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Abstract— Soft robotics is an emerging field that yields
promising results for tasks that require safe and robust interac-
tions with the environment or with humans, such as grasping,
manipulation, and human-robot interaction. Soft robots rely on
intrinsically compliant components and are difficult to equip
with traditional, rigid sensors which would interfere with their
compliance. We propose a highly flexible tactile sensor that
is low-cost and easy to manufacture while measuring contact
pressures independently from 14 taxels. The sensor is built from
piezoresistive fabric for highly sensitive, continuous responses
and from a custom-designed flexible printed circuit board which
provides a high taxel density. From these taxels, location and
intensity of contact with the sensor can be inferred. In this
paper, we explain the design and manufacturing of the proposed
sensor, characterize its input-output relation, evaluate its effects
on compliance when equipped to the silicone-based pneumatic
actuators of the soft robotic RBO Hand 2, and demonstrate that
the sensor provides rich and useful feedback for learning-based
in-hand object recognition.

I. INTRODUCTION

Soft robotic hands demonstrate robust grasping and manip-

ulation capabilities thanks to their intrinsic compliance [1],

[2], [3]. However, sensorization of these soft hands is chal-

lenging, as suitable sensors must provide sensing abilities

without detrimental effects on compliance. Soft sensors

therefore need to be based on flexible materials, however,

useful designs that provide rich feedback often rely on

complex fabrication or costly components.

We propose a highly compliant tactile sensor (Fig. 1) suit-

able for soft robotics that is low-cost and very easy and fast

to manufacture with common lab equipment, significantly

simplifying sensorization of soft fingers. Our sensor pro-

vides rich sensory feedback with high spatial resolution, en-

abling learning-based object recognition. The sensor relies on

piezoresistive fabric which changes its electrical resistance

under contact pressure. Its sensitivity and measuring range

can be adjusted to support a large variety of applications with

different contact intensities. To effectively distinguish contact

patterns, our sensor possesses 14 taxels realized by a custom-

designed flexible printed circuit board (FPCB). This FPCB

tightly integrates electrodes and wiring in a thin layout.

We evaluate the sensor in grasping experiments with the

highly compliant, anthropomorphic RBO Hand 2 [4] and
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Fig. 1: A flexible tactile sensor: palmar side shows the

grounding electrode made of Medtex P130 fabric (top),

dorsal side shows the FPCB integrating electrodes and wiring

(bottom). The sensor has 14 independent taxels (the most

proximal electrode/taxel is not used).

show that it provides useful tactile information, enabling

classification of grasped objects. We also show that the sen-

sor has only limited effect on the hand’s compliance, so that

passive shape adaptation during grasping is still attainable.

Finally, we compare object classification based on the tactile

sensor to classification based on air pressure sensing in the

hand’s pneumatic actuators. Our results show that thanks

to its superior spatial resolution, our sensor outperforms

pressure-based object classification, highlighting that our

cost-effective and simple design yields rich feedback.

II. RELATED WORK

Related works presented a wide range of tactile sensors

based on a variety of technologies [5], [6]. We now discuss

promising research that contributes to achieving dense tactile

sensing while limiting detrimental effects on the compliance

of a sensorized soft actuator.

Microchannels filled with liquid metal change their resis-

tance under deformation, enabling the measurement of multi-

axis strain and pressure [7], [8]. Several such sensors can be

combined to infer contact information on the entire actuator,

including deformation, forces, and contact location [9], [10].

These sensors have only minor effect on the compliance of

a sensorized actuator but they have not yet been shown to

provide dense tactile sensing.

Acoustic sensing relies on sound propagating through a

soft continuum actuator to infer information about contact

location, contact intensity, and contacted material [11], [12].

Since the required microphone and optional speaker can be

embedded into the cavity of the pneumatic actuator, the effect

on compliance is negligible. However, only single contact

locations can be measured. The sensor presented in this paper

allows concurrent sensing of many contacts.
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Fig. 2: Fabrication of the tactile sensor: a custom-designed

FPCB (bottom) which integrates fourteen independent taxels

and wiring, a laser-cut sheet of EeonTex piezoresistive fabric

(center) which changes its electrical resistance under contact

pressure, and a laser-cut sheet of silver-coated nylon fabric

(top) which serves as a grounding electrode are connected

by laser-cut double-sided adhesive tape.

Optical tactile sensors use cameras to detect deformation-

based changes of marker patterns [13], [14] or of the surface

relief [15] on the inside of soft actuators. Embedding these

cameras requires a rigid base for the soft actuator, limiting

the compliance and design choices.

Magnetic tactile sensors detect changes in the magnetic

field of deformed elastomers infused with magnetic particles

via magnetometers [16], [17] which, as with optical sensors,

require a rigid base.

Soft capacitive sensors measure changes in electric capac-

ity due to contact-based compression of the dielectric. How-

ever, achieving large measuring ranges requires significant

compression and thus, rather thick designs [18], [19].

Elastomers enriched with carbon black particles change

their resistance under deformation [20], [21]. Since these par-

ticles affect the elastomer’s mechanical properties, increasing

sensitivity comes at the expense of lower flexibility [21].

A different design for soft tactile sensors sandwiches

piezoresistive foil or fabric between electrode layers. Indi-

vidual patches of the piezoresistive material encode the taxel

structure [22], [23]. Placed on a soft robotic finger, these

sensors can infer gasping forces and locations. However,

they have relatively low tactile density and published designs

often have external cable routing, possibly complicating

operation in proximity to obstacles.

Alternatively, the electrode layers encode the taxel struc-

ture [24], [25]. The fabrication of these sensors is often

complex, for example requiring etching of the electrode

layers. However, these designs offer relatively high taxel

density while promising not to reduce compliance substan-

tially. We therefore base our work on this kind of design.

Our sensor, described in the next section, offers simple

manufacturing and dense tactile sensing, overcoming the

problems of existing tactile sensors based on this design.

III. TACTILE SENSOR DESIGN AND MANUFACTURING

Our tactile sensor should have little effect on the robot’s

morphology and compliance, exhibit high spatial resolution,

and provide continuous responses for a large range of contact

pressures with high sensitivity. Furthermore, it should be

based on low-cost materials and easy to manufacture. We

now describe how we achieve these design goals.

The sensor is based on a piezoresistive material which

is sandwiched between two electrode layers for reading-

out its electrical resistance (Fig. 1). We divide the sensor

into different regions (taxels) for which we determine the

resistance independently (electrodes of taxels are connected

in parallel). To minimize the sensor’s effect on morphology

and compliance, we choose thin and flexible materials,

including conductive fabrics and a FPCB.

The sensor design is based on EeonTex, a commercially

available piezoresistive fabric which is only 0.4mm thick

and made of nylon fabric coated with conductive polymers.

EeonTex enables highly sensitive responses, changing its

electrical resistance by more than 99% under contact pres-

sure. This resistance is measured at different regions via mul-

tiple electrodes (taxels) on a FPCB and a single grounding

electrode based on Medtex P130, conductive fabric made of

silver-plated nylon (Fig. 2).

The FPCB provides a high spatial resolution of up to

4.5mm at the fingertip while integrating electrodes and

cabling in a custom-designed, easily accessible and low-cost

component. At the fingertip, it has nine square electrodes

(3mm side length) and five rectangular taxels (3 × 13mm)

located proximally (Fig. 2). Spatial resolution is limited by

the wiring on the FPCB whose width usually lies in the range

of 0.1mm. The FPCB enables a clear and clutter-free design

by keeping the sensing surface void of solder joints and

shifting cabling connections out of the actuator’s workspace.

These design choices result in a thin, compliant, and highly

sensitive sensor whose thickness ranges between 1.0mm and

1.2mm due to small variations in manufacturing.

Manufacturing the sensor is very simple and fast, allowing

for rapid prototyping and easy replacements. The fabrics and

the FPCB are connected with double-sided adhesive tape

(Fig. 2). The fabrics and the tape are laser-cut with cut-outs

in the tape that correspond to the shapes and locations of the

electrodes on the FPCB. Finally, we solder cables to wire

outlets at the bottom of the FPCB. Following this procedure,

a sensor can be assembled within minutes. Excluding the data

acquisition setup, costs are dominated by the commercially

manufactured FPCB while the cost of a single piece drops

substantially when ordering large quantities. In our case, a

batch size of 50 pieces resulted in a sensor costing less than

US$ 5, demonstrating the cost-effectiveness of our design.

The sensor is glued to the palmar side of the silicone-based

finger of the RBO Hand 2 using Sil-Poxy silicone adhesive,

with the FPCB facing the actuator. Since this wet adhesive

would soak into the fabrics, we cover the sensor with a thin,

water resistant sleeve made of Dragon Skin 10 silicone.

IV. SENSOR CHARACTERIZATION

We now characterize the sensor’s response behavior and

explain how it can be adjusted to match task requirements,

before we analyze the sensor’s effect on compliance.

A. Response Behavior

We probe the sensor’s response behavior to analyze its

sensitivity, measuring range, and hysteresis. For this, we
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Fig. 3: The sensor response can be adjusted by the choice

of pull-up resistance, trading measuring range with sen-

sitivity (left). Sensor shows repeatable hysteresis due to

relaxation time of the piezoresistive fabric (right). Solid

lines show mean responses of fingertip taxel over ten trials,

intervals indicate standard deviation.

apply normal forces to a fingertip taxel, using a square probe-

tip of 3mm side length which is attached to a force-torque

sensor. Contact forces and sensor responses are recorded at

20Hz, with each recording lasting 3.5 s.

In response to contact, the electrical resistance of the

EeonTex fabric changes at the location of the taxel. Instead of

measuring this resistance directly, we use a voltage divider

and infer responses by measuring the voltage between the

conductive Medtex P30 fabric and the electrode on the FPCB

that corresponds to this taxel. We measure this voltage using

a commercially available computer-based data acquisition

card (LabJack U6). The relationship between contact pres-

sure and output voltage is described by the characteristic

curve. The sensor is most sensitive at the center of its

measuring range where the slope of this curve is steepest.

As with other piezoresistive tactile sensors, the choice

of pull-up resistance modulates its response, with a large

resistances resulting in a narrow measuring range and large

sensitivity, and vice versa. The ability to adjust its behavior to

capture expected contact intensities for different tasks makes

our design highly versatile.

Similar to other piezoresistive sensors [5], [6], [24], our

sensor exhibits hysteresis, because the EeonTex fabric needs

time to relax after contact-based compression. The larger

the hysteresis, the smaller the dynamic range of the sensor.

We measured an average relaxation time of ca. 0.41 s after

unloading has ended.

Figure 3 shows measured responses during the loading

process for different pull-up resistors, and the hysteresis

during the loading/unloading cycle. These responses are

averaged across ten trials each and highly predictable with a

standard deviation of only 0.29V on average across contact

pressures and 0.67V at maximum. We did not experience

cross-talk at neighboring taxels.

B. Effect on Compliance

A sensor that substantially reduces compliance would im-

pair the grasping and manipulation capabilities of a soft hand.

Fig. 4: The tactile sensor has only limited effect on finger

compliance. Top row: experimental setup for measuring fin-

ger deformations due to horizontal pulling forces in flexional,

extensional, and lateral direction with a force-torque sensor

which is hooked into the fingertip. Dotted line indicates

dorsal side of finger. Bottom row: fingertip displacements

along horizontal axis for different pulling forces. Solid lines

show mean deformation over 15 trials (five fingers, three

trials per finger), intervals indicate standard deviations.

Therefore, we analyze our sensor’s effect on compliance

when attached to the soft fingers of the RBO Hand 2.

We compare five sensorized to five non-sensorized fingers

when applying pulling forces of 0.5N, 1N, and 2N in

flexional, extensional, and lateral directions (Fig. 4). To test

a finger, it is fixated at its base and a force-torque sensor

is connected to its fingertip via a metal hook. The force-

torque sensor is pulled away from the finger until a specific

pulling force is reached while its vertical position is adjusted

to maintain horizontal pulling forces. We determine the

resulting deformations by measuring the distance along the

horizontal axis between the fingertip position in its relaxed

and deformed pose. For each finger, we repeat this process

three times for each pulling force in each direction.

Figure 4 shows the resulting finger deformations for the

different forces and directions. The average distance between

fingertip positions is 11.9mm for flexional, 7.7mm for

extensional, and 8.4mm for lateral forces. On average, the

sensorized finger deforms about 19.5% less than its non-

sensorized counterpart. The measurable effect on compliance

is not surprising since we added material to the finger.

However, this difference does not impair the hand’s ability

to passively adapt its morphology to the shape of grasped

objects, as we show in the following section. The limited

effect on compliance—despite the non-extensibility of the

sensor—stems from the fact that the finger’s palmar side

is reinforced by fabric that itself is non-extensible so that

it bends upon inflation. The ability to quantify the loss of

compliance due to sensorization allows making informed

adjustments to the finger’s geometry or to the choice of

materials in order to compensate for this loss, if needed.
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Fig. 5: Compliant, sensorized RBO Hand 2 passively adapts

its shape to the grasped object. Left: non-inflated hand.

Center: closed hand in absence of an object after performing

the inflation pattern used for all grasps. Right: hand-object

configuration after compliantly grasping a sphere (not part

of the object set).

V. IN-HAND OBJECT RECOGNITION

We demonstrate our sensor’s ability to provide useful

contact information by enabling a sensorized hand to reliably

recognize grasped objects. For this, we compare object

recognition performance based on only tactile information to

a baseline case when only air pressure information from the

pneumatic actuators is considered. Furthermore, we analyze

failure cases with respect to physical similarities between ob-

jects and investigate how different levels of spatial resolution

contribute to successful object recognition.

A. Experimental Setup

We equip the pneumatic RBO Hand 2 with tactile sensing

by attaching our sensor to the palmar side of its four

silicone-based fingers (Fig. 5). Serving as a baseline case, we

also record pressure inside each air chamber with Freescale

MPX4250 sensors, located in the control unit of the hand [4].

Each finger has two of these air chambers: one at its base

(proximal) and one at its tip (distal). Thumb actuators do not

provide any data, but are used for grasping.

We adjust the sensor’s measuring range and sensitivity

to match expected contact intensities. We found that during

grasping, contact pressures remain in more than 97.9% of the

cases below 75 kPA. Based on the sensor’s response behavior

(Fig. 3), we choose a pull-up resistance of 470 kΩ so that

these pressures are well within the sensor’s measuring range.

To evaluate the sensorized hand’s ability to reliably rec-

ognize every-day objects, we chose objects with diverse

physical properties that fall into three groups regarding

shape and softness (Fig. 6). Objects within the same group

exhibit highly similar physical properties and are therefore

difficult to distinguish. The three object groups are i) objects

that can move inside deformable packaging, including cat

treats, safety glasses, and chopsticks, ii) rigid plastic bottles,

including a whiteboard cleaner, a gum container, and wet

glue, and iii) spherical objects, including a tennis ball, a soft

ball, and a gel ball which all have similar diameters, but

different degrees of softness.

B. Data Acquisition

To record sensory feedback, one of the objects is placed

inside the open hand in random orientation, resulting in

Fig. 6: Object set with nine objects from three object groups,

from left to right: objects in packaging (safety glasses, cat

treats, chopsticks), plastic bottles (whiteboard cleaner, gum

container, wet glue), and spherical objects (soft ball, tennis

ball, gel ball).

KNN DT SVM (Linear) SVM (Polynomial) SVM (RBF)

Tactile 77.8 73.3 88.2 87.4 89.3

Air Pressure 55.2 66.3 69.3 71.5 73.0

TABLE I: Object recognition performance [%] of different

classification algorithms: the SVM with a RBF kernel per-

forms best for both sensor modalities.

various contact patterns for the same object across repetitions

(Fig. 5). The same hand closing-synergy, based on pre-

defined air masses, is executed for each object. Due to the

hand’s inherent compliance, it passively adapts to the shape

of the object. After hand closure, a delay of three seconds

ensures stabilization of sensors due to inflation-dependent

disturbances. Responses of the tactile sensor with 14 taxels

and of the two air pressure sensors is measured for each of

the four fingers, resulting in a data point of 4×(14+2) = 64
dimensions. We repeat this process 30 times for each of the

nine objects, resulting in 270 data points in total.

C. Classification Results

We analyze recorded contacts for enabling the sensorized

hand to correctly classify grasped objects. Specifically, we

use machine learning to train a classifier based on the

acquired data set. Training was performed based on ei-

ther only tactile information or only air pressure infor-

mation (56 and 8 dimensions, respectively). To optimize

classification accuracy, we compare different machine learn-

ing algorithms and when applicable, perform grid search

for hyperparameter optimization. Tested algorithms include

k-nearest neighbors (KNN), decision trees (DT), and support

vector machines (SVM) with linear, polynomial and radial

basis function (RBF) kernels. Classification performance was

evaluated by leave-one-out cross-validation (Table I).

We found that an SVM with an RBF kernel performs

best for both sensory modalities. In the following, we will

refer to this classifier when discussing results (Fig.7). On

average, tactile-based classification achieves an accuracy of

89.3%, which is comparable with performances of other

sensorized soft hands [26], [27]. In comparison, pressure-

based classification achieves only 73.0%, highlighting the

superiority of our tactile sensor. However, for cat treats and

chopsticks, air pressure sensing outperforms tactile sensing

by 10%, with 83% and 87% compared to 73% and 77%,

respectively. Both are objects in packaging, indicating that

classification performance varies across object groups.
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Fig. 7: Confusion matrices for object recognition based on

tactile (violet) and air pressure (blue) information: entries

indicate the frequency of a label being assigned to a specific

object by the classifier. Results were obtained by leave-

one-out cross-validation. The tactile sensor exhibits superior

performance for all objects except cat treats and chopsticks.

D. Failure Case Analysis

We now investigate failure cases with respect to physical

similarities between objects. For this, we sort assigned labels

into three categories: i) label is correct, ii) label is incorrect

but part of the same object group as the grasped object,

iii) label and object group are incorrect.

Frequencies of these three categories are depicted in

Figure 8. On average, 79.3% of incorrect tactile-based labels

are within the correct object group, compared to only 42.5%

of incorrect pressure-based labels. Thus, not only is tactile

sensing superior in correctly assigning labels, but also in

its incorrect labels which are more often part of the correct

object group. In particular, for objects in packages, for which

air pressure-based classification yields slightly better results,

tactile-based classification assigns almost all of the incorrect

labels to the correct object group with 95.3% of the cases,

compared to only 36.8% for air pressure sensing.

We argue that tactile sensing is inferior for objects in pack-

ages, because these objects contain moving parts, resulting

in a large variety of tactile responses when grasping the same

object multiple times. On the other side, the coarse sensing

of air pressure sensors is less affected by these movements.

Fig. 8: Classification results for tactile (violet) and air

pressure (blue) sensing: assigned labels are either correct

(dark color), incorrect but within the same object group as the

grasped object (medium color), or outside this group (light

color). Incorrect tactile-based labels are more frequently

within the correct object group.

Fig. 9: Tactile sensor with different spatial resolutions, sim-

ulated by averaging over contact information from taxels of

the same color, number of taxels from left to right: one, two,

four, eight with vertically combined fingertip taxels, eight

with horizontally combined fingertip taxels, fourteen.

E. Spatial Resolution

We demonstrate that object classification performance

improves with increasing spatial resolution. For this, we

simulate reduced spatial resolutions of tactile and air pressure

sensing by averaging over feedback from multiple taxels,

and from the two air chambers, respectively. The reduced

tactile resolutions result in taxel configurations as depicted

in Figure 9, ranging from a single taxel to fourteen taxels per

finger. For air pressure sensing, this leads to configurations

with a single or with two air chambers. We trained classifiers

based on the different simulated taxel combination, after

optimizing hyperparameters separately for each case.

Object recognition performance for the different spatial

resolutions of the two sensor modalities is shown in Fig-

ure 10. Interestingly, the two modalities achieve comparable

performances for the same number of taxels. For a single

taxel, tactile sensing achieves 55.2% and air pressure sensing

55.9%. For two taxels, performance rises to 71.5% and

72.9%, respectively. However, the number of sensing units of

pressure sensors is limited by the number of air chambers,

and their responses are influenced by inflation states. For

eight taxels and above, tactile sensing yields significantly

superior performance than pressure-based sensing.

The results indicate that for both sensory modalities, more

tactile units result in better classification performances. This,

of course, is not surprising. However, it demonstrates our

sensor’s ability to provide rich sensory feedback despite its

simple design. Furthermore, the results indicate that also

different structure in combining the same number of taxels
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Fig. 10: Object recognition performance improves for in-

creasing spatial resolution of tactile (violet) and air pressure

sensing (blue). Combining taxel values at the fingertip hori-

zontally (h) yields better results than vertically (v).

yields different results (compare vertically vs. horizontally

combined fingertip taxels in Figure 10) which is an interest-

ing topic for future research.

VI. CONCLUSION

We proposed a compliant sensor for soft robotics. Its

design, based on thin and flexible materials, minimizes detri-

mental effects on morphology and compliance when attached

to a soft actuator. The sensor features 14 taxels, realized by

electrodes on a FPCB. The sensor can be manufactured at

low-cost in very easy steps within minutes. We characterized

the sensor and explained how choosing an appropriate pull-

up resistance allows adjustments in sensitivity and measuring

range to match task requirements. The sensor was evaluated

on the soft pneumatic RBO Hand 2. In this context, we

showed that the sensor has only little effect on compliance.

We also showed that our sensor provides useful tactile infor-

mation by demonstrating the sensorized hand’s capability to

identify grasped objects. Finally, we compared classification

performance based on tactile and air pressure information

and showed that tactile sensing recognizes objects more

successfully, thanks to its superior spatial resolution.
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