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ABSTRACT

Hybrid approaches combine computational methods with experimental data. The information contained in the experimental

data can be leveraged to probe the structure of proteins otherwise elusive to computational methods. Compared with com-

putational methods, the structures produced by hybrid methods exhibit some degree of experimental validation. In spite of

these advantages, most hybrid methods have not yet been validated in blind tests, hampering their development. Here, we

describe the first blind test of a specific cross-link based hybrid method in CASP. This blind test was coordinated by the

CASP organizers and utilized a novel, high-density cross-linking/mass-spectrometry (CLMS) approach that is able to collect

high-density CLMS data in a matter of days. This experimental protocol was developed in the Rappsilber laboratory. This

approach exploits the chemistry of a highly reactive, photoactivatable cross-linker to produce an order of magnitude more

cross-links than homobifunctional cross-linkers. The Rappsilber laboratory generated experimental CLMS data based on this

protocol, submitted the data to the CASP organizers which then released this data to the CASP11 prediction groups in a

separate, CLMS assisted modeling experiment. We did not observe a clear improvement of assisted models, presumably

because the properties of the CLMS data—uncertainty in cross-link identification and residue-residue assignment, and

uneven distribution over the protein—were largely unknown to the prediction groups and their approaches were not yet tai-

lored to this kind of data. We also suggest modifications to the CLMS-CASP experiment and discuss the importance of rig-

orous blind testing in the development of hybrid methods.
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INTRODUCTION

Hybrid methods are emerging as new tools to model

protein structure. These methods incorporate experimen-

tal data into computational protein structure approaches

in an attempt to increase the accuracy of resulting mod-

els and the range of applicability. Hybrid methods can

leverage experimental data that by itself would be insuffi-

cient to determine structures with satisfactory accuracy.

However, when this data is complemented by computa-

tional approaches, it may suffice to aid conformational

search to find good minima in the energy landscape,

even in cases when purely computational methods would

fail.

Experimental data sources for hybrid methods range

from sparse NMR restraints,1 low-resolution electron

density data,2,3 restraints from electron paramagnetic

resonance,4,5 F€orster resonance energy transfer,6 small

angle X-ray scattering data (SAXS),7 and cross-link/

mass-spectrometry data.8–12 The simultaneous use of

multiple data sources can further increase the accuracy

of the resulting model structure.13 For a comprehensive

review of the protein systems that have been determined

with hybrid methods, please refer to Sali et al.14 In addi-

tion, hybrid methods provide models that are experimen-

tally verified and therefore arguably more trustful models

of protein structure. Most importantly, many protein tar-

gets are elusive to X-ray crystallography or NMR
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spectroscopy, because they cannot be isolated with the

required purity, are insoluble, or do not crystallize.14

However, many experimental methods are still able to

collect valuable, structural data on these targets. Thus,

hybrid methods are a promising approach for determin-

ing structures that are out of reach for established struc-

ture determination techniques and expanding our

knowledge about the protein universe.

The importance of hybrid methods was acknowledged

by the CASP committee in CASP10, when they intro-

duced the “contact-assisted” category.15 In this category,

the CASP committee provided sparse contact data

(selected from known native contact maps) for difficult

modeling targets to mimic distance restraints from

hybrid methods. In many cases, this additional informa-

tion substantially improved the accuracy of protein mod-

els over unassisted predictions.16 However, the provided

contact sets had idealized properties. The sparse contact

sets contained long-range contacts (in terms of sequence

separation) that were missed by unassisted predictions

and evenly distributed over the protein.15 This does not

capture the properties of real, experimental data that

might be sparse, noisy, ambiguous, and unevenly distrib-

uted over the protein. Therefore, algorithms that succeed

with the contact sets from the CASP10 contact-assisted

experiment, which might be a best-case scenario, might

not be effective with real experimental data. Obviously,

the best benchmark test of hybrid methods is to use real

experimental data. However, the CASP experiment

imposes time constraints that make it difficult to use real

experimental data. Typically, only few weeks to months

are available from target selection to the prediction dead-

line. Most experimental methods need more time to

gather sufficient experimental data.

For CASP11, the Brock and Rappsilber laboratory pro-

posed a new experiment to establish hybrid methods as a

component of the CASP experiment. To address the time

constraints of CASP, they proposed to use experimental

data based on a novel protocol for photo-cross-linking

and mass-spectrometric analysis (CLMS).17 This proto-

col, as will be described below, promised to deliver valu-

able structural information obtained from experiments

within the required timeframe. Even though the two labs

proposed this experiment together, they acted as separate

entities in CASP11. The Brock laboratory participated as

a prediction group and the Rappsilber laboratory pro-

vided the CLMS data to the CASP consortium. During

CASP 11, the Brock laboratory only had access to the

data released by the CASP consortium. The CASP experi-

ment remained blind in the sense that the Rappsilber

laboratory did not know the structure of the proteins for

which it was determining experimental cross-linking

data.

The employed photo cross-linking/mass spectrometry

approach in this experiment has a number of unique

properties that makes it an excellent experimental data

source for blind testing of hybrid methods. Cross-linking

and mass-spectrometric analysis are relatively quick. The

experiments reported in this article took approximately

two weeks of experimental time and 4.2 days measure-

ment time on average. This makes it possible to provide

experimental data under the time constraints of the

CASP experiment. The unique chemistry of photo-cross-

linking reagents produce an order of magnitude more

cross-links than standard homobifunctional cross-linking

agents, such as BS3.17 In favorable cases, this approach

can measure 2.5 cross-links per residue, which

approaches the constraint density of NMR (�3–20 con-

straints per residue). However, the spatial resolution of

the cross-link constraints is much lower than NMR con-

straints. Thus, the experimental data from high-density

cross-linking/mass spectrometry experiments needs to be

complemented with structure prediction algorithms to

determine protein structure.

Another important property is that the cross-linking

reaction can be performed prior to purification of the

protein. Because cross-links are already formed, the pro-

tein can be purified under non-native conditions or the

protein can be digested and the cross-linked proteins can

be enriched. Therefore, cross-linking can be done in

samples with low purity, in native environments,17 and

even in cells.18 This enables the gathering of experimen-

tal data under conditions that are unsuitable for other

experimental methods.

In this article, we describe the first blind test of a

hybrid method in CASP with real, experimental data.

We would like to point out that this was made possi-

ble by the efforts of the CASP organizing committee.

The CASP committee identified and acquired suitable

targets and published the resulting data on the CASP

web page for the community of predictors. We would

also like to thank the experimental groups that gener-

ously provided protein sample for this experiment. Please

refer to the “Acknowledgements” section a full list of the

involved researchers and affiliations.

The goal of this article is to report on the experience

and the logistics of the blind testing of hybrid methods.

Furthermore, we report on the results of the experiment

in CASP11 by presenting the cross-linking results on

four protein targets and briefly discuss the impact on

modeling. The last goal of this article is to make recom-

mendations to maximize impact of future instances of

hybrid methods in CASP.

METHODS

Here, we only give a brief overview of the experimen-

tal cross-linking/mass spectrometry method, describing

those details required for understanding the remainder of

this article. Full experimental details of the experimental

protocol used in CASP 11, targeted to a mass
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spectrometry audience, can be found in a separate article

(currently in preparation).

General overview of high-density
cross-linking/mass spectrometry

Generally, protein residue pairs are covalently cross-

linked, effectively providing an upper bound of the

linked residues that is partially determined by the length

of the linker agent. The protein is then digested, which

results into a peptide mix. Some of the peptides are

cross-linked if they have been in spatial proximity in the

folded structure. The peptide mix is then subjected to

mass spectrometric analysis. Peptide spectrum matching

and database search reveals the cross-linked residues. The

output of this method is a list of cross-linked residues

which effectively provide distance restraints with an

upper distance bound (Fig. 1, a detailed review of the

cross-linking/mass spectrometry process has been pub-

lished elsewhere19). The key component of our high-

density cross-linking method is a highly reactive, photo-

activatable cross-linking reagent, sulfo-SDA. Sulfo-SDA

contains a diazirine group, which releases highly reactive

carbene under UV-light activation that is able to react

with any amino acid. This broad specificity greatly

increases the number of cross-links over standard cross-

linking reagents with specific reactivity profiles, effec-

tively resulting in a high number of cross-links.17

Chemical cross-linking

Each target was cross-linked using the heterobifunc-

tional, photoactivatable, chemical cross-linker sulfosucci-

nimidyl 4,4’-azipentanoate (sulfo-SDA). The Rappsilber

group first incubated sulfo-SDA with the protein for 1 h

and then photoactivated the sulfo-SDA with UV light.

The protein is then digested using different combinations

of proteases.

Mass spectrometry and data analysis

The digested peptides were loaded onto a liquid chro-

matography column to separate the peptides by hydro-

phobicity. The peptides were gradually eluted and

sprayed into the mass spectrometer. This procedure

reduces sample complexity during mass spectrometric

analysis.

For data analysis, the peak lists were searched against a

database from the sequence of the CASP targets. The

Rappsilber lab assumed the sulfo-SDA linker reaction

specificity to be lysine, serine, threonine, tyrosine, and

protein N-termini at one end and any amino acid resi-

due at the other end. Lastly, the false discovery rate

Figure 1
Schematic summary of high-density cross-linking/mass spectrometry experiments in CASP11. We incubate the target protein with the sulfo-SDA
cross-linker. During incubation, the cross-linker reacts with lysine, serine, threonine, tyrosine, and the protein N-termini at one end. Upon activa-

tion with UV light, the other side of the linker forms a reactive carbene species and reacts with any other amino acid in close proximity. We then

digest the protein using proteases. In the analysis step, we subject the peptide mixture to mass spectrometric analysis. We match the mass spectra
to theoretical spectra of sequence fragments derived from the target sequence. The output of this procedure is a list of cross-linked residues.
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(FDR) was estimated using a modified target-decoy

search.20,21

CLMS data release

The Rappsilber group compiled lists of residue-residue

cross-links from FDR analysis and submitted them to the

CASP organizing committee, which released them to the

prediction groups.

RESULTS

Organization and execution of the
cross-linking experiment

First, we report on the organization and execution of

the experiment to provide the reader with the setup of

the hybrid method/cross-linking experiment in CASP11.

We proposed the CLMS assisted structure prediction

experiment mid-March 2014.

The CASP organizers identified and acquired suitable

protein targets (no homologous structures could be iden-

tified by sequence similarity). The first positive response

came from a PSI centre 12 days later on March 30th

2014. A total of nine proteins were sent to the Rappsilber

laboratory between May 29th and June 9th 2014. From

these nine proteins, the CASP organizing committee, in

discussion with the Rappsilber group, selected four pro-

teins that met the following criteria: 1) The protein is

heavier than> 20 kDa, 2) it forms a monomer in solu-

tion and, 3) approximately 1 mg protein sample was

available. Because of the relatively low spatial resolution

(25 Å) of CLMS constraints, CLMS data is likely not

informative for small proteins. Thus, the organizers

excluded small proteins from consideration. Selected pro-

teins needed to be monomers in solution to allow unam-

biguous assignment of cross-linked peptides as

intramolecular connections. At least 1 mg of protein sam-

ple should be available to have sufficient material for

CLMS experiments. The final conclusion was made in a

meeting between the CASP Organizing Committee and the

Rappsilber lab Edinburgh on June 10th 2014. The selected

targets for CLMS experiments were: Target 1, SP17834A-

RUMGNA_02398, Tx781; Target 2, SP16782A_BAC-

CAC_02064, Tx808; Target 3, SP17984B-SAV1486, Tx767

and Target 4, laminin, Tx812. All targets contain at least

one hard template-based modeling or free modeling

domain.

The Rappsilber group performed cross-linking/mass-

spectrometry experiments for these targets in a time-

frame of 48 days, starting on June 11 2014. Figure 2

shows the schedule of the CLMS experiments and pre-

diction periods for Tx targets. The Rappsilber group

staggered the release of the experimental data to have

enough time for data acquisition and be able to work at

one target at a time. The expiration dates for the four

targets were July 8, July 23, July 28 and August 4 2014,

respectively. Prediction groups had between twelve and

15 days to model the proteins between CLMS data

release and the expiration of the target. At the time of

the experiment, the Rappsilber group had no knowledge

of the crystal structure. However, the CASP organizers

gave feedback for quality control to rule out complete

failure of the CLMS experiments: they released back to

the Rappsilber lab the percentage of experimentally

determined cross-links between residues with a-carbon

distance below 20/25 Å in the native structure, i.e. the

percentage of plausible cross-links. CLMS constraints

were provided on the CASP website (http://prediction-

center.org/).

Qualitative analysis of CLMS structure
information

Cross-linking data captures spatial proximity between

residue pairs in the native structure. However, the cross-

linked atoms cannot be specified because the carbene

species of activated diazirine group can react with any

atom and current mass spectrometry technology does

not routinely identify the linked atoms. Thus, it is not

possible to specify a tight upper bound for the distance

between two cross-linked residues. The actual distance is

affected by many factors, such as the side-chain length,

the cross-linker length, and conformational flexibility of

the protein. In CASP11, we used a conservative a-carbon

upper distance bound of 25 Å. Note that conformational

flexibility of the protein in solution could result in cor-

rect cross-link matches of residues that are further apart

than 25 Å in the native structure.

We first qualitatively analyze the CLMS data of the

four CASP11 target proteins and their evaluation

domains. Note that CASP predictions are usually ana-

lyzed the basis of evaluation domains that are identified

by the assessors. We refer to the official CASP11 domain

assignments (see http://www.predictioncenter.org/casp11/

domains_summary.cgi) with -D1 and -D2 for the first

Figure 2
Schedule of CLMS experiments and prediction periods for Tx targets in

CASP11. Each colored bar shows the experimental CLMS time (in days,
d) spent on each target and (red) and the prediction period that this

target was available for prediction groups (blue).
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and second evaluation domain, respectively. Figure 3

shows the cartoon representation of the crystal structures

of Tx767, Tx781, Tx808, and Tx812 with cross-links

indicated as straight-line connections between residues.

The visual inspection of cross-links provides some inter-

esting insights. Some domains have good coverage of

cross-links (Tx767-D1, Tx767-D2, Tx808-D1, Tx812-D1).

However, Tx808-D1 and Tx812-D1 have a sandwich b-

sheet architecture that is slightly elongated. CLMS data

will only contain information along the elongation axis,

which has a diameter of �40 Å for these domains. The

diameter perpendicular to the elongation axis is <25 Å

for these proteins, which is less than the upper bound

for the cross-linking distance. Thus, CLMS constraints

provide no information along this axis.

Another interesting observation is that excessively long-

distance cross-links are often found between domains. We

hypothesize that the flexibility of the domain interface

might lead to long-distance cross-links, because the CLMS

approach captures some domain arrangements in solution

that are not seen in the native structure.

We also find that cross-links are unevenly distributed

for some proteins. This is apparent in Tx781-D2, which

contains long stretches without cross-link coverage. How-

ever, we generally find that only few cross-links are

formed between b-strands. Thus CLMS data might miss

the critical information of b-sheet topology. This is

problematic, as the CASP11 targets for the CLMS experi-

ment have significant b-sheet content (Tx808 and Tx812

are mostly b-sheets). It is obvious that CLMS constraints

between b-strands are not informative, because adjacent

b-strands have a distance of �5 Å. However, it is quite

surprising that there is an apparent bias to cross-link

coverage. Specifically, b-strand cross-links are often not

observed at all. There is no entirely clear reason for this

finding at this stage.

Surface accessibility and environmental reactivity influ-

ences the formation of cross-links and maybe a different

Figure 3
Visualization of cross-links in target proteins. Cartoon representation of protein target structures with cross-links obtained by the proposed photo-
CLMS procedure. Cross-links that satisfy the upper distance bound (<25 Å Ca-Ca distance) are shown in cyan, long-distance links that exceed the

upper bound in orange. The first domain of the target is shown in green, the second in violet. Tx767: The cross-links are evenly distributed in the

protein. Most long-distance cross-links are between domain 1 and domain 2. Tx781: Domain 1 and the domain 1 -domain 2 interface contain
many long-distance cross-links. Domain 2 has more links, but they are unevenly distributed. Tx808: Domain 1 has almost no long-range cross-

links, but the domain is quite small. Many links can be found in domain 2, but almost no links are identified between b-strands. Tx812: CLMS
experiments produced almost only true-positive links for this protein. However, there are again almost no links between b-strands.
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cross-linking chemistry needs to be developed to reduce

this influence and to obtain a more even coverage.

The distribution of digestion cleavage sites also con-

tributes to uneven coverage of cross-links. This is evident

for Tx781, for which little cross-link information is

found up to residue 180 (see Fig. 3). There are 18 tryptic

cleavage sites for the first half of the protein (up to resi-

due 180). In contrast, there are 31 tryptic cleavage sites

between residue 181 and the C-terminus. This reduces

the probability of successful digestion of the N-terminal

protein, which could explain the absence of cross-links.

This could be combated with digestion strategies with

multiple enzymes that target different cleavage sites.

Quantitative analysis of CLMS structure
information

In the following analysis, we quantify the distance

information in the CLMS data. Figure 4(A) shows the

distance distribution of cross-linked residue pairs in the

native structure of the cross-linked CASP targets. With

the exception of Tx781, the distance distribution of

cross-linked residues can be clearly distinguished from

the distribution of random distances with the same

sequence separation and is shifted toward lower distan-

ces. Therefore, the cross-links contain information about

residue pairs that are close in space (upper distance

bound of 25 Å) which can be used as additional infor-

mation in protein modeling to restrict the conforma-

tional space. Tx781 aggregated during shipping and/or

sample preparation which might negatively impacted the

cross-link quality of this target [see a-carbon distance

distribution of Tx781 in Fig. 4(A)]. The fraction of

cross-linked residues below the upper distance threshold

of 25 Å is 0.81/0.54/0.75/0.91 for targets Tx767/Tx781/

Tx808/Tx812, respectively [Fig. 4(B)]. There are several

reasons for long-distance cross-links that span larger dis-

tance than the specified upper distance bound (25 Å).

Conformational flexibility in the protein might lead to

cross-linked residue pairs that are within cross-link dis-

tance in solution, but far apart in the experimental struc-

ture. In addition, there are assignment errors from the

analysis of mass spectra that leads to wrongly assigned

cross-linked peptides. Another experimental issue is that

current data analysis cannot always pinpoint the exact

cross-linked sites at residue resolution. This requires

fragmentation evidence for both cross-linked peptides in

the MS2 analysis. However, this fragmentation evidence

is not observed for all peptides with the current protocol.

If fragmentation evidence is absent, we heuristically esti-

mate the cross-linked residue pairs using flanking frag-

mentation events.17 Thus, the exact cross-linked residues

cannot be identified in some cases, which results into

ambiguous site-assignments of the cross-links.

Figure 4(C) shows the fraction of satisfied cross-links

as a function of the accepted upper distance bound.

Figure 4
Structural information of CLMS data for four CASP11 targets. Only

cross-links with sequence separation of 12 amino acids or higher are
considered for this plot, which results in: 393/332/221/216 links for

Tx767/Tx781/Tx808/Tx812. A: a-carbon distance distribution of cross-

linked residue pairs (red). Distances are taken from the native protein
structure. The blue line shows a distance distribution of random residue

pairs with the same sequence separation as the cross-links. Except for
Tx781, the distance distribution of cross-linked residues significantly

differs from the random distribution. B: Fraction of satisfied links with
an upper distance bound of 25 Å. C: Fraction of satisfied cross-links as

a function of the upper distance bound. The upper distance bound

might be lowered at the expense of cross-link accuracy.
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Interestingly, the fraction of satisfied cross-link distances

is still fairly high in the 18–20 Å range. Thus, it might

be worthwhile for modeling algorithms to accept a

higher fraction of long-distance CLMS constraints in

exchange for more informative cross-links at a lower esti-

mated upper distance bound. In addition, it would be

interesting to further investigate whether few, accurate

cross-links at low FDR or many, less accurate cross-links

at higher FDR are more informative for protein model-

ing. In another study on human serum albumin, we find

that using cross-links at 10–20% FDR leads to lower

RMSD ensembles than 1–5% FDR.17 We speculate that

structure prediction algorithms that are robust to noise

would enable the use of cross-link restraints at even

higher FDR, which would increase the number of avail-

able cross-links from high-density CLMS experiments

even further.

In summary, cross-links from high-resolution CLMS

contain structural information that is obtainable in

approximately 4.2 days of data acquisition for a single

protein target. However, we hypothesize that the exploi-

tation of CLMS data by modeling groups could be

optimized along three dimensions: 1) Designing error-

tolerant modeling algorithms such that the negative

impact of CLMS noise or ambiguous/false assignment is

minimized; 2) better estimates or acceptance of higher

error at low upper distance bounds of cross-linked resi-

dues; 3) exploiting the geometry of protein models

because cross-links from soluble linking reagents are

formed along the surface of the protein structure.22,23

Of course, there are likely more ways to exploit the

structure information in CLMS data than those we

anticipate here.

Impact of CLMS data on structure
prediction in CASP11

We analyzed the predictions submitted during the

CASP11 experiment to measure the impact of CLMS

data on model quality. We downloaded the predictions

and summary tables from the CASP11 website (http://

predictioncenter.org/). We then compared the model

quality of predictions submitted to the regular experi-

ment (T0, no CLMS data) and to the CLMS assisted

experiment (Tx, with CLMS data). Since we would like

to capture the impact of CLMS data, we only compared

the best predictions from groups that submitted predic-

tions to both experiments [19 groups, Fig. 5(A)]. Our

Figure 5
Impact of CLMS data on assisted structure predictions in CASP11. The results of this plot refer to the seven evaluation domains of the four targets
Tx767/Tx781/Tx808/Tx812. A: Comparison of the best predicted model of the 19 prediction groups that participated in the regular and assisted

experiment. Only groups that participated in both experiments are considered in this plot. Using CLMS data increases the GDT_TS of the best pre-
dicted models slightly. B: Comparison of group specific predictions of seven evaluation domains from the 19 prediction group that participated in

both experiments. The GDT_TS is lower for assisted models in 53 out of 97 cases, indicating that most prediction groups were yet not able to
leverage the structural information in CLMS data. Overall, the CLMS data did not lead to a pronounced improvement of the CLMS-aided models.
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comparison assumes that these 19 groups used compara-

ble computational methods with and without CLMS

data. Therefore, analyzing only the predictions of these

19 groups should give the best estimate of the net effect

of CLMS data. In this analysis, the mean GDT_TS of

CLMS assisted predictions increases slightly from 36.4 to

38.1 and from 40.9 to 42.0, for first and best-of-five

models respectively. When removing Tx781 from this

analysis, for which the CLMS data acquisition failed (see

Figs. 3 and 4), the improvement of the CLMS assisted

predictions is slightly higher (mean GDT_TS improve-

ment from 39.7 to 42.8 and 45.6 to 47.8, for the first

and best submitted model).

To analyze the group-specific change in model accu-

racy, we also analyzed to what extent the groups that

participated in both experiments were able to leverage

the CLMS data. Figure 5(B) compares the model quality

from all predictions groups that participated in both

experiments. In 53 out of 97 cases, the predictors sub-

mitted models with lower GDT_TS when using CLMS

data, the mean GDT_TS drops from 24.7 (no CLMS) to

21.3 (with CLMS) and from 27.0 to 24.2, for the first

and best submitted model, respectively. This indicates

that most prediction groups were not able to leverage

the CLMS data and that the inclusion of this unknown

data source rather hurt their modeling approaches. Most

likely, the predictors did probably not yet adapt their

prediction methods to this new type of data with

unknown properties. Two groups submitted superior

CLMS supported predictions, which increased the

GDT_TS from 36.8 to 67.4 for Tx767-D1 and 20.2 to

67.6 for Tx808-D1. The best models of the regular

experiment had a GDT_TS of 68.4 and 66.4, respectively.

We contacted the groups that submitted the successful

Tx predictions and asked whether they exploited cross-

link data in modeling. For Tx767-D1, the group (McGuf-

fin) employed the cross-link data in their contact data

agreement (CDA) score to select server models for

Tx808-D1, the group (BAKER) reported to us that the

critical aspect for the Tx808 target was correct domain

parsing, which was not correct in the T0 prediction.

Manual inspection lead to a refined domain assignment

and domain 1 of Tx808 was then predicted by homology

modeling. The CLMS data was not necessary to parse

the domains after manual inspection, but confirmed the

parsing and individual modeling of Tx808-D1. These

results do not provide clear evidence that CLMS data

was helpful for these prediction groups in CLMS-aided

modeling in CASP11 but still point out that CLMS data

can be potentially used to assist domain parsing or to

select structural models, which is also shown in several

earlier studies.11,12,17,22,24

It should also be mentioned that CLMS data—at least

in this very first inclusion in CASP—did not yet provide

a significant advance for the field as a whole. The best

models chosen from all CASP participants were still bet-

ter than the best models from the 19 groups using

CLMS data (mean GDT_TS from all groups without

CLMS data is 40.0 and the mean GDT_TS from the 19

groups using CLMS data is 37.5, for the first model,

respectively). However, this is most likely due to the fact

that many more groups submitted predictions to the reg-

ular experiment (143 groups) than to the CLMS assisted

experiment (19 groups). As a result, the chances of find-

ing a higher GDT_TS prediction in the regular experi-

ment was much higher than in the CLMS experiment. In

addition, we would like to point out that all measures of

model quality lack precision in the analyzed model qual-

ity range and that the sample size in this experiment is

too small to draw strong conclusions about the effect of

CLMS data on prediction quality in CASP11. However,

our earlier study showed that high-density CLMS data

enables the reconstruction of the domain structures of

human serum albumin, albeit by using CLMS data from

2.1-2.6 times more acquisitions.17 This suggests that

improved CLMS data quality could impact CASP predic-

tions in the future.

We believe that this initial experiment demonstrated

that CLMS-driven hybrid methods can be tested in the

CASP context. As the experimental protocols are refined

and predictors start developing tailored prediction

approaches, hybrid methods may provide significant

improvements over purely computational approaches in

future rounds of CASP.

Challenges in the CASP11 experiment

The CASP11 CLMS experiment was a success in the

sense that it performed a first, truly blind test of a hybrid

method for protein structure prediction in a very short

timeframe, demonstrating that experimental data

acquired in a short time can be used in protein structure

prediction, even if the predictions itself were not

improved in CASP11.

There were also some lessons learned during the

experiment. They should be mentioned to make the

reader aware of the challenges of blind testing of hybrid

methods as well as to enable improvements for future

iterations of CASP.

Logistics: planning, communication and shipment/protein
aggregation

The logistical challenges of an experimental-

computational experiment are much higher than for a

pure computational, because it involves the treatment of

physical protein sample. First, the actual proposal for

CLMS in CASP was made quite late, which meant that

the organization of the experiment had to be made on

the fly and whilst the prediction season was already

underway. This reduced the time frame for data genera-

tion for the experimental group. Since the detection of

cross-link peptides is stochastic and can be improved
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with additional acquisitions,17 we think that an

increased data acquisition time would increase cross-link

quantity.

The Rappsilber group also faced the problem of pro-

tein sample deterioration. In the case of Tx781 it is likely

that the protein sample deteriorated during transit whilst

being held in UK customs due to a VAT exemption

query.

Time constraint

Approximately 4.2 days of data acquisition was per-

formed for each CASP11 target. In addition, the predic-

tion groups only had short time windows for prediction

with CLMS data (12–15 days).

Novel experimental data with unknown properties

The photo-CLMS approach generates a novel type of

experimental data with properties that are mostly

unknown to CASP participants. The coverage, distribu-

tion, sparseness, and resolution of the CLMS data are

important properties that can be used to develop effec-

tive algorithms for protein structure modeling with this

type of data. Thus, we speculate that most prediction

groups would have been more successful when they

would have known the nature of the CLMS data

beforehand.

The future of hybrid method blind testing
in CASP

In this section, we would like to suggest some meas-

ures that would maximize the impact of the hybrid

method blind testing in the CASP setting.

Target selection

The careful selection of protein targets will be an

important factor in future experiments. We believe that

targets should be selected with two goals in mind: 1)

Testing the ability of computational methods to model

structure with CLMS data for proteins that are well

suited for CLMS experiments, and 2) testing a broad

variety of different folds to explore biases and issues of

CLMS data with certain fold types.

From our experience, we think that a-helical proteins

with �200 residues or more seem to be the most suitable

targets for current CLMS experiments. The a-helical

structure does not seem to bias cross-link formation. In

addition, a-helical usually have a larger diameter than b-

sheet proteins, which makes CLMS constraints more

informative.

In addition, we recommend the following steps for

target selection:

1. Proteins should have sufficient lysines (primary target

of CLMS reagents).

2. Proteins should have well distributed digestion sites to

ensure uniform coverage with cross-links, and that

digested peptides can be detected by the mass spec-

trometer because they are not too big. Note that these

are current technical limitations that are already

actively worked on, and might be overcome eventually.

However, for now it would be necessary to actively

select targets that are amendable to current CLMS

technology.

3. Targets should be from the free-modeling or hard

template based modeling category. This would test

whether CLMS data is also useful to disambiguate

templates (as shown in prior work by Young et al.12),

or whether the primary application is ab initio struc-

ture prediction.

Computational exploitation of CLMS data

The computational exploitation of CLMS data could

be improved in (at least) two ways: 1) Using CLMS data

to extract better information from databases, and 2) Lev-

eraging CLMS data in conformational sampling.

Even if the spatial resolution of CLMS data continues

to be too low to restrict the conformational space effec-

tively, the data will contain at least some information

about the topology of the protein, because adjacent sec-

ondary structures (at least a-helices) should have cross-

links between them. This information could be helpful to

select fragments with backbone conformations closer to

native. Another possibility for CLMS data is to assist

template selection and template alignment of hard

template-based targets.11,12 Furthermore, some recent

contact prediction algorithms incorporate prior probabil-

ities to improve prediction accuracy.25,26 The CLMS

data itself or the inferred topology could be used as a

prior for contact prediction, which would improve con-

tact prediction accuracy.

Conformational sampling with CLMS data is difficult

because of the low spatial resolution of CLMS con-

straints, which might not sufficiently limit the conforma-

tional space. However, tailoring algorithms to the nature

of cross-linking data would compensate this issue to

some degree. Cross-links from soluble linkers are formed

along the protein surface and therefore scoring functions

should take the surface of the protein into account when

modeling CLMS constraints. Xwalk uses breath first

search on a surface grid to determine the shortest path

between two surface points.22 This approach is shown to

be more discriminative than constraints that use Eucli-

dian distance, but is computationally expensive and

therefore only used as a post-processing step.24 Another

study approximates the protein structure by a sphere and

measures the cross-link distance along the arc of the

sphere between where the take-off and landing points are

the cross-linked residues.23 This approach loses some

resolution of the surface geometry, but is much faster
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and can be used in conformational sampling. We suspect

that other approximations of the protein surface could

increase the information content of CLMS constraints

while being conformational tractable. Perhaps some

answers can be found be by applying algorithms from

computer graphics which deals with efficient geometrical

representations. We also speculate that one could analyze

the residue-residue distance distribution in many struc-

ture decoys to estimate tighter bounds of CLMS con-

straints with expectation-maximization type algorithms,

such as a Gaussian mixture model.

A different route to increase information content

would be to use a lower Euclidian distance bound in

modeling. This would increase the number of long-

distance links, but the links that satisfy the distance

bound will be more informative. Developing algorithms

that are robust to noise will not only be helpful for

CLMS data, but also for structure modeling with

residue-residue contacts.

Furthermore, different length of involved side-chains

could be exploited to develop residue specific Euclidian

upper distance bounds. However, photo-cross-link

reagents are highly promiscuous and the fragmentation

of peptides is sometimes incomplete. This introduces

ambiguity into the site assignment of cross-linked resi-

dues, which needs to be taken into account to develop

such residue specific CLMS constraint functions.

Lastly, protein structure prediction algorithms need to

carefully weight CLMS constraints with other informa-

tion from templates, fragments, the energy functions,

contacts, and maybe other data from experimental

methods.

Participation of experimental groups

Additionally, we think that the CLMS-CASP experi-

ment would benefit from the participation of additional

experimental groups. Further experimental groups could

blind test their own methods, or rely on the sulfo-SDA

approach described in this article. The latter requires the

dissemination of the experimental protocols and software

for cross-link data analysis. Further issues need to be

tackled, such as the establishment of the CLMS protocol

in a new laboratory that might require proper calibration

of mass spectrometers and/or modifications to the cross-

link search software. Experimental groups need to invest

a significant amount of staff time and consumables into

the experiment, which leaves the open question of how

such experiments will be funded in the future. We sug-

gest that experimental groups should be offered author-

ship in the resulting CLMS-CASP papers to compensate

them for their investment and enable them to request

funding for future rounds. Recruitment of more experi-

mental groups is probably the most challenging task

toward an improved CLMS-CASP experiment. However,

the experiment would benefit from more experimental

groups by a higher number of targets that can be proc-

essed. Additionally, the CLMS community would have an

opportunity to blind test their tools, which have a wide

variety among different CLMS groups. Thus, the inde-

pendent assessment of CLMS pipelines would have high

value to advance this field of study. Finally, it would be

highly beneficial to recruit groups that can deliver other

types of experimental data for the CASP experiment.

Proposal for an alternative testing
of hybrid methods

The CASP format introduced rigorous standards into

the field of protein structure prediction and can possibly

introduce such standards for hybrid methods. The blind

testing of computational and experimental methods is

important to assess the state of the art of hybrid

methods.

However, the most important feature of hybrid meth-

ods cannot be tested in CASP in the current setup: The

determination of protein structures which cannot be

crystallized and solved by NMR. Obviously, because these

targets are elusive to traditional structure determination,

there would be no structure to evaluate the submitted

models in CASP. Thus, using structural models to assess

the function of a protein or answer scientific questions

would increase the value of hybrid model testing in

CASP.

We envision a hybrid method format that does not

aim to evaluate the models against experimental struc-

tures, which obviously have been amendable to tradi-

tional methods. Instead, the goal would be leverage the

expertise of the CASP community to convert experimen-

tal data to the best structural models available, which are

then made public for life-scientists. Life scientist can ver-

ify these structural models by experiment, which would

deepen our understanding of these protein systems. Note

that our proposal is in line with the direction that CASP

assessments are taking. For example, the CASP11 asses-

sors included an assessment of function based on free-

modeling predictions into the experiment; this was suc-

cessful in two cases.27 We are currently discussing spe-

cific implementations of this kind of hybrid method

testing with the CASP organizers.

We now sketch the setup of this altered experiment.

This experiment requires the identification of protein

systems for which no determined structures exist and for

which models would be most useful to the life science

community. This could be accomplished by a specialized

board of scientific advisors or an open call in which pro-

posals are reviewed and evaluated. Many experimental

groups should be able to provide protein samples, which

can then be distributed to groups that are able to pro-

vide experimental data. Ideally, this experimental data

would be diverse, such as EM, EPR, NMR, and CLMS.

Then, the modeling experts of the CASP community
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would be able to submit structural models. Assessors

could use their proven expertise to select the most prom-

ising models, which are then published on a web site for

life scientists, together with statistics such as the local

modeling error. This would generate truly new structural

information, leveraging the expertise of experimental

groups and the CASP community. Life scientists can

these structures to plan mutagenesis experiments or spec-

ulate about the molecular mechanisms of this protein.

The modeling community must address several chal-

lenges toward this kind of experiment. First, policies for

structure prediction depositories must be developed and

implemented. The inclusion of experimental data poses

additional challenges, such as depositing policies for

diverse experimental data. The wwPDB hybrid method

task force recently worked out some recommendations

for hybrid method repositories and it would be interest-

ing to explore to what degree these recommendations are

in line with the planned hybrid method efforts in

CASP.14 Second, there are challenges pertaining to the

identification and acquisition of protein targets and sam-

ples as well as the dissemination of protein sample to the

experimental groups. Third, a predictive model accuracy

evaluation process needs to be developed.

CONCLUSION

We presented the results of the first cross-link assisted

structure prediction experiment in CASP11. This is the

first time in the 22 years of CASP history that the CASP

experiment is assisted with actual, experimental data.

The experiment was blind to the experimental group and

to the prediction groups. For three out of four targets,

experimental CLMS data could be acquired that con-

tained accurate structural information in the form of dis-

tance constraints between residue pairs with an upper

bound of 25 Å. Overall, the CLMS data did not lead to a

pronounced improvement in backbone quality of CLMS-

guided predictions.

An experiment that involves the acquisition and

release of experimental data faces new issues that need to

be addressed by future CASP rounds. We made recom-

mendations for improved CLMS-CASP experiments that

could lead to a larger impact of CLMS data in future

CASPs. The rigorous execution and assessment of experi-

mentally assisted predictions in CASP could be of high

value to advance the field of hybrid methods.
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