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Abstract— This paper offers an explanation of why humans
can effortlessly grasp objects from a pile. We identified a
regularity in objects’ motion when pushed, namely, an object
separates and stabilizes in front of the pusher. We devise an
open-loop grasping strategy leveraging this regularity in piles of
nearly identical objects. Our real robot robustly grasps round
objects beside a wall with success rates between 95% and 100%
without visual or tactile feedback. We analyze our grasping
strategy extensively both in real-world and simulated exper-
iments. We observe that object roundness improves grasping
and the motion pattern also manifests in small piles beside
a wall. Our qualitative simulation can approximate the real
robot’s grasping behavior, and we apply open-loop grasping in
an warehouse pick-and-place application.

I. INTRODUCTION

Humans grasp objects from piles with incredible ease. As
an example of this, consider picking up a single nut from
a container of nuts or eating popcorn from a box while
watching a movie. In these contexts, the robustness of human
grasping may seem surprising at first sight. After all, complex
contact dynamics are playing out during grasping, leading
to substantial motion within the pile. It is inconceivable
that humans possess precise models and perform accurate
simulations of the pile’s motion. But then how do they do
it? One explanation could be the incredible sense of touch
in the human hand. But in this paper, we show that there is
another explanation.

Grasping from piles of almost identical objects is, in
fact, enabled by the complex interaction forces and resulting
motion patterns among the individual objects, rather than
rendered complicated. This is because the interactions ex-
hibit a strong regularity that enables robust grasping. When
grasping from such a pile, visual or tactile feedback are no
longer necessary. Grasping can be performed robustly and
open-loop (just like eating popcorn). This paper aims to
investigate this phenomenon to enable robotic pile grasping
(or bin picking) with very simple, open-loop strategies.

This paper analyzes and explains the motion patterns that
occur during grasping in piles of nearly identical objects.
Based on the resulting insights, we devise a very simple,
open-loop (no visual or tactile feedback) grasping strategy
that—for a variety of object geometries—achieves highly
robust grasping from piles (up to 100% success). We validate
these results with different types of end-effectors, both in
real-world and in simulated experiments. We also examine
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Fig. 1: We analyze open-loop grasping in random piles of
wooden cubes (top-left), cylinders (bottom-left), or tennis
balls (right) supported by a static wall or corner, using the
Barrett WAM 7DOF arm with the RBO Hand 2.

the dependency of pile cardinality (number of objects in
a pile) and grasp success, finding that already small piles
exhibit the regularity required for robust, open-loop grasping.
Our experiments reveal that features of the environment that
constrain the pile’s motion, such as walls or corners (two
walls), substantially lower the required pile cardinality for
the desired motion patterns to occur. We also demonstrate
that it is possible to assess the suitability of the open-loop
pile grasping strategy from simulation experiments. Finally,
we test the open-loop grasping in a bin-picking application.

II. RELATED WORK

Common grasping methods rely on accurate visual per-
ception. They detect individual objects and their geometrical
properties [1, 2, 3, 4] to compute or learn feasible grasp
poses for simple end-effectors like suction-cups or parallel
grippers. Some methods increase perception accuracy with
interactive perception [5, 6] or pile-separation [7, 8, 9].
Our approach is entirely different because we will grasp
without object detection but exploiting motion patterns in
piles. Moreover, we want to use an anthropomorphic hand
due to its versatile use after and beyond grasping.

Since we postulate that motion patterns enable open-loop
grasping from piles, we look at related work to see how they
exploited motion patterns. Motion patterns arise from some
form of restriction.

Inertial properties and gravity constrain an object’s motion.
The resulting motion pattern can be exploited to increase
a robot’s dexterity [10, 11] with simple motion primitives.
An object’s motion is also constrained through contact with
the environment. A static contact state reduces an object’s
degrees of freedom, and it is leveraged to stabilize the object
for grasping [12, 13], or re-orienting and re-grasping [14].
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Fig. 2: All four sketches show a hand pushing a pile from left to right, where the red arrows indicate the relative motion
of objects inside a virtual (red) funnel. The blue arrows show the absolute motion of the objects outside this funnel. For
large enough piles, the funnel separates and pushes an object into the hand while the rest of the pile expands less. A wall
or corner restricts the pile’s expansion. Hence smaller piles supported by a wall or corner also exhibit the same behavior.

Quasi-static interactions produce predictable sliding motions
enabling dexterous manipulation [15] or rearranging clutter
around a goal object [16]. Contact restricts a robot’s motion
too. This was leveraged to decrease the robot’s configuration-
state uncertainty [17, 18, 19] and therefore increase execution
robustness. Perception becomes simpler because we only
need to detect environmental affordances [20] and not a
precise model of the environment.

A motion pattern arises when a compliant hand interacts
with rigid objects. The shape of the hand deforms due to
contact forces adapting to the object. This deformation regu-
larity can be approximated [13] or not even modeled [12] but
leveraged for grasp planning. This way, a compliant hand can
robustly grasp with a simple open-loop controller [21, 22].

The presented methods interact with a single movable
object and leverage motion patterns to simplify planning,
perception, and control. We expect to gain similar benefits
if we identify a motion pattern in a collection of movable
objects and leverage it for grasping.

III. ANALYSIS OF MOTION PATTERNS IN PILES OF
NEARLY IDENTICAL OBJECTS

We analyze and explain the motion patterns in piles of
nearly identical objects to motivate open-loop grasping.

We observed regularity in objects’ motion when a hand
applies a force on a pile. Objects in front of the hand are
actively pushed toward the hand by the rest of the pile, while
other objects spread radially, as visualized in Figure 2. The
pile spreads radially because interaction forces between the
objects also spread radially, observed experimentally in a
collection of rigid objects [23]. This regularity effectively
separates an object in front of the hand. When the pile is
large enough, the separated object is stabilized by the rest
of the pile, and the hand can slide under it. The object is
stabilized because some portion of the interaction forces is
absorbed by friction between objects and between objects
and the environment [24]. The described motion pattern,
object separation and stabilization, arises even in smaller
piles when a static wall supports the pile.

Object separation and stabilization arise due to a restriction
in objects’ motion emerging from the interaction between
the robot, objects, and the environment. The literature refers
to such contact-based motion constraints as environmental
constraints (EC) [25]. We will use EC interchangeably with

motion patterns. Yet, material sciences define a collection of
interacting objects as a granular material [26]. Thus, we will
refer to motion patterns in a pile of objects a granular EC.

The granular EC is radically different from existing ECs
because the constrained motion manifests in a collection
of movable objects and accomplishes two goals for grasp-
ing: object separation and stabilization. Interestingly, even
though it is difficult to predict the individual objects’ motion
accurately when pushed, the higher-level motion pattern
arises consistently. Hence, we can exploit it with open-loop
grasping and without modeling individual objects’ motion.

This is one instance of such EC where we can abstract
physical interactions away from perception and control, but
the first one that enables open-loop grasping from piles. Our
analysis contributes an experimental procedure to identify
and characterize ECs, which opens up the possibility of
finding similar ECs that will simplify perception, control,
and planning for other manipulation tasks.

IV. EXPLOITATION OF GRANULAR ENVIRONMENTAL
CONSTRAINTS

We define the open-loop grasping strategy that exploits the
granular EC. The grasp strategy is composed of three motion
primitives. Each primitive moves the hand on a straight line,
and it is executed with a simple operational-space controller.
First, the hand approaches the pile, then pushes it from the
side, and finally, it grasps a separated and stabilized object.
The transitions between the primitives are distinct contact
events. The contact events occur when the hand interacts
with the pile or the environment. The three primitives are
sketched in Figure 3, shown in Figure 4, and detailed below:

1) Approach Primitive: the hand moves into proximity to
the edge of the pile by executing a free-space motion and
lowers until it detects the surface’s normal force. When a
static wall or corner supports the pile, we consider the wall’s
or corner’s location, as shown in Figure 3 where the relative
hand pose is represented by α , β , and θ angles. α is the
relative hand orientation to the pile, β is the offset angle
between the fingers and the direction of motion, and θ is
the slope on the fingers. We need to detect the pile’s center,
spread, and static walls to devise this primitive.

2) Push Primitive: the hand slides on the support surface
and pushes the pile, shown on the third sketch in Figure 3.
The primitive is parameterized by the sliding speed |vhand|
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Fig. 3: 2D sketch of the grasp strategy in the order of the motion primitive execution: approaching the pile from free space,
where θ (green) is the finger’s slope, α (blue) and β (cyan) are the relative hand orientation to the pile and a supporting
wall or corner. The normal force (vertical red arrow) triggers the pushing primitive, which terminates when a contact force
(horizontal red arrow) is detected, and finally, the hand grasps an object that rolled on it.

Fig. 4: Leveraging granular ECs for grasping from piles next
to a corner (top row) or wall (bottom row) when bin picking.

Fig. 5: The real shovel-like end-effector approaches a pile of
tennis balls next to a wall (left) and similarly in a multi-body
dynamics simulation where the pile is in a corner (right).

and the force threshold Fgrasp. The next primitive is triggered
when the force (in the pushing direction) reaches Fgrasp.

3) Grasp Primitive: the hand simply closes its fingers,
assuming that an object was separated and rolled into the
hand when Fgrasp triggered.

V. EXPERIMENTAL ANALYSIS OF OPEN-LOOP GRASPING

We analyze the grasping strategy with a real robot and in
simulation. We conducted extensive real-world experiments
to examine grasping with granular ECs. First, we will prove
our initial hypothesis in Sec. V-B that the granular EC
enables open-loop grasping from piles of nearly identical
objects. We further analyze grasping robustness concerning
objects’ shape in Sec. V-C and the end-effector’s morphology
in Sec. V-D. We also examine the dependency between
the pile’s cardinality (number of objects in a pile) and the
environment in Sec. V-E. We investigate the influence of the

Objects mass [g]
real

size [mm] Rreal sim
light spheres 60 r = 27 r = 56 4.3
heavy spheres 180 r = 27 r = 56 5
cylinder 45 h = 50, r = 20 h = 50, r = 45 9
cube 65 l = 45 l = 50 –
wooden lime 29 h = 68, r = 49 – 5.6
real apple 168 h = 64, r = 70 – 7.6

TABLE I: We used similar objects’ mass and size in real-
world and simulated experiments, where l, h, r are length,
height, and radius respectively. In our industrial application
in Sec. V-H, R is the average grasp attempts to pick four
objects successfully, where the perfect performance is R = 4.

object’s mass on grasping in Sec. V-F. We will show that
qualitative simulation can verify the granular EC’s existence
even for a significant sim-to-real gap in Sec. V-G. Finally,
we will apply open-loop grasping in an industrial use case
in Sec. V-H.

A. Experimental Setup

In the real-world experiments, we use a Barrett WAM
7DOF arm with the compliant and anthropomorphic RBO
Hand 2 [27]. We execute grasping strategies using ATI FTN-
Gamma force-torque sensors mounted between the hand
and the wrist. We assume to know the pile’s and vertical
walls’ location. In a multi-body dynamics simulation, we
analyze the push primitive’s behavior qualitatively across
different problem properties, but we report only on the
relevant ones due to the page limit. We use a simple, rigid,
shovel-like end-effector shown in Figure 5. We also built
the shovel to compare it with the RBO Hand 2. We compute
the grasp success rate from 20 real-world and 50 simulated
grasp attempts. For the real-world bin-picking application,
we average the grasp attempts from three picking sessions
per object type.

We build random piles by dropping objects in a cube-
like frame with size 25cm for pile cardinality |Pile| = 18,
18cm for |Pile| = 14, and 15cm for |Pile| = 10. We list
the real and simulated object’s properties in Table I. All
simulated objects have the same friction properties using
the tennis ball’s properties [28]. The restitution coefficient
(COR) of all objects is a linear function of the mass, where
COR(60g)= 0.72 [28], and COR(180g)= 0.37 using our
experimental observation on our sand-filled heavy tennis



balls. The simulated end-effector has lateral friction 0.5,
spinning-, and rolling-friction 0.001, and COR=0.8. For bin
picking, we also used real apples and net-bags of three
wooden limes. A grasp attempt is successful if one or more
objects are in the hand or shovel.

B. Granular EC Exploitation Leads to Robust Grasping

We want to demonstrate that granular EC exploitation
with our hand does not require the definition nor detection
of conditions for grasp success. The conditions for grasp
success are complicated, but the EC helps by making grasp
success unconditional. Our results (Figure 6) show that
three hand-tailored grasp strategy, which uses object-based
conditions, never outperforms the pile-based strategy, which
relies only on the granular EC.

Through five iterations, we hand-tailored the conditions for
successful grasping from piles of light and heavy tennis balls
and cylinders with the RBO Hand 2. We achieved the best
performance for tennis balls by centering the gap between the
middle and ring fingers with an object and choosing an object
that moves toward the pile’s center when pushed straight
toward a wall or corner (α = β = 0◦). Like tennis balls, we
choose a cylinder with its curved surface toward the hand or
standing on its base. We compare the grasp success rate of
these two object-based strategies to the pile-based strategy.

The pile-based strategy has only pile- and environment-
based conditions (granular EC) for grasping. We explored
different conditions, namely, α and β , and the best is α =
β = 0◦ for light and heavy tennis balls, and α = 45◦, β =
−20◦ for cylinders. The robot grasps from random piles of
18 light or heavy tennis balls or 14 cylinders next to a wall
or corner to compare the object- and pile-based strategies.

In all six cases, The results show that the hand-tailored
strategy never outperforms the pile-based strategy when
grasping with our hand limited to the considered objects.
Therefore, we do not need to devise object-based grasping
conditions because the granular EC fulfills the conditions
implicitly. Moreover, it is increasingly difficult to character-
ize grasp success for heavy tennis balls that are difficult to
grasp. This is why our hand-tailored strategy counteracts the
granular EC, which results in a significant performance gap
when a wall supports a pile of heavy tennis balls.

We conclude that granular ECs can fulfill grasping condi-
tions, and therefore, we don’t need to compute the strategy
for robust grasping.

C. Object Roundness Improves Grasping

We analyze grasp robustness concerning the object’s
shape. Hence, we execute open-loop grasping from piles
of spheres, cylinders, and cubes with various strategy
parametrizations (α, β ) ∈ {(0◦, 0◦), (30◦, -10◦), (30◦, 20◦),
(45◦, -20◦)}. Objects’ mass is m =60g, the pile was next
to a wall, and its cardinality is |Pile| ∈ {14, 15, 18, 20}.
We expect that open-loop grasping succeeds more likely
for round objects than cubes because cubes can compact,
inhibiting object separation and rolling into the hand.
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Fig. 6: Grasping from a pile does not require object-based
strategy due to the granular EC’s help. The real robot robustly
grasp from random piles of light (blue) and heavy tennis balls
(yellow) and cylinder (green) constrained by a wall or corner
irrespective of the strategy.
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Fig. 7: We can exploit the granular EC for round objects
(blue and green) for a wide range of actuation parameters,
unlike cubes (red). We can use simulation to identify the EC
because the behavior is qualitatively similar to the real-world.

We sample a grasp success probability for each instan-
tiation of the above-described problem space by averaging
multiple executions (see Sec. V-A). To compare the success
rate distributions between different object shapes, we show
in Figure 7 a kernel density estimation of the sampled
grasp success rates. The violin plots are limited only to the
observed data. For now, we analyze the real-world results,
and we will discuss the simulation results in Sec. V-G.

The results confirm that open-loop grasping is more robust
for round objects. The mean grasp success rates are ≥ 80%
for both tennis balls and wooden cylinders. For the wooden
cubes, it is < 50%. We can devise open-loop grasping
strategies for round objects in piles, like nuts in a can.

D. The End-Effector’s Compliance Improves Grasping

We analyze the influence of the end-effector’s morphol-
ogy (shape and structure) on grasp robustness. Therefore,
we execute the grasp strategy with the anthropomorphic,
complaint RBO Hand 2, and shovel-like, rigid end-effector.
We grasp from piles of 18 light and heavy tennis balls and
14 cylinders or cubes next to a wall using α = β = 0◦
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Fig. 8: The real robot performs best with the RBO Hand 2
for round objects, while the real shovel can only exploit the
EC for light tennis balls. All real and simulated experiments
show qualitatively similar grasp behavior. Simulation alone
cannot indicate an end-effector’s limitation concerning the
object’s shape due to the quantitative differences.

as discussed in Sec. V-B. The implementation of the push
primitive (see Sec. IV) differs for the hand and the shovel.
We use an operational space controller for the hand due to
its compliance, but the rigid shovel requires an impedance
controller to achieve safe sliding on the table and interaction
with the pile. We expect that the hand performs better due
to its shape and structure compared to the shovel.

Figure 8 shows the real and simulated mean grasp success
rates, as described in Sec. V-A. The real robot performs
best with the hand. The hand achieved between 95% and
100% grasp success for round objects, while the shove could
scoop up only light tennis balls with 85%. Both end-effectors
performed poorly for cubes, which indicates a limitation of
the granular EC.

Though the shovel can exploit the granular EC, only the
hand allows open-loop grasping. This is because we need
closed-loop force control (impedance controller) to slide the
shovel on the table. The grasp primitive also benefits from
the hand’s compliance because the fingers can adapt to the
object’s shape while closing. The hand’s shape also helped
object separation because the space between fingers creates a
guiding rail for separating and rolling objects into the palm.

We executed over 900 grasp attempts and observed grasps
of multiple objects within one attempt. We grasped more
than one object 15% for 600 successful grasps with the
RBO Hand 2 and 8.75% for 160 with the shovel. The
number of grasped objects and grasp success depended on
the object’s and end-effector’s size, as shown in Figure 9. In
case single object grasping is desired, only the hand could
solve it with in-hand-manipulation.

In conclusion, a human-like end-effector enables robust
open-loop grasping of round objects supported by a wall,
like eating popcorn from a box.
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Fig. 9: The grasp success and number of grasped objects
depend on the the ration between object’s and end-effector’s
size shown for light spheres in a corner.
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Fig. 10: Our grasping strategy can exploit the granular EC
even for small piles when supported by a static wall or corner
with the real robot (solid lines) and in simulation (dashed
lines). The simulation shows that a pile alone supports
granular EC exploitation from a certain cardinality.

E. The EC Manifests in Small Piles Supported by a Wall

We analyze grasp robustness concerning the pile’s car-
dinality and static environmental constraints, like vertical
walls. Hence, we grasp from piles with various cardinality,
in the real-world |Pile| ∈ {5, 18} , and in simulation |Pile| ∈
{3, 5, 10, 15, 20, 25, 30, 60, 90}, with and without a static
wall or corner. The simulated sphere’s mass is mobject ∈
{60, 120, 180} and the real tennis balls have mobject ∈
{60, 180}. We ran only ten grasp attempts for piles of 18
heavy tennis balls without any vertical support on the real
robot because the grasp primitive never triggered. Since we
could not grasp from a pile of 18 heavy tennis balls, we did
not run other experiments with fewer or lighter objects, and
we assume that those attempts would also fail. We expect
that grasp succeeds for large enough piles or if a static wall
or corner is beside the pile.

In Figure 10, we visualize the mean grasp success rate with
segment-wise linear interpolation for both real-world (solid
lines) and simulation (dashed lines) using the best strategy
parametrization for spherical objects (see Sec. V-B). Even
though the real robot fails to grasp from piles without a
supporting wall, we observed that 40% of the attempts could
have succeeded with a sensorized hand [29].
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Fig. 11: Lighter objects are easier to grasp because their
inertia is less, so objects can move within the pile, and the
EC can arise over time. Moreover, static supports can further
constrain the pile’s motion similar to the object’s mass and
hinder granular EC exploitation for heavy objects.

The results prove open-loop grasp robustness, more than
85%, even for smaller piles supported by a wall or corner.

F. Lighter Objects Are Easier to Grasp

We analyze the influence of object’s mass on our approach.
We grasp from piles of spheres with various mass mobject ∈
{60, 180} in the real world, and in simulation mobject ∈
{30, 60, 120, 180, 360, 720}. The other problem properties
are the same as presented in Sec. V-E. We expect an increase
in grasp success for lighter objects.

Figure 11 shows the grasp success rates with segment-wise
linear interpolation. In the case of piles without any support,
grasping fails, as discussed in the previous section. However,
the results confirm that lighter objects are easier to grasp.

We conduct a second experiment to show that we can
improve grasp success for heavy objects. We grasp 18 heavy
tennis balls in a corner because the corner further constrains
objects’ motions. We expect that if we increase the hand’s
velocity and grasping force threshold, grasp robustness in-
creases because heavier objects require more force to induce
the motion pattern. We successfully increased grasp success
from 60% to 85% by increasing the velocity |vhand | from 0.1
to 0.25m/s and force threshold Fgrasp from 17 to 25N.

G. Real and Simulation Results Are Qualitatively Similar

We want to show that simulation is qualitatively similar
to real-world open-loop grasping. Hence, we simulate open-
loop grasping likewise to the four previous sections. We
described both real-world and simulation experiments in
those sections, and now, we only interpret the results.

We showed that object roundness improves open-loop
grasping in the real world. Figure 7 also confirms a qual-
itative similarity between real-world and simulation results.
For both cases, distributions’ mean increases with the object
roundness. We can observe qualitative similarity concerning
object roundness in Figure 8, where we compared different
end-effectors. However, this experiment shows a significant
sim-to-real gap between real- and simulated-shovel, similarly
between the hand and simulated shovel for cubes. Therefore,
simulation cannot indicate an end-effector’s limitation.

The real robot robustly grasps from smaller piles if those
are next to a wall or corner. This is also true in simulation,
as shown in Figure 10. The simulation indicates that grasp
robustness increases with the pile’s size, but the real-world
executions only support it when the pile is next to a wall.
The simulation also indicates that a larger pile (|Pile| ≥ 60)
could enable grasping even without static support, but we
did not test it on the real robot due to practical reasons.

Finally, the real-world and simulation results indicate (see
Figure 11) that lighter objects are easier to grasp when
supported. In the simulation, we also showed the relationship
between grasp success and relative object size to the end-
effector in Figure 9.

We conclude that simulation is qualitatively similar to
real open-loop grasping and should be used to identify and
motivate real robot experiments for future ECs.

H. Bin Picking Application With Granular EC Exploitation

Finally, we show the applicability of open-loop grasping
in an industrial grocery logistics use case of Ocado [30],
where a robot has to picks and place N objects of the same
type to fulfill an order, and the bin’s location is known.

In our adaption of the task, N = 4 and the random piles are
18 apples, tennis balls, cylinders, or five net-bags of limes.
The key difference to Ocado’s setup is that we tilt the bin
5◦, so objects remain beside the same wall after each grasp
attempt. This way, we do not need to detect the pile. An
operator decides to grasp from the pile constrained either by
the wall or a corner. If the robot grasps more objects than
required (e.g., it already picked three, and next, picks two
objects), the robot drops them back to the pile.

We present the average grasp attempts to pick four objects
in Table I and in this video1, which shows that open-loop
grasping can be applied in an industrial use-case. The results
indicate that granular EC generalizes for irregular object
shapes too. In the future, we want to learn a heuristic for
alternating between the wall or corner support, which might
require perceiving geometrical properties of the pile.

VI. CONCLUSION

Environmental constraints simplify control and perception
and increase grasping robustness. This paper presents the
novel granular EC based on motion patterns in piles of almost
identical objects. This EC effectively separates and stabilizes
an object from the pile. We demonstrated the existence
of the EC. Our grasp strategy requires no grasp success
characterization for robustness. Without object detection and
a simple operational space controller, we achieved success
rates between 95% to 100% for round objects besides a wall.
We analyzed the grasp robustness in real-world experiments
and showed that a static wall enables robust grasping from
smaller piles. We showed generalization for different objects
and environments. We validated that qualitative simulation
can approximate grasping behavior. Finally, we successfully
applied open-loop grasping in an industrial use case, demon-
strating the granular EC’s relevance.

1https://youtu.be/9bjqHQ8NUNo

https://youtu.be/9bjqHQ8NUNo
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