with contact in 2D. (a)
To enter the narrow passage, the robot cannot directly take action u1 because
the resulting uncertainty would lead to collision. (b) By sequencing a contact
move u1 and a free space move u2, the robot reduces position uncertainty
sufficiently to enter the narrow passage.

the node towards the random sample (c), and simulates the
motion towards the sample (d). In the following we will detail
how the CERRT implements these four steps by exploiting
contact to reason efficiently about uncertainty.

a) Sampling: The expansion direction for the CERRT
is determined in every iteration by a random sample qrand
drawn uniformly from C-space. To bias the search towards a
goal state, the goal itself is picked 10% of the time.

b) Node selection: Like the RRT, our planner selects the
next node to extend xnear with minimal distance to a random
sample qrand. The distance function is a weighted sum of the
Euclidian distance to the mean of xnear and the norm of the
covariance matrix of xnear.

c) Action selection: To explicitly seek contact, the
CERRT employs three different action types:

Connect: attempts a straight line connection in config-
uration space to the sample qrand. Connect explores the free
space and usually increases position uncertainty (Fig. 3(a)).

Guarded: implements a guarded move. It moves the robot
in the direction of qrand until contact with with the environment
is established. Guarded always ends in collision and therefore
eliminates uncertainty in one dimension (Fig. 3(b)).
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Fig. 3. A free-space move and a move into contact. x1 and x2 are the initial
and final particle distributions before and after applying action u.

Slide: moves along a surface until the contact state
changes, either by colliding with another environmental struc-



ture (Fig. 4(a)) or by leaving the sliding surface (Fig. 4(b)).
A slide always goes into the direction of qrand, projected onto
the sliding surface. Sliding is implemented using a projection
method based on the Pseudoinverse of the Jacobian [18]. Thus
each slide action moves the robot on the contact manifold until
a second contact is reached, which eliminates uncertainty in a
second dimension.
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x1 x2u

(b) Convex slide

Fig. 4. Two sliding actions. (a) the slide moves the distribution along the
surface until it achieves contact with another surface. (b) the slides moves
until it loses contact with the surface. Both slides reduce uncertainty in two
dimensions.

d) Forward simulation: To extend a node x1, the CERRT
samples a particle from Qx1 and then simulates noisy execu-
tions of the action u. The outcome of these executions are
added to the new state x2 if the particle set is in a consistent
and measurable contact state.

After inserting a valid node, the planner tries to reach the
goal state from the newly inserted node, also using forward
simulation. If the resulting distribution is close to the desired
goal distribution, the planner returns success. Otherwise it
moves to the next iteration and picks another sample.

IV. EXPERIMENTS

We will now show the capabilities of our planner on
manipulation tasks.

2D grasping: This problem models a gripper picking up
a square block at unknown location and is inspired by the
POMDP literature [5, 2]. The gripper has contact sensors at
each jaw and can translate in two dimensions. Because of a
large initial uncertainty the gripper must contact the object
or the walls first and then, after uncertainty is sufficiently
reduced, attempt the grasp from the top.

Fig. 5(a) shows one of the solution paths CERRT found
on the simple grasping scenario. All policies first establish
contact with wall or object and then slide along the ground
until contact with the object is perceived. The planning time
for this problem averaged over ten runs is 6.8 s (±5.1s), while
a POMDP version of the problem required an average planning
time of 160s [2]. Our approach easily scales to more complex
scenarios. Fig. 5(b) shows the result for a multi-step piece
(8.2s±6.9s), Fig. 5(c) a version where the gripper must first
navigate through a simple maze (23.4s±19.3s), Fig. 5(d) a
3D version of the problem with translation and rotation of the
gripper.

7D robot arm motion: CERRT can directly be applied to
the configuration space of a robot manipulator. In this Section
we will show policies generated by CERRT that use contact
to reduce uncertainty but also avoid collisions with links that
have no contact sensing ability.

We place a 7-DOF Barrett WAM robot in front of the wall
depicted in Fig. 6, similar to the scenario from Phillips-Grafflin
et al. [14]. The robot model has an initial uncertainty about
its own configuration with a standard deviation of σstart = 0.02
rad. It also has a motion dependent position uncertainty of
σδ = 0.02. This term models that the robot will accumulate
uncertainty of 0.02 rad if it moves a distance of 1 rad. Such
a a motion-dependent position error occurs in the real Barrett
WAM robot due to stretch of the cables that move the joints.
The robot uses a wrist-mounted ATI Gamma force-torque
sensor to perceive contact with the end-effector but cannot
perceive contact with any other part.

The outcome of the planner can be seen in Fig. 6. From ten
attempts, the planner solved this problem six times within 180
s. The six successful searches required an average time of 23.8
s±29.3 s. To validate the robustness of the plan, we introduce
an unexpected disturbance. We raise the wall including all
obstacles by 7 cm and execute the motion on the robot. The
contact with the cyan and red boxes reduces uncertainty and
the robot reaches the target with an error of 2 cm. This shows
that the exploitation of contact allowed the robot to reduce
position error by 5 cm.

V. CONCLUSION

This paper showed how to plan robust manipulation strate-
gies under significant uncertainty in robot state, action, and
world model by exploiting contact. We have shown that a sim-
ple kinematic model of contact can make belief space planning
in high-dimensional continuous space tractable. The reason
for the efficiency of contact is that measurable, uncertainty-
free contact projects a high-dimensional state distribution to
a lower-dimensional manifold. We presented a planner that
sequences such projections with free-space motion to balance
uncertainty reduction and progress towards a goal. Our results
stand in contrast to a more traditional view on motion planning
that sees contact as a problem due to difficult to model friction
effects and discontinuities. In this paper we have shown
that contact enables planning of simple and safe policies for
manipulation problems under significant uncertainty.
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