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Abstract— In this paper we present a planner that interleaves
free-space motion with motion in contact to reduce uncertainty.
The planner finds such motions by growing a search tree in the
combined space of collision-free and contact configurations. The
planner reasons efficiently about the accumulated uncertainty
by factoring the state in a belief over configuration and a fully
observable contact state. We show the uncertainty-reducing
capabilities of the planner on manipulation benchmark from
the POMDP literature. The planner scales up to more com-
plex problems like manipulation under uncertainty in seven-
dimensional configuration space. We validate our planner in
simulation and on a real robot.

I. INTRODUCTION

We propose a planner for robust motion under uncertainty
that interleaves motion in free space with motion in contact.
The need for free-space motion is obvious: motion in free
space is efficient, easy to control, and generates low risk for
damage to robot and environment. But motion in free space
accumulates execution uncertainty, possibly leading to failure
to achieve the desired goal. Since contact is a robust and
effective way of reducing uncertainty [1, 2, 3], we propose
to interleave both types of motions. As a result the planner
must reason about the amount of accumulated uncertainty
along the path to ensure robust goal attainment, while relying
on free-space motion whenever possible.

The advantages of combining motion in contact and in
free space are exploited extensively in robotics. For example,
strategies that interleave motion in contact and in free space
have been the key to success in the DARPA ARM challenge
2011, where robots touched the environment to localize the
arm in the world (see Fig. 1). But so far there has been little
research on how to plan such strategies from a description
of the scene geometry.

We present a planner called Contact-Exploiting
RRT (CERRT), based on the rapidly exploring random
tree (RRT) [4]. This planner finds robust manipulation
strategies under uncertainty in robot position, actuation,
and world model. The planner scales to high-dimensional
configuration spaces. The resulting motions make and break
contact with the environment, slide along surfaces, but also
avoid collisions with links that have no contact sensing
capability.

The main difficulty of planning under a partially observ-
able robot state is the high dimensionality of the associated
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Fig. 1. Contact can efficiently reduce the uncertainty about the robot’s
state. Left: An example from a manipulation challenge, where the robot first
touches the door to localize the handle before attempting a grasp [5]. Right:
A similar strategy, generated by our planner CERRT. Shown in green are
several executions of the motion under uncertainty, which all first contact
the door and then slide down to the handle.

belief space. Our planner overcomes this problem by ex-
ploiting the insight that sensing contact is reliable and can
be assumed to be fully observable. This factors the problem
into a tractable reasoning over the robots position.

We evaluate the planner’s capability to reason efficiently
about high uncertainty on a benchmark manipulation plan-
ning problem from the POMDP literature. We show how the
planner generalizes to more complex problems by increasing
the complexity and the dimensionality of the configuration
space. We will validate our planning results with simulation
and real world experiments for a manipulation task under
significant uncertainty. We also provide quantitative results
supporting our claim that contact and free-space motion must
be interleaved.

II. RELATED WORK

Planning free-space motion and planning contact are two
well-established research areas and we will briefly outline
our planner’s connection to related work in both fields. Our
planner balances free-space motion and contact by reasoning
about uncertainty, for which we will review related work in
the second half of this section.

A. Free-space motion

Sampling-based motion planners like the Probabilistic
Roadmap (PRM) [6] or the RRT [4] search the collision-
free configuration space efficiently and without any fixed
discretization. These planners assume no uncertainty and
explicitly avoid contact. In this paper we will modify RRTs to
include contact and an explicit reasoning about uncertainty.
In our planner, we exploit a handful of useful strategies
from the motion planning literature: we utilize the Voronoi-
bias [4] to quickly explore configuration and contact spaces,
we use the goal-connect strategy [7] to balance exploration
and exploitation [8], and we use a projection strategy similar



to task-constrained motion planning [9, 10] to implement
sliding along surfaces.

B. Contact-space motion

Classic work in manipulation planning showed how a
sequence of compliant motions can be robust to uncer-
tainty. So called pre-images [1] characterize the regions
from which compliant actions reach a desired goal state.
Chaining them gives uncertainty-tolerant plans. In certain
cases robust manipulation can be achieved without any
sensors [2]. Sampling-based motion planning can explore
the space of configurations in contact [11, 12] but does not
reason about the uncertainty reducing capability. Our planner
searches the space of all configurations in contact to exploit
its uncertainty-reducing capability. Instead of backwards-
chaining, it uses forward simulation to approximate pre-
images.

C. Reasoning about uncertainty

To decide whether to exploit contact or to move in free
space, our planner reasons explicitly about uncertainty. This
distinguishes it from all previously mentioned methods.
We will now review methods that reason about uncertainty
explicitly.

Planning with uncertain actions: Markov Decision
Processes (MDP) model actions with uncertain outcome.
This framework allows robots to reason about the collision
probability of actions and balance short and safe paths [13].
Very related to our method are particle-RRTs [14, 15] which
represent the outcome of actions as a set of particles, just
like our planner. Such a representation is suited to reason
about the uncertainty-reducing capability of contact because
the belief over configurations in contact is non-gaussian [15].
There are three important differences of particle-RRTs to our
work: 1) The particle-RRT assumes perfect knowledge about
robot state which CERRT does not. This allows our planner
to solve a broader class of problems. 2) Our method explicitly
seeks contact to reduce uncertainty, while the particle-RRT
just achieves contact randomly. We believe this is the rea-
son for our planner’s efficiency. 3) CERRT generates only
one sequence of free-space and contact-motions while the
particle-RRT has actions with multiple outcomes. This makes
the particle-RRT’s behaviour more robust to failure. We will
look into this behaviour to extend the CERRT in future work.

Planning with Uncertain Actions and Observations:
Once uncertainty exists in action outcome and the robot
can not fully observe its own state, the planning problem
is a Partially-Observable MDP (POMDP). The solution to
a POMDP is a global sensing-action strategy that balances
uncertainty reduction optimally with goal achievement. Un-
fortunately POMDPs of realistic sizes are intractable to solve
optimally and hard to approximate due to the combinatorial
explosion of belief space. To tackle the high complexity,
further assumptions must be made. Assuming Gaussian state
uncertainty is effective [16, 17, 18, 19, 20, 21] but does
not adequately represent the belief state of configurations in
contact. Sampling-based solvers [22, 23, 24] can approximate

POMDP solutions in reasonable time but are limited to low-
dimensional problems, often with discrete states and actions.

Touch-based localization of the robot relative to a known
environment can be casted as an optimization of a submod-
ular metric [25, 26], which is efficiently solved by a greedy
algorithm. However, submodularity does not hold if motions
in free-space increase uncertainty.

Our method tackles the high complexity by planning with
a belief over the robot configuration but a fully observable
contact-state. This moves our problem in the domain of
Mixed-observability MDPs [27] which are easier to solve.

POMDPs for manipulation: POMDP solvers were ap-
plied to low-dimensional versions of manipulation tasks such
as in-hand manipulation to localize an object [28] or pre-
grasp manipulation [29, 30]. The latter application is relevant
to our method and we will show the uncertainty-reducing ca-
pabilities of our planner on the same problem in Section IV,
but with two important differences: 1) unlike the POMDP-
approaches [29, 30] our method does not assume any a priori
discretization of state or action space. It can be directly
applied just using the geometric model of world and robot as
input. 2) we do not assume uncertain contact sensors while in
the POMDP scenario sensors can return false measurements,
which makes up a large part of the complexity. We think that
our noise-free assumption is justified for undirected, binary
contact-sensing.

III. CONTACT-EXPLOITING RRT (CERRT)

We now present our motion planner, which finds strategies
that move both in free space as well as exploit contact
to reduce uncertainty. To capture information about both
uncertain configuration and contact, we will first define the
search space of the planner.

CERRT plans with a combined state of belief over config-
uration and fully-observable contact x= (Q,C). We represent
the belief over the configuration with a set of particles Q=
{q1, . . .qN}, where each element q is an n-dimensional robot
configuration (see Fig. 2). We will denote the sample mean
and variance of Q with µx and Σx. Each belief state is also
associated with a fully observable contact C = {c1, . . . ,cm}.
Each contact c is a pair of surfaces in contact (srobot,sworld).
srobot is a surface on the robot that has contact sensing
capabilities and sworld a surface of the environment.

Σx
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x

Fig. 2. The planner’s belief state x. The belief is represented by particles
qi (red). The black dot depicts sample mean µx and the gray ellipse depicts
sample covariance Σx.

The planner finds strategies that combine free-space and
contact motion. In CERRT we assume that free-space motion
always increases uncertainty and model this with a noisy
motion model δ (q̇) (which we will discuss in Sec. III-
C). Because free space motions increase uncertainty, the



planner must sequence them with contact motions that reduce
uncertainty. Fig. 3 shows an example of a decision the
planner must take. The robot can not directly enter the narrow
passage but must first contact the wall to reduce uncertainty.
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Fig. 3. Left: To enter the narrow passage, the robot cannot directly take
action u1 because the resulting uncertainty would lead to collision. Right: By
sequencing a contact move u1 and a free space move u2, the robot reduces
position uncertainty sufficiently to enter the narrow passage. CERRT finds
such sequences of contact and free-space motions.

To find such strategies, we grow a tree in the combined
space of contact state and belief over configuration. The key
to the planners efficiency is a tailored exploration strategy of
this space. To adjust the search behaviour of the planner, we
introduce a parameter γ ∈ [0,1] that describes the rate with
which the planner attempts free-space or contact moves (see
Fig. 4). If γ = 0, the planner only explores free space,
and behaves like an RRT-Connect with goal bias. If γ = 1,
the planner’s only objective is to reduce uncertainty. Values
between 0 and 1 balance both objectives.

Fig. 4. The search behaviour of CERRT is governed by a free-space/contact
exploration bias γ . Shown are two search trees of the CERRT planner
exploring the inside of a cube for different values of γ . Left: For γ = 0, the
behaviour matches that of a standard RRT. Right: For γ = 1, the planner
searches the space of configuration in contact with the walls of the cube.
The CERRT planner interleaves both behaviours.

The Contact-Exploiting RRT (CERRT) is closely related
to the kinodynamic RRT [4] and its structure given in
Algorithm 1 is identical to the RRT. However, CERRT differs
substantially in the implementation of the subroutines which
we will explain in detail in the rest of this section, following
the order of the pseudocode in Algorithm 1.

A. Node selection: NEAREST NEIGHBOUR
Like the RRT, our planner selects the next node to extend

xnear with minimal distance to a randomly sampled configura-

Algorithm 1 CERRT
Input: xstart,xgoal,εgoal,γ
Output: G = (V,E)

1: V ←{xstart} init tree with start state
2: E← /0
3: while true do search until goal reached
4: qrand← RANDOM CONFIG()
5: xnear← NEAREST NEIGHBOUR(qrand,T,γ) Sec. III-A
6: u← SELECT INPUT(qrand,xnear,γ) Sec. III-B
7: xnew← NEW STATE(xnear,u,qrand) Sec. III-C
8: if IS VALID(xnew) then Sec. III-D
9: V ←V ∪{xnew}

10: E← E ∪{(xnear,xnew)}
11: xconnect← NEW STATE(xnew,connect,µxgoal)
12: if ‖xconnect− xgoal‖< εgoal then
13: return G
14: end if
15: end if
16: end while

tion qrand. Because the node is a belief state we need to define
a suitable metric for states x. The choice of metric strongly
influences the planning performance [31]. For CERRT, we
use a metric that takes the parameter γ into account and can
balance the search towards free space or contact motion.

For γ = 0 we want the tree to expand into free-space
quickly, just like the RRT. We achieve this by choosing the
node xn whose mean is closest to qrand. To do so we compute
the Euclidean distance dµ(xn) := ‖µxn −qrand‖.

For γ = 1 we want to reduce uncertainty by exploring
contact space. We achieve this by picking a node with low
uncertainty. More specifically, we compute a norm of Σpn ,
which is the covariance matrix of the robot’s end-effector
position pn at configuration qn. We then compute the trace
norm, leading to: dΣ(xn) :=

√
tr(Σpn). We use this norm

mainly because it does not become 0 if the distribution loses
support in one dimension (which happens in contact), and
also because it is inexpensive to compute.

For 0 < γ < 1, we balance the two aforementioned metrics
with a convex combination:

xnear = argminxn

(
γ d̂Σ(xn)+(1− γ)d̂µ(xn)

)
Both distance terms are normalized to the interval [0,1]

by dividing them by the maximum observed value over all
samples.

B. Action selection: SELECT INPUT

After choosing a node for extension the planner needs
to pick the next action. CERRT must have enough options
to move in free space, along contact surfaces, or to switch
from free space to contact and vice versa. We implement
these options with three different action types. We will briefly
introduce them here and give their implementation details
later in Sec. III-C.

connect: this action attempts a straight line connection
in configuration space to the sample qrand. connect explores
the free space and usually increases position uncertainty (Fig.
5(a)).



guarded: this action moves in the direction of qrand
until it establishes contact with the environment. guarded
is required to switch from free space to contact and always
reduces uncertainty in one dimension. (Fig. 5(b)).

slide: this action slides along a surface until the contact
state changes, either by moving into another contact (Fig.
6(a)) or by leaving the sliding surface (Fig. 6(b)). slide
explores the space of all contacts, always keeps uncertainty
low in one dimension, and can reduce uncertainty in a second
dimension.

u

x1

x2

(a) Connect

x1
x2

u

(b) Guarded move

Fig. 5. A free-space move and a move into contact. x1 and x2 are the
initial and final particle distributions before and after applying action u.

x1 x2u

(a) Concave slide

x1 x2u

(b) Convex slide

Fig. 6. Two sliding actions. (a) The slide moves the distribution along the
surface until it achieves contact with another surface. (b) The slides moves
until it loses contact with the surface. Both slides keep uncertainty low in
one dimension and reduce it in another dimension.

Our planner selects one of the three actions probabilisti-
cally, biased by γ in the following way: if xnear is not in
contact, it performs a connect move or a guarded move. If
xnear is in contact, it slides or leaves the contact with a con-
nect move. We choose actions based on these distributions:

p(connect|Cx = /0) = 1− γ

p(guarded|Cx = /0) = γ

p(connect|Cx 6= /0) = 1− γ

p(slide|Cx 6= /0) = γ

We chose these distributions so that the planner is an RRT-
Connect for γ = 0.

C. Forward simulation: NEW STATE

For each of these actions, the planner must be able to
reason about the change of uncertainty. We approximate
this with a simulation of N noisy actions. The input to
the simulation is a motion model δα(q̇) with parameter
vector α . Examples for the motion model δ are the classical
angular and translational motion error for mobile robots or
independent error for all joints of the robot.

To extend a node x1, CERRT samples a particle from Qx1
and also samples a vector α of parameters of the motion
model δ . The extension step then is an invocation of the
local planner that executes action u with the motion error
δα , which we will describe in detail in the next Section.

The target of the local planner is qrand with the initial error
of the particle added. The extension step is repeated for all
particles so that the outcome of the simulation is a new set
of particles Qx2 which is added to the new state x2.

Algorithm 2 NEW STATE
Input: x1,u,qrand
Output: x2

1: for i ∈ Nparticle do
2: qnear← SAMPLE(Qx1) sample particle from node
3: α ← SAMPLE(N (0,σδ )) sample motion error
4: qtarget← qrand +(qnear−µx1) add the initial error
5: qsample ← LOCAL PLANNER(a,qnear,qtarget,δα ) simulate

action with one of the local planners (Sec. III-C)
6: Qx2 ←Qx2 ∪{qsample}
7: end for
8: return x2

Local planners: Each of the three action types invokes a
different local planner. We implement them in the following
way:

connect: A connect move is identical to the RRT
version. A connect-particle moves on a straight line in
configuration space towards the sample qrand, checking for
collisions with a fixed resolution of ε . If the particle reaches
the sample or moves into contact the motion ends.

guarded: A guarded motion is a connect move in the
direction of qrand. A guarded move always ends in contact
so it might end before qrand or move beyond qrand.

slide: Sliding motions start with particles in contact and
move them along the surface, always maintaining contact.
We implement sliding motions as task-space force-feedback
controllers with constant orientation. To simulate sliding
actions we first choose a random sliding surface (because
the node might be in contact with two surfaces at the
same time) and then project the end-effector position of the
robot in configuration qtarget onto the sliding surface. The
algorithm then alternates between 1) taking a step towards
the projected goal, 2) applying the motion error for this
step 3) projecting the configuration back on the surface (see
Algorithm 3). In this way, the effect of the joint-space motion
error can be projected onto the lower-dimensional manifold
of configurations in contact with the environment. The slide
ends if the robot reaches the projected goal, if there is another
contact, or if the robot looses contact with the sliding surface
(see Fig. 6). For all projections we use a damped pseudo-
inverse. If the robot is close to a singularity at any step
(
√

det(JJT )< 0.001 [32]) the slide method returns failure.

D. Node validation: IS VALID
All nodes in CERRT must have a uniquely defined contact

state. To ensure this, we only add those simulation outcomes
to the tree that fulfill two requirements:

1) All q ∈ Qx2 must either end up in free space or in
contact with the same pair of surfaces.

2) If Qx2 contains configurations in contact, the contact
must occur with a link that has a contact-sensor.

The first condition is crucial for our planner’s perfor-
mance because it ensures that the robots contact state is



(a) Grasping POMDPs [29] (b) T-Shape (c) Maze (d) SE(2)

Fig. 7. Solutions of the CERRT planner for a grasping scenario. The gripper shows the final configuration of the path. The lines show 20 sampled
trajectories, free-space motions are shown in green and slides in blue. The beginning of the paths is always in free space and the end is before grasping.
CERRT outperforms POMDP planners on the benchmark (a) and scales to more complex problems.

Algorithm 3 SLIDE
Input: qnear,qsample
Output: qreal

1: (psample,Rsample)← TEE(qsample)
2: (psurf,nsurf)← RANDCONTACT(qnear) sample random con-

tact point and surface normal of qnear
3: p′sample← psample−((psample− psurf) ·nsurf)nsurf project psample

on surface
4: ξ ← T near−T sample
5: while ‖TEE(qrobot)−T sample‖> 0 do
6: ∆q← J†(qrobot)ξ move along surface towards sample
7: qrobot← qrobot + ε ·∆q̂ the particles most likely position
8: qreal← qrobot +δ (ε ·∆q̂) the particles actual position
9: while qreal ∈ Cfree do

10: ∆qn←−J†(qnew)nsurf move towards surface
11: qreal← qreal + ε ·∆q̂n
12: end while
13: end while

always fully observable. It prevents all actions that end
in separate, undistinguishable contacts. Other Particle-RRT
planners [14, 15] do not restrict these actions because they
introduce a clustering method and insert multiple nodes
for different action outcomes. The second condition allows
to treat measurable contact separate from undesired non-
observable contact.

After inserting a valid node, the planner attempts to reach
the goal state from the newly inserted node, also using
forward simulation. If the resulting distribution is close to
the desired goal distribution, the planner returns success.
Otherwise it moves to the next iteration and picks another
sample.

E. Policy generation

Given a sequence of actions and nodes from start to goal
(u1,x1), . . . ,(un,xn), we need to generate a policy that can be
executed on a robot. This policy is a sequence that alternates
between controllers and contact-based jump conditions. We
instantiate one controller followed by one jump condition for
each tuple of action and node (ut ,xt). The type of controller
depends on ut : from connect and guarded we generate a
joint-space velocity controller and from slide we generate
a compliant operational-space controller. The type of jump
condition depends on the contact state Cxt : If there is contact,

the control switch is based on the magnitude of the measured
force while for non-contact states, it is based on the covered
distance ‖µxt − µxt−1‖. We execute all controllers with low
gains to safely make and break contact. This leads to weak
tracking performance on the real robot but, as the policy is
inherently robust, does not critically affect the outcome.

IV. EXPERIMENTS

In this section we will first show policies generated by
CERRT for problems from the POMDP literature but also for
a high-dimensional manipulation problem. Second, we will
analyze the effect of the planner’s parameters quantitatively.

Our planner is implemented in the Robotics Library (RL)1

using the Bullet physics library2 for collision detection. We
executed all experiments on an office PC with a 3.3 GHz
Intel Core i5 CPU running the Linux operating system.
In all experiments we use a constant number of particles
N = 20 and a goal bias in the sampler of 10%. We always
initialize the start belief state xstart by sampling N particles
from the distribution N (qstart,σstart). All experiments use
an independent linear motion error for all joints of δi(q̇) =
N (0,σδ q̇i).

A. Performance on manipulation problems

2D grasping: This problem models a gripper picking up
a square block at unknown location and is inspired by the
POMDP literature [29, 30]. The gripper has contact sensors
at each jaw and can translate in two dimensions. Because of
a large initial uncertainty the gripper must contact the object
or the walls first and then, after uncertainty is sufficiently
reduced, attempt the grasp from the top.

Fig. 7(a) shows one of the solution paths CERRT found
on the simple grasping scenario. All policies first establish
contact with wall or object and then slide along the ground
until contact with the object is perceived. The planning time
for this problem averaged over ten runs is 6.8s (±5.1s).
A POMDP version of the problem with discrete state and
actions required an average planning time of 8s [24] and
160s with continuous state and discrete actions [30]. Our
approach easily scales to more complex scenarios. Fig. 7(b)

1roboticslibrary.org
2bulletphysics.org



Fig. 8. The manipulator must touch the target in the square opening of the wall. Left: The planner output. Gray lines show all explored motions. The
green line is the found path. Our planner finds a strategy that moves to the cyan box, slides down until it loses contact, does a guarded move to the top
of the red box, and moves to the target. Center: The outcome of executing the strategy on the real robot without uncertainty. The robot reaches the goal
precisely. Right: We now raise the obstacles by 7cm (the white overlay shows the wall position from (b)) and execute the policy from (b) again. The robot
uses the contact to reduce uncertainty and reaches the target with an error of 2cm.

shows the result for a multi-step piece (8.2s±6.9s), Fig. 7(c)
a version where the gripper must first navigate through a
simple maze (23.4s±19.3s), Fig. 7(d) a 3D version of the
problem with translation and rotation of the gripper.

7D robot arm motion: CERRT is efficient enough to
be directly applied to the seven-dimensional configuration
space. We place a 7-DOF Barrett WAM robot in front of the
wall depicted in Fig. 8, similar to the scenario from Phillips-
Grafflin et al. [15]. The robot model has an initial uncertainty
and a motion uncertainty of σstart = σδ = 0.02. Motion-
dependent position error occurs in the real Barrett WAM
robot due to stretch of the cables that move the joints. The
robot uses a wrist-mounted ATI Gamma force-torque sensor
to perceive contact with the end-effector but cannot perceive
contact with any other part. We now raise the obstacles by
7cm (the white overlay shows the wall position from (b)) and
execute the policy from (b) again. The robot uses the contact
to reduce uncertainty and reaches the target with an error of
2cm. The outcome of the planner can be seen in Fig. 8.
From ten attempts, the planner solved this problem six times
within 180s. The six successful searches required an average
time of 23.8s±29.3s. To validate the robustness of the plan,
we introduce an unexpected disturbance. We raise the wall
including all obstacles by 7cm and execute the motion on
the robot. The contact with the cyan and red boxes reduces
uncertainty and the robot reaches the target with an error of
2cm which is an effective reduction of 5cm.

B. Quantitative analysis of planner parameters

We will now present the results of quantitative experiments
that suggest sensible values for the two parameters of the
planner: the free-space/contact-space exploration bias γ , and
the number of particles N.

The influence of γ: We executed the planner on two
different scenarios: 1) a 2D scenario with narrow passages
2) the 7D manipulation problem from Fig. 8. In our analysis
we varied γ and the standard deviation of the motion un-
certainty σδ . We set σstart = 0. In both scenarios, we ran the
planner ten times each for 66 different combinations of γ and
σδ . We show the average planning time for each combination
in Fig. 9. The results show a strong influence of γ on the
planning time, depending on the uncertainty.

δσ

γ γ

δσ

avg. timeavg. time

Fig. 9. Average planning time for different combinations of γ and σδ .
Left: For the 2D scenario from Fig. 7(b) the optimal value of γ depends on
the uncertainty. Right: for the 7D manipulation scenario from Fig. 8, the
planner performs best for high values of γ , which lead to a contact-seeking
behaviour.

The border case γ = 0 corresponds to pure free space
search or pure contact motion. For the 2D scenario this
is only reliable for problems without uncertainty. The case
γ = 1 corresponds to a pure contact-space exploration. This
strategy succeeds in both scenarios because they can be
solved by a sequence of sliding motions. For values between
0 and 1 in the 2D scenario the planner always solves the
problem. In 2D, free-space exploration is effective as long
as uncertainties are low. A value of γ = 0.3 has the best
performance. For high uncertainties more contact must be
made and a value of γ = 0.7 performs best. In the 7D scenario
from Fig. 8, the planner starts failing for uncertainties higher
than 0.02 (we stop the search after 180s) and free-space
exploration is far less effective. We achieved the best results
with γ = 0.95. Our results show that for best planning
performance, γ should be tuned to the problem at hand,
as some problem require more free-space search and some
require more contact.

The number of particles: The second important param-
eter is the number of particles to consider for planning. A too
low number of particles will approximate the belief insuffi-
ciently which can lead to a policy with unexpected collisions.
The number of particles influences the planning time at least
linearly and should be kept low. To find a reasonable number,
we ran the manipulator experiment (Fig. 8) 21 times varying
the numbers of particles. We execute the resulting plans
in a dynamic simulation implemented in the RoboticsLab3

framework and executed each plan 10 times with different
motion error Fig. 10 shows the results of these experiments.

3simlab.co.kr
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Fig. 10. The standard deviation of the final position errror drops
significantly with 32 particles.

While the average error of the robot’s final position is about
constant for different runs the standard deviation of the error
drops at 32 particles. This suggests that the generated plans
are not reliable below 16 particles. A similar number of
particles was reported in [15].

V. CONCLUSION

We presented a planner to generate robust manipulation
strategies under significant uncertainty in robot state, action,
and world model. The planner achieves computational ef-
ficiency and robustness of resulting plans by interleaving
motion in free space with motion in contact. The key to the
planner’s efficiency is a search strategy tailored to the com-
bined contact space and free space as well as the assumption
of a fully observable contact state. The experiments showed
that the same planner can solve challenging benchmarks
from the POMDP literature in continuous state and action
spaces but also scales to realistic manipulation planning
problems in configuration space. We believe there is room
for runtime improvement in our planner and most extensions
from the motion planning literature such as bidirectional
search [7], guided sampling, and balancing of exploration
and exploitation [8] will be just as useful for planning
interleaved free-space and contact motion.
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[3] C. Eppner, R. Deimel, J. Álvarez-Ruiz, M. Maertens, and O. Brock,
“Exploitation of environmental constraints in human and robotic
grasping,” The International Journal of Robotics Research, vol. 34,
no. 7, pp. 1021–1038, 2015.

[4] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Department of Computer Science, Iowa State University,
Tech. Rep., 1998.

[5] L. Righetti, M. Kalakrishnan, P. Pastor, J. Binney, J. Kelly, R. C.
Voorhies, G. S. Sukhatme, and S. Schaal, “An autonomous manipu-
lation system based on force control and optimization,” Autonomous
Robots, vol. 36, no. 1-2, pp. 11–30, 2014.

[6] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[7] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient ap-
proach to single-query path planning,” in International Conference
on Robotics and Automation (ICRA). IEEE, 2000, pp. 995–1001.

[8] M. Rickert, A. Sieverling, and O. Brock, “Balancing exploration and
exploitation in sampling-based motion planning,” IEEE Transactions
on Robotics, vol. 30, no. 6, pp. 1305–1317, 2014.

[9] M. Stilman, “Task constrained motion planning in robot joint space,”
in International Conference on Intelligent Robots and Systems (IROS).
IEEE/RSJ, 2007, pp. 3074–3081.

[10] D. Berenson, S. Srinivasa, and J. Kuffner, “Task space regions: A
framework for pose-constrained manipulation planning,” The Interna-
tional Journal of Robotics Research, vol. 30, no. 12, pp. 1435–1460,
2011.

[11] X. Ji and J. Xiao, “Planning motions compliant to complex contact
states,” The International Journal of Robotics Research, vol. 20, no. 6,
pp. 446–465, 2001.
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