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Abstract— We present a robust method to visually segment
scenes into objects based on motion and appearance. Both
these cues provide complementary information that we fuse
using two interconnected recursive estimators: One estimates
object segmentation from motion as a probabilistic clustering of
tracked 3D points, and the other estimates object segmentation
from appearance as a probabilistic image segmentation. The
interconnected estimators provide a probabilistic and consistent
object segmentation in real time, which makes them well
suited for many downstream robotic tasks. We evaluate our
method on one such task, kinematic structure estimation, on a
dataset of interactions with articulated objects and show that
our fusion improves object segmentation by 70% and in turn
estimated kinematic joints by 26% over a purely motion-based
approach. Furthermore, we show the necessity of probabilistic
modeling for downstream robotic tasks, achieving 339% of the
performance of a recent multimodal but deterministic RNN for
object segmentation on the estimation of kinematic structure.

I. INTRODUCTION

Robots act upon objects. But visually segmenting a scene
into objects is challenging due to ambiguities, as can be
seen in Fig. 1. Approaches for object segmentation usually
focus on accuracy [1], [2], but robotic behavior requires
perception to be more than just accurate. It needs to (A) be
robust, maintaining accuracy even under adverse conditions;
(B) enable reasoning about uncertainty; and (C) be real-time
capable. We present a method for object segmentation that
fulfills these requirements.

To provide robust object segmentation (A), we resolve
ambiguities in visual input by fusing information from two
complementary cues. Parts of objects often move together,
and parts of objects often look alike. These cues are com-
plementary in the sense that their ambiguities usually differ,
as depicted in Fig. 1. Motion cannot disambiguate similarly
moving objects nor non-moving ones. Appearance cannot
disambiguate similarly colored objects and oversegments
textured ones. But we can fuse both cues to make object
segmentation more robust to either kind of ambiguity.

To capture cues in motion and appearance, the perceptual
system we propose is split into two estimators (Fig. 2). One
estimates object segmentation from motion, and the other
from appearance. Both estimators are interconnected, which
allows them to jointly resolve ambiguities.

But even such complementary cues cannot alleviate all
uncertainty. Robots may further act on uncertainty (B) by
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Fig. 1. Motion and appearance individually provide ambiguous
information about objects in the scene: motion does not provide any
information about non-moving parts, while appearance segments
similarly colored objects and oversegments the textured areas. As
a side effect, the hand is grouped wrongly. Because of these
ambiguities, it is a challenge to segment the scene into objects
such that the segmentation supports robust robot behavior.

exploration or by acting cautiously, which benefits from
an explicit, probabilistic representation. Because both cues
suffer from different ambiguities and types of noise, each
estimator benefits from a tailored belief distribution. Subse-
quently, performing Bayesian inference to fuse these beliefs
yields a robust, disambiguated object segmentation belief.

We evaluate our approach in the context of kinematic
structure estimation on a dataset [3] of interactions with
articulated mechanisms. We compare against two other ob-
ject segmentation methods and show that our fusion makes
object segmentation more robust (A), scoring 170% of a
purely motion-based approach. Our probabilistic modeling
also enables downstream reasoning about segmentation un-
certainty (B), leading to 339% of the performance of a
recent deterministic RNN [1] on the estimation of kinematic
structure. Additionally, our system is real-time capable (C),
averaging 14 FPS on a mid-range desktop computer.

II. RELATED WORK

Our main goal is to robustly segment a scene into ob-
jects for robotic manipulation. Hence, we will describe in
Section II-A how recent approaches use different cues for
object segmentation and their limitations for robotic tasks.
In Section II-B, we examine the importance of object seg-
mentation for kinematic structure estimation, a downstream
perception task used in robotic manipulation.



A. Object Segmentation

To determine the object segmentation of a scene, we need
to group its parts into distinct objects. We can represent
such grouping as a dense image segmentation [4], [5] or as
sparse clusters of points [6], [7]. To estimate this grouping,
many approaches rely only on a single cue. Motion-based
approaches leverage the common motion of object-parts
[6], [8], appearance-based approaches leverage the visual
homogeneity of objects [4], [5], [9], and shape-based ap-
proaches leverage the closed surfaces of objects [10], [11].
However, such approaches group objects inadequately when
the employed cue is ambiguous. Textured objects are often
over-segmented, shapes can be irregular, and objects may be
static. To address these ambiguities, recent approaches fuse
several [1], [2], [12], [13], [14] or all [15] of these cues. We
follow a similar strategy by fusing appearance and motion.

Although fusion approaches improve object segmentation
beyond single cue methods, they often do not fit the require-
ments of robotic tasks. Some lack real-time capability [1],
[12] or compute the segmentation newly each frame [13],
[14], forgoing consistency. Others consider only predefined
classes [15], focus only on the most salient object [12],
or do not distinguish between different moving objects [2].
Lastly, they usually do not estimate uncertainty [1], [2], [12],
[13], [14], [15], preventing its consideration in downstream
tasks. In contrast, our method provides consistent estimates
of object segmentation and uncertainty in real time, based
on a probabilistic model factorized into two estimators.

B. Kinematic Structure Estimation

We apply our method to the task of kinematic structure es-
timation (KSE), where the goal is to estimate kinematic joints
between objects. Recent approaches estimate these joints by
analyzing objects’ trajectories [6], [16], their 3D-segments
over time [17], [18], [19], or by using learned semantic
knowledge about the kinematics of visually identified objects
[20], [21]. Since all these approaches center around objects,
they require an object segmentation of the scene. Some rely
directly on ground truth data [20], [21], while others either
use only motion-based objects [6], [18], [19] or semantic
knowledge about certain classes [21]. We use our method
to provide KSE with probabilistic object segmentation and
extend the KSE approach presented in [6].

III. LEVERAGING MOTION AND APPEARANCE FOR
PROBABILISTIC OBJECT SEGMENTATION

We present a method to robustly segment visual scenes
into objects and estimate the segmentation uncertainty. We
use objects’ motion and appearance, processing each of these
cues with a specialized recursive estimator, and interconnect
them to fuse their information as shown in Fig. 2. This lever-
ages the cues’ complementarity to make the object segmen-
tation more robust in both representations. We first explain
the belief representations of both estimators in Section III-A
and then how we update each based on observations and the
other’s current belief in Sections III-B and III-C.

A. Probabilistic Representations of Object Segmentation

We can segment a scene into objects based on motion and
appearance, because parts of an object often move and appear
similarly. But to measure and interpret these similarities
efficiently, we need different methods and representations.
We measure motion by tracking visual 3D feature points
as in [6, sec. IV-A] and appearance using traditional color
image segmentation [4]. Based on these measurements, we
can represent an object segmentation both as a clustering of
tracked points ct and as a dense image segmentation st .

However, both motion and appearance can be ambiguous
and noisy, leading to uncertain object segmentation. But
we can estimate and reduce this perceptual uncertainty by
recursively estimating a probabilistic belief over each repre-
sentation, i.e., the clustering and the image segmentation.

To represent object segmentation as a probabilistic clus-
tering of points bel(ct), we associate with each point i an as-
signment belief over possible object clusters o1, . . . ,oM . This
belief over the assigned object o[i]a is a Dirichlet distribution1:

bel(ct) =
{

bel(o[i]a ) := Dir(o1, . . . ,oM)
}

i∈{1,...,I} (1)

To represent object segmentation as a probabilistic image
segmentation we use a particle representation. This is neces-
sary as the space of possible segmentations is high dimen-
sional and a belief within it can have multiple modes. Thus,
our belief over the current segmentation st is represented by
a set of particles as shown in eq. (2)2, each consisting of
one possible dense image segmentation ŝ[n]t , the pixel-level
velocities of region boundaries v[n]t , and a weight w[n]

t .

bel(st) =
{

ŝ[n]t ∈NH×W ,v[n]t ∈RH×W×2,w[n]
t ∈ [0,1]

}
n∈{1,...,N}

(2)
In the following, we will describe how we jointly filter the

belief representations and account for new observations.

B. Recursively Tracking the Probabilistic Clustering

We track the probabilistic clustering of points bel(ct)
based on their motion. To bolster this tracking, we leverage
the parallely estimated image segmentation belief bel(st),
as it provides complementary appearance-based information
(Section III-C).

To initialize clusters prior to motion in the scene, we
rely on the appearance-based segmentation belief bel(st). We
determine which points should be grouped according to each
particle and then account for uncertainty by marginalizing
over the particles. This gives us pairwise neighborhood like-
lihoods, which we use to find an initial clustering using [22].

We now recursively filter this clustering by incorporating
the motion of tracked points: when a point moves similar
to an object cluster’s motion, we increase their assignment
likelihood. That is, we compare the motion of each point i
as x[i]t ∈ R3 and the motion of each cluster tracked as rigid

1This distribution is suitable as it is the conjugate prior to the categorically
distributed motion similarity as we will see in the following section.

2where H and W are the height and width of the image
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Fig. 2. Two interconnected recursive estimators (middle column) allow holistic fusion of motion and appearance cues. Each recursive estimator specializes
in extracting object information from one cue, motion or appearance, probabilistically over time. By interconnecting these estimators, we allow them to
benefit from each other: Information extracted from motion aids the interpretation of appearance, and vice versa. This scheme extends further as it provides
consistent probabilistic estimates for downstream tasks such as kinematic structure estimation (right) in real time and can moreover leverage the higher-level
information to again improve segmentation into objects.

body motion Ht ∈ SE(3) using the approach in [6, sec. IV-
B] extended to take assignment uncertainty into account.
By assuming an isotropic Gaussian distribution around each
point, we determine how likely that point moves together
with each object cluster. We normalize these likelihoods over
objects, which results in categorical assignment likelihoods
p(o[i]a |x[i]t ,H [o1]

t , . . . ,H [oM ]
t ) for each point i that we use to

directly update its Dirichlet distributed assignment belief:

bel(o[i]a,t) = bel(o[i]a,t−1)+ p(o[i]a,t |x[i]t ,H [o1]
t , . . . ,H [oM ]

t ) (3)

But motion does not provide reliable information for all
points, because some do not move and others are tracked with
high noise. However, the appearance-based image segmenta-
tion belief bel(st) is not affected by these problems. We can
use it to identify neighboring points and use their assignment
beliefs as additional measurements to reduce uncertainty in
motion-based clustering. To account for the uncertainty of
bel(st), we again marginalize over the particle set to obtain
neighborhood likelihoods.

By incorporating both the tracked motion as well as
the appearance-based segmentation belief we can track the
clustering into objects robustly. However, initial clusters
created solely based on appearance may not suffice when
motion reveals new objects. In such cases, we use RANSAC
to identify new clusters of points that obey a rigid body
motion but cannot be assigned to any existing cluster.

C. Recursively Tracking the Probabilistic Segmentation

We track the probabilistic image segmentation bel(st) by
recursively incorporating appearance-based image segmen-
tations [4] as measurements s∗t . To furthermore overcome
ambiguities and reduce uncertainty, we leverage the cur-
rent clustering belief bel(ct), as it provides complementary
motion-based information. For bel(st) we use a particle

representation, as described in Section III-A. Thus, we design
a particle filter over dense image segmentation.

In the forward model of the filter, we account for motion in
image space. For this purpose, we estimate the velocities v[n]t
of boundary pixels between objects and use them to predict
how the segmentation boundaries move in each particle. We
estimate the velocities based on the closest measured region
boundary and add sampled noise to disperse the particles.

To then weight the particles, we compare them for simi-
larity to both the measured image segmentation s∗t and the
current clustering belief bel(ct). The comparison to s∗t re-
quires a distance metric between segmentations d(s1,s2). As
such metric, we use the sum of distances of each boundary
pixel in one segmentation to the closest in the other. To now
also compare the particles to bel(ct), we cluster the points
based on each segmentation particle ŝ[n]t . For each of these
clusterings, we then determine its likelihood p(ŝ[n]t |bel(ct))
according to the clustering belief and weight the particle set
according to eq. (4), with η as normalization factor.

w[n]
t =

1
η

p(ŝ[n]t |bel(ct))

d(s∗t , ŝ
[n]
t )

(4)

High dimensionality in the space of segmentations would
require impractically many particles. To cope with this,
we adapt each particle to increase its likelihood given the
clustering belief bel(ct) and the measured segmentation s∗t .
We adapt particles to be closer to bel(ct) by merging regions
when they contain points that are likely in the same cluster.
We adapt particles to be closer to s∗t by merging regions if
they are jointly covered by one region in s∗t . We also directly
insert regions from s∗t into particles. Each iteration, we apply
these operations only to a few randomly chosen particles, but
they sufficiently regularize the belief so that we only need
N = 50 particles, enabling real-time estimation.



IV. LEVERAGING PROBABILISTIC OBJECT
SEGMENTATION IN KINEMATIC STRUCTURE ESTIMATION

The probabilistic object segmentation we derived in Sec-
tion III is useful for downstream perception tasks. One such
task, is Kinematic Structure Estimation (KSE) which finds
kinematic relationships between objects in the scene.

We apply our method to robustly segment the scene into
objects in KSE by extending the OMIP system [6]. As KSE
requires a segmentation of the scene into objects (Section II-
B), OMIP already has a clustering of tracked points into
objects, but only motion-based and deterministic. We replace
this clustering with our two estimators and hence make it
more robust. This in turn also makes the overall KSE system
more robust, as we will see in our experiments.

However, we can formulate this connection to KSE again
as an interconnection, as shown in Fig. 2. The estimated
kinematic structure provides constraints to the estimation of
object motion, e.g. restricting it along an estimated prismatic
axis. These constraints make object tracking more robust, as
shown in [6]. Thereby, applying our object segmentation to
KSE in turn also improves our object segmentation.

V. EXPERIMENTS

We assess the performance of our estimators for ob-
ject segmentation and their impact on kinematic structure
estimation using a dataset of articulated objects. In this
section, we outline our experimental setup and evaluation
metrics (Section V-A), demonstrate how fusing motion and
appearance information leads to better object segmentation
(Section V-B), and show how our recursive estimators meet
the needs of real-world robotic applications on the task of
kinematic structure estimation (Section V-C).

A. Experimental Setup and Metrics

We restrict our evaluation to the RBO dataset of articulated
objects and interactions [3] as it is the only dataset that
provides ground truth for both object segmentation and
kinematic structure in real-world RGB-D sequences. In the
following, we explain how we derive ground truth from this
dataset, introduce evaluation metrics, and discuss the baseline
methods we use for comparison.

Deriving Ground Truth: The dataset [3] includes 3D
shape models and corresponding 6D poses for each object.
Using this information, we project the objects onto the image
surface to create a “ground truth” object segmentation that
we can directly compare to the segmentation obtained from
motion and/or appearance. We use the kinematic joint infor-
mation provided by the dataset as is. However, we exclude
two objects from the evaluation—pliers and foldingrule—
because they have inaccurate shape models, which prevents
us from generating appropriate ground truth data.

Metric for Object Segmentation: To compare the dif-
ferent object segmentation approaches on segmentation ac-
curacy, we define an objectness score O for the clustering
of each ground truth object Ogt in eq. (5), which uses the
Jaccard index as the similarity measure So between two
objects represented as sets of points O1 and O2.

O(Ogt,bel) = max
Obel∈bel

So(Obel,Ogt) (5)

K( jgt,bel) = D( jgt,bel) ·Q( jgt,bel) (6)

D( jgt,bel) = ∑
jbel∈bel

p(type( jbel) = type( jgt))pp( jbel, jgt) (7)

Q( jgt,bel) = ∑
jbel∈bel

Sa( jbel, jgt)+Sp( jbel, jgt)+Ss( jbel, jgt)

3

·pp( jbel, jgt) (8)

So(O1,O2) = |O1∩O2 |
|O1∪O2| (9)

Sa( j1, j2) = 1− α( j1 , j2)
90◦

(10)
Sp( j1, j2) = 1

1+dist( j1 , j2)
(11)

Ss( j1, j2) = 1

1+

∣∣∣|state( j1)|−|state( j2)|
∣∣∣ (12)

pp( j1, j2) = 1
η

max{So(O j1 ,1,O j2 ,1) ·So(O j1 ,2,O j2 ,2),

So(O j1,2,O j2,1) ·So(O j1,1,O j2,2)}
(13)

SET OF EQUATIONS I
EVALUATION METRICS USED IN OUR EXPERIMENTS

Metrics for Kinematic Joint Evaluation: To compare the
impact of different object segmentation approaches on the
estimated kinematic structure, we compute kinematic joints
for the different point clusterings using the joint tracker of
OMIP [6, sec. IV-C]. We then compare the estimated joints to
the ground truth joints of the dataset regarding the detection
and parameter reconstruction of each joint with kinematic
joint score K( jgt,bel), defined in eq. (6).

The kinematic joint score should only score high if the
joint is both detected and reconstructed well. Thus, it is the
product of a score for detection D, defined in eq. (7) and a
score for reconstruction quality Q, defined in eq. (8). They
measure how well each ground truth joint jgt is detected
based on the estimated likelihood p(type( j) = T ) for a joint
of the correct type T , and the similarity of the estimated joint
parameters to the ground truth, respectively.

To compute this similarity between joint parameters, we
consider all parameters of prismatic and revolute joints: the
axis orientation depending on the angle α between their
axes, the axis position depending on the shortest distance
dist( j1, j2) between their axes3, and the articulation state
depending on the difference in observed motion |state( j)|.

Finally, we combine above metrics to evaluate the kine-
matic joints. For this, we obtain the normalized4 likelihood
pp( jbel, jgt) according to eq. (13).

Baseline Methods: We compare our object segmenta-
tion and kinematic structure estimation against two other
methods. One is the purely motion-based technique of
OMIP [6], to show how leveraging both motion and ap-
pearance makes estimation more robust. The other is a

3All parallel prismatic joint axes are equally valid. Hence, we always
assume correct axis position for them (Sp = 1).

4The normalization over all the estimated object pairs via the factor η

makes the joint evaluation indifferent to the object segmentation quality,
only focusing on the estimated joints.
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Fig. 3. Leveraging motion and appearance leads to better and robust clustering of objects. We show this by comparing motion-only OMIP [6], our fusion
of motion & appearance, and RVOS [1] on six exemplary sequences. The clusters, indicated by overlaid points in the top row, stay consistent even when
the tracked feature points have noisy motion or are partly occluded. Compared to purely motion-based estimation, this leads to continued tracking, as in a)
after t = 5sec, and better fitting clusters, as in b)-e). Furthermore, our initial clustering from appearance allows us to track objects, that would otherwise
be missed, as in f).
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Fig. 4. Our method outperforms others on the RBO dataset of articulated
objects and interactions [3]: Fusion of information from motion and appear-
ance leads to more robust segmentation into objects over the motion-based
estimation of OMIP [6]. The object segmentation of our interconnected
recursive estimators and RVOS [1] are comparable, but our estimators fit
the needs of real-world robotic tasks better by providing more consistent
and probabilistic estimates. This leads to much better performance on the
task of kinematic structure estimation, while also being real-time capable.

state-of-the-art multimodal RNN, called RVOS [1], which
also leverages motion and appearance, but does not provide
explicitly probabilistic estimates.

B. Fusion of Motion and Appearance Leads to Better Object
Segmentation

Our method fuses information from motion and appear-
ance to segment objects. In order to analyze the effects of this
fusion, we first compare against the motion-based object seg-
mentation of OMIP on some exemplary sequences (Fig. 3).
Our method improves over the motion-based segmentation
in two ways: Fusion leads to more consistent estimates, and
appearance allows for better interpretation of the motion in
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Fig. 5. We deem jointly high
performance in all three measures
as required: segmentation quality,
downstream performance, and com-
putation speed. Thus we compare
the product of the metrics in Fig. 4
averaged over the dataset. Our prob-
abilistic method achieves superior
performance to OMIP [6], the uni-
modal approach that we extend, and
both clearly outperform the deter-
ministic RNN RVOS [1].

the scene. We will now further elaborate on both.
Fusing motion and appearance information improves point

clustering consistency, as appearance allows us to correctly
assign newly detected points and points with ambiguous
motion. This can be seen in Fig. 3a, where our method
maintains the object throughout the sequence while motion-
based OMIP loses it after t = 5sec. Similarly, the correct
assignment of newly detected points allows us to outperform
the motion-based method on most sequences (Fig. 3b-e).

The appearance based information allows for better inter-
pretation of the motion in the scene, because we can im-
mediately cluster and thus track objects from the beginning.
We can see this effect in Fig. 3a, d, e, but especially in
Fig. 3f with the black tripod. Here, the appearance-based
initial clustering plays a crucial role as point tracking for the
uniformly black parts of the tripod would be too uncertain.
On the flip-side, this initial clustering using appearance may
be over-segmented as in Fig. 3b and c. However, when the
respective object moves the over-segmentations collapse.

These benefits of fusion also generalize over the dataset,
where our method scores on average 70% higher than
motion-based OMIP (Fig. 4). As this improvement stems
from the fusion of motion and appearance, the multimodal
RVOS performs similar to our method on object segmenta-
tion accuracy. However, our probabilistic estimates are very
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Fig. 6. The probabilistic object segmentation of our method in turn makes
kinematic joint estimation more robust. We show this by comparing our
approach to RVOS [1] and motion-only OMIP [6] on three exemplary
sequences. The kinematic joints, indicated by their joint axes in the top
row, are tracked more consistently than only based on motion, as in a).
Moreover, the probabilistic estimate of our method allows for better joints
than deterministic RVOS, as in a) and b). Lastly, our fusion of motion and
appearance enable good estimation of previously undetected joints, as in c).

useful for other robotic tasks such as kinematic structure
estimation, as we describe below.

C. Our Interconnected Recursive Estimators Fit the Needs
of Real-World Robotic Tasks

We have shown in the previous subsection that our inter-
connected recursive estimators provide a segmentation into
objects on par to state-of-the-art multimodal approaches like
RVOS [1]. In the following, we show that our method is
much better suited to real-world robotic tasks, because the
provided estimates are more consistent and include a measure
of uncertainty. We first illustrate this on exemplary sequences
(Fig. 6) and then report the aggregated results.

Our probabilistic, fused object segmentation leads to better
estimates of kinematic joints, because it is more consistent.
This consistency lets us not only maintain objects longer
(Fig. 3a), but thereby also the associated joints (Fig. 6a).
Furthermore, the fusion of motion and appearance allows for
the detection and reconstruction of previously undiscovered
joints, as shown in Fig. 6c. The non-probabilistic object
segmentation of RVOS is often unable to consistently track
objects over the entire trajectory. This in turn leads to
inconsistent kinematic joint estimates. See plots in Fig. 6a-c.

Thus, the better consistency and robustness of our prob-
abilistic estimates also lead on average to an improvement
in kinematic joint score of 19% over OMIP and 239% over
RVOS (Fig. 4). This demonstrates that probabilistic modeling
is key, when using object segmentation in downstream tasks.
But our interconnected estimators have another advantage
compared to RNN-based RVOS: They meet the requirement

of real-time capability, running on average at 14 FPS on a
mid-range desktop computer, where RVOS runs at 3.5 FPS.

Finally, if we assume the following characteristics are
equally important for a given task, our method outperforms
both OMIP and RVOS: object segmentation quality, down-
stream performance, and computation speed. We demonstrate
this by comparing the product of our three performance
metrics—objectness score, kinematic joint score, and frames
per second—in Fig. 5.

VI. LIMITATIONS

In our experiments, we observe that our approach is lim-
ited by its measurement sources and modeling assumptions
for object motion. We elaborate on this below:

Reliance on Image Segmentation: The appearance
based estimation relies on image segmentations as measure-
ments. If these measurements are consistently wrong, this
can lead to overconfidence in an over- or undersegmentation.
As our appearance-based estimator is agnostic to the chosen
segmentation algorithm, this could be improved upon with
a better segmentation technique, e.g. CNN-based [9], or a
different input image, e.g. the current depth image.

Reliance on Feature Point Tracking: The basic unit for
all motion-based estimation of our approach—clustering, ob-
ject motion, kinematic joints—are the tracked feature points.
If their tracking fails, our algorithm can thus not extract
sufficient information from motion. Even when appearance-
based estimation of the object segmentation is precise for
textureless situations, we can still not track the object and fail
to reconstruct its kinematic joints. We could improve on this
reliance on feature points by introducing more basic visual
features to measure motion in the scene, e.g. regions [23],
contours [24], or dense optical flow [25].

Limitations from Modeling Assumptions: Our approach
assumes rigid body motion and prismatic/revolute kinematic
structure, which limits its effectiveness for deformable ob-
jects or other joint types. Although our probabilistic model
can handle minor deviations, the motion-based estimation
may not perform well in such cases.

VII. CONCLUSION

We presented an approach to segment scenes into objects.
For such a perception method, robotic behavior poses three
requirements: (A) It needs to be robust against adverse
conditions, (B) enable reasoning about uncertainty, and (C)
be real-time capable. Our approach is robust due to fusion
of complementary information from motion and appearance
(A), explicitly represents uncertainty over the object segmen-
tation (B), and runs at 14 FPS on mid-range hardware (C).

In our experiments, we confirmed the necessity of ro-
bustness (A) and reasoning about uncertainty (B) on the
downstream task of kinematic structure estimation, where we
clearly outperform a recent deterministic RNN. Similarly, our
approach could support other object-centric tasks by guiding
robotic interactions with the environment and facilitating
exploration or cautious behavior in uncertain conditions.
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