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Abstract— We introduce a Learning from Demonstration
(LfD) approach for contact-rich manipulation tasks, i.e., tasks
in which the manipulandum’s motion is constrained by con-
tact with the environment. Our approach is motivated by
the insight that even a large number of demonstrations will
often not contain sufficient information to obtain a general
policy for the task. To obtain general policies, our approach
augments the information contained in a single demonstration.
This autonomous augmentation is based on the insight that
environmental constraints play a central role in generaliza-
tion. We validate our approach in real-world experiments
with mechanisms with multiple, interdependent articulations,
including latch locks, chain locks, and drawers with handles.
The extracted policies, obtained from a single augmented human
demonstration, generalize to different mechanisms of the same
type and in varying environmental settings.

I. INTRODUCTION

Learning from demonstration [1] (LfD) aims to extract

general policies from human demonstrations. But do demon-

strations necessarily contain the necessary information? We

argue that for contact-rich manipulation tasks this is not the

case. Manipulation tasks are contact-rich if the manipulan-

dum’s motion is constrained by features in the environment.

Examples include the manipulation of articulated objects,

such as drawers or scissors, but also sliding motions between

objects, such as a box being pushed across a table.

Demonstrations contain instance-specific information.

This information does not generalize and must be discarded

or altered for producing good policies [2]. Demonstrations

also contain task-general information; this is the information

we want to extract and turn into a robot policy [2]. But this

information is not always sufficient for several reasons.

First, robust and general policies for contact-rich manip-

ulation must include information about the environmental

constraints (EC) [3] present in the task [2]. Demonstrations

can contain such information as forces acting in directions

other than the direction of motion. However, humans are such

expert manipulators that they often follow environmental

constraints without generating significant force signals for

a constraint [4]. This means that demonstrations often lack

EC information important for generalization. For example,

when a human opens a drawer, they rarely generate forces

orthogonal to the direction of motion. This makes it chal-
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Fig. 1: Our approach to learning from demonstration takes

a single human demonstration (left, red) and augments it

autonomously with information required to produce a general

policy (middle, green). The augmentation process works for

complex contact-constrained motions (green, bottom) and

also for visual servoing, for example, during grasping (green,

top). The resulting policies generalize robustly, here shown

for three different locks with changing backgrounds (blue,

right).

lenging to distinguish a drawer (EC: prismatic joint) from a

free-floating object moving on a linear trajectory.

Second, to perform a demonstration, humans might con-

sider perceptual features that are not available to the robot,

due to differing perception capabilities. It is not practical

to consider all possible perceptual information in LfD.

Whatever the selection is, it will likely exclude relevant

information, for example about tight clearances and small

environmental features not easily distinguishable in the pres-

ence of sensor noise. In addition, suitability of features might

differ between humans and robots due to their different

embodiment and different lower-level control abilities.

Third, humans draw on extensive prior manipulation

knowledge. It is not possible to extract this from demonstra-

tions on a single task. Yet, this knowledge might be required

to generalize demonstrations into a good policy.

This shows that demonstrations cannot be guaranteed

to contain sufficient information for obtaining general and

robust policies. In our experience, this is very frequently

the case. To address this problem, we propose a method for

automatic augmention of demonstrations to fill in missing

details. Augmentation, a process illustrated in Fig. 1, relies

on prior knowledge about environmental constraints [3] and



interactive perception [5] to produce general policies from a

single demonstration. Of course, our method is only able to

augment certain types of information; further research will

be needed to fully close the gap that results from the three

problems mentioned above. Still, we show that our method

is capable to extract generalizable policies from a single

demonstration with a subsequent augmentation phase. It can

reliably open different mechanical latches (Fig. 1) after one

demonstration on just one latch. Similarly, it can generalize

single demonstrations to open different variations of drawers

and chain locks.

II. RELATED WORK

Learning from demonstration aims to teach robots manip-

ulation skills from human demonstrations [6] and is often

cast as a supervised-learning problem [7]–[12]. The LfD

paradigm commonly assumes that skills can be extracted

solely from demonstrations. This assumption seems to hold

for tasks that involve little contact, but human demonstrations

often do not contain enough force information to extract

contact-rich skills [4]. This finding is aligned with our pre-

vious work, where we found that humans need to purposely

demonstrate high forces to reveal physical constraints [2].

Suomalainen et al. report a similar finding [13]. One ap-

proach to increase force information in demonstrations is to

impair the teacher, e.g. by blindfolding [14]. We suggest to

abstain from such impairment and to let the robot gather

the required information itself by augmentation. Note that

the idea of augmentation is similar to [15] which aug-

ments human demonstrations through interactive perception

to disambiguate articulated motion models present in the

task. However, the scenario considered in our work dif-

fers from [15] in that our approach disambiguates contact-

changing events that are required for the successful operation

of articulated mechanisms with multi-DoF.

Combining Reinforcement Learning (RL) with LfD can

be seen as a form of augmentation. Exploration in these

integrated approaches gathers additional data to refine poli-

cies learned by LfD with RL-based optimization [16]–[22].

However, RL is often data-hungry due to domain-agnostic

exploration strategies. In contrast, our approach is tailored to

contact-rich manipulation tasks. It augments demonstrations

by exploring contact situations around demonstrated motions.

Note that our domain-specific exploration approach, utilizing

environmental constraints as priors, can also be applied in RL

to achieve more efficient and safe explorations [23].

In contactless tasks, augmentation was applied to improve

visual servoing policies [24], [25]. Augmentation allows bet-

ter convergence, because the robot gathers additional training

images from unseen camera perspectives. However, these

visual servoing policies are challenged by distractors and

changes in the environment, because they perform regression

directly on input images. We employ and augment a similar

visual servoing strategy, but our vision-based policy incor-

porates a grasping-specific attention mechanism that only

focuses on task-relevant visual features, thereby significantly

enhancing the policy’s generalization ability.

Fig. 2: Locks used in the experiment: The policy derived

from a demonstration with lock 1 generalizes to locks 2

and 3. Generalization is possible because all locks contain the

same vision- and contact-based environmental constraints,

even though the geometric and visual parameters are differ-

ent.

III. AUGMENTING DEMONSTRATIONS FOR

CONTACT-RICH MANIPULATION

When learning to manipulate complex mechanisms with

multiple degrees of freedom (multi-Dof mechanisms), it

is especially crucial to identify environmental constraints

imposed by the kinematics of manipulated mechanisms.

Different mechanisms with the same functionality often

share the same environmental constraints. Thereby, policies

based on these environmental constraints rather than absolute

positions can be transferred to various instances of the same

type [2]. This insight is exemplified by the locks shown in

Fig. 2. This section describes how to extract general policies

from a demonstration and which missing information should

be augmented to ensure a successful extraction.

A. Policy Representation

To manipulate multi-DoF mechanisms, robots must actuate

a sequence of mechanical DoF, which can be seen as a hybrid

control problem. Different stages of such tasks are governed

by different environmental constraints. We mirror this hybrid

structure in our control strategy and implement policies as

hybrid automata [26] implementing sequences of compliant

controllers that are guided by environmental constraints.

To reproduce compliant motions, we employ adaptive

compliant controllers from our previous work [2]. These

controllers maintain a belief about a currently feasible mo-

tion direction ~m and follow that direction using velocity

impedance control. They adaptively track ~m to follow envi-

ronmental constraints that change smoothly. If environmental

constraints change abruptly, it will trigger a transition to the

next controller in the hybrid automaton.

Abrupt changes in mechanical constraints can happen in

two ways. Either ~m is not feasible anymore (making contact

event) or a spatial direction other than ~m was formerly

constrained and now becomes available for motion (breaking

contact event). To detect this second kind of event, our

controllers exert an additional force ~f (rendered as a desired

velocity) during motion. They can detect if a direction

orthogonal to ~m becomes unconstrained when this force leads

to motion. This is an example of interactive perception [5],

where forceful interaction induces additional sensory events

that are otherwise unavailable.



To summarize, we construct hybrid automata as manipu-

lation policies. To fully instantiate such a hybrid automaton,

we need feasible motion directions ~m and desired force

direction ~f to instantiate adaptive compliant controllers, as

well as corresponding contact-changing events as transition

functions. Fig. 3 illustrates that the policy extracted from one

mechanism is able to generalize to new instances with the

same type, as the compliant motions and contact-changing

events are identical across various instances.

B. Instantiation from Demonstration

To fully instantiate our hybrid automaton, we must identify

the number of controllers K, as well as the feasible motion

directions ~m1:K and the force directions ~f1:K . However,

human demonstrations generally will not contain sufficient

force information to reliably extract ~f1:K . We therefore use

the initial demonstration’s end-effector positions to extract

K and ~m1:K . To do so, we first segment the demon-

strated position trajectory Tr = (p1, p2, . . . , pN) into sub-

trajectories D1,D2, . . . ,DK using a change point detection

algorithm [27]. For each sub-trajectory Dk, we apply Singular

Value Decomposition (SVD) to the recorded positions to get

three eigenvectors Vk ∈ R
3x3. The first eigenvector ~vk,1 is

the estimated motion direction ~mk. This way, we obtain a

sequence of motion directions that can be used to imitate

the compliant motions with adaptive compliant controllers.

To achieve generalization, terminations of these compliant

motions should not be dependent on absolute positions

but rather on contact-changing events. However, as argued

in the introduction, demonstrations are unlikely to always

contain the required force directions ~f , which are crucial

to detect contact-changing events. The following subsection

will explain how to complete this missing information via

augmentation.

C. Augmentation for Contact-rich Manipulation

The goal of augmentation is to reveal useful force direc-

tions in which the robot can exert a force to maintain contact,

so that a salient contact event occurs appropriately to trigger

a transition. To do so, we search for such a useful force

direction ~fk. We iterate through a set of hypothesized force

directions ~fk,h and test if they trigger a salient contact event at

the desired switching position pe
k. Each hypothesis is tested

by first moving to the starting position of the segment ps
k

and then executing the adaptive compliant controller with

the motion direction ~m j together with the hypothesized ~fk,h.

We discard the hypothesized ~fk,h if the EE position deviates

more than δ = 10 mm from the demonstrated trajectory

(~fk,h conflicts with motion direction) or a contact event is

triggered before the end-point pe
k of the trajectory is reached.

Otherwise, the first hypothesis that is not omitted is saved

as the desired ~fk.

We consider the following five vectors as sensible hy-

potheses for ~fk. Although this set is likely incomplete, it

captures several common contact situations in mechanical

manipulation tasks.

Fig. 3: This 2D scenario illustrates the idea of augmentation

for contact-based ECs. We first extract two motion directions

from a demonstration (left). It is challenging to extract the

underlying contact situations sorely from this demonstration.

However, with augmentation, we discover that maintaining

contact in the future motion direction (orange arrow) will

reveal a breaking contact event that explains the transition

between two demonstrated motion directions (middle). Our

policy based on the augmentation results ensures generaliza-

tion across various instances, as it exploits the contact-based

ECs rather than focus on absolute positions (right).

1) ~mk+1: The motion direction of the next segment may

become feasible, but may currently be constrained.

2) ~mk−1: The motion direction of segment k − 1 may

have been constrained in the current segment, but this

constraint may disappear in a relevant configuration.

3) ~vk,3: The direction of the third eigenvector ~v j,3 from

SVD (smallest variance). The demonstration might

have low variance in this direction due to a physical

constraint.

4) −~vk,3: This is the opposing direction of 3).

5) ~0: Exert zero force. This is a fallback and the default

in case no other ~fk,h is permissible.

Once we have identified a suitable force direction ~fk, the

robot moves to the next segment’s start position ps
k+1 and

searches suitable force directions ~fk+1,...,K in the same way.

When force directions ~f1:K have been gathered for all K

segments, we construct the switching events for the hybrid

automaton. Controllers switch either due to a making contact

event where the motion direction ~mk is not feasible anymore,

or when the robot could move into the force direction ~fk for

at least δ = 10 mm (breaking contact event).

In summary, we extract the feasible motion direction ~m
of these controllers from a demonstration and then complete

this with a desired force direction ~f and contact-changing

events through augmentation. We now have the necessary

information to instantiate a hybrid automaton. The encoded

sequence of compliant motions represents a policy that

generalizes across object instances, as we will see in the

experimental evaluation.

IV. AUGMENTING DEMONSTRATION FOR VISION-BASED

ENVIRONMENTAL CONSTRAINTS

The idea of augmentation has previously been applied

for visual servoing [24], [25]. An additional contribution



of our work is to improve generalization of this approach

by introducing a grasping-specific attention mechanism. Our

experimental evaluation requires such visual servoing, as the

robot must move from a pre-grasp position to a grasp position

to enable manipulation. To achieve the pre-grasp poses, we

move the end-effector such that a wrist-mounted camera sees

a graspable handle in a desired position and orientation.

Visual servoing requires visual features to guide end-

effector motions from a wide set of states to a goal state.

To be robust, servoing should succeed also from states not

visited during a demonstration. Limited generalization can

be achieved by using invariant visual features [28], but large

deviations from demonstrations still pose a problem.

We propose to use augmentation to directly gather cam-

era input from additional camera perspectives to achieve

generalization. This idea has been successfully applied in

prior work [24], [25]. In these approaches, the robot au-

tonomously gathers training data D = {Ii,
G
E Ti}i of camera

images Ii and transformations G
E Ti from end-effector E to

target grasp pose G. Then it trains a regression model to

predict desired end-effector motion given input images. This

approach generalizes well beyond demonstrated poses [25].

However, previous implementations of this idea [24], [25]

used CNN-based models on the full input image, which

we observed to be susceptible to clutter and changes in the

background. To achieve robustness against these issues, we

employ a Faster-RCNN [29] based approach that focuses

computation on relevant parts in the image.

Our approach follows [25] in its general data collection

and computation scheme, but we do not map full input

images Ii to end-effector relative graph poses G
E Ti. Instead,

our approach (depicted in Fig. 4) divides grasp pose estima-

tion into two subsequential components: 1) a detector that

proposes Regions of Interest (ROI) as bounding boxes; 2)

an orientation estimator that only focuses on visual features

within ROI. For estimating a grasp pose, our network first

detects the area of the grasping location as an ROI. The

center point c = (cx,cy) of the bounding box is the grasp

position in the camera frame. We can then calculate the 3d

grasp position p = (px, py, pz) using a depth camera. Then,

the network predicts the grasp orientation using the image

cropped to the ROI’s bounding box. We consider the tasks

where a mechanism is mounted on a surface, and the end-

effector is constrained to be perpendicular to the surface.

Hence, our network only has to predict the yaw angle Ψ ∈R

in the end-effector frame. We implement this network by

extending the framework of Faster-RCNN [29]. In addition

to a bounding box regressor and a classifier, we add a layer

to estimate Ψ for each potential object in the image.

Training our network requires a bounding box and a

rotation angle Ψ as labels. Given an input image and a

ground-truth grasp pose in end-effector frame G
E T , we project

a rectangle defined by the volume in the robot’s open

gripper into the camera image. The corners of this rectangle

correspond to the blue circles in Fig. 4. Then we fit this

rectangle which is not axis aligned with an axis-aligned

rectangle and use it as the target for the ROI’s bounding box.

The rotation between both rectangles is used as the target for

the orientation estimator.

The key advantage of our approach is that the grasp pose

estimator concentrates on visual features within bounding

boxes, breaking undesired correlations with visual features

outside these boxes. This enables the policy to generalize to

different objects sharing similar task-relevant visual features

and ensures robustness against environmental changes e.g.

visual distractors.

V. EXPERIMENTS AND RESULTS

We test the capabilities of our approach in real-world

experiments on contact-rich manipulation tasks with various

articulated mechanisms. The experiments are conducted on

a 7-DOF Panda arm with a 1-DOF gripper. We attached a

RealSense D435i depth camera to the end-effector and an

ATI-mini 40 Force/Torque sensor to the wrist. Videos for

experiments are available at the: project page.

A. Opening Latch Locks

In this experiment, our goal is to test the generalization

and robustness of the proposed approach for opening latch

locks. Given a demonstration with lock 1 (see Fig. 2), our

approach augments this demonstration to obtain an EC-based

policy and test it on all three locks. As the lock opening task

involves two sub-tasks: grasping and opening, we divided

this experiment into three parts. We evaluate the grasping and

opening sub-tasks separately in the first two parts. Lastly, we

demonstrate the overall efficacy of our approach by showing

that it allows a robot to grasp and open (full-task) a lock in

a dynamic and cluttered environment.

1) Grasping: In this experiment, We provide a kinesthetic

demonstration of grasping with lock 1. We record around

50 images during the demonstration. Note that there is no

significant rotation in the demonstration. We then augment

this demonstration by 2500 camera images collected in

a cone-shaped volume, pointing towards the demonstrated

grasp point. We use augmented data to train our network.

To evaluate the effect of augmentation, we compare our al-

gorithms with the following baselines which do not use aug-

mentation: SIFT-based visual servoing: matches SIFT [28]

features from the input image to the target image captured in

the demonstrated grasp pose, then uses an image-based visual

servoing controller that moves the robot towards the grasp

pose [30]; w/o augmentation: directly trains our network

only on the demonstration data without augmentation.

During the test, we place the lock at a randomized location

on the table. To test the controller’s reactivity, we change the

pose of the lock while the robot approaches the lock. We run

10 grasping trails for each lock. A grasp trial is successful

if the robot grasps the knob and lifts it.

The results of the various grasping approaches are sum-

marized in Table I. Among the methods tested, SIFT-based

visual servoing is able to grasp the knob 3/10 times, where

most failures result from mismatched features between the

observed and target image. These mismatches are caused

by the small size (approximately 23cm) of the lock and the

https://sites.google.com/view/li-iros-23/home


Fig. 4: This figure shows how to generate training data and the architecture of the neural network. We crop an image

based on a demonstrated grasp position and back-project it to the image plane to create a bounding box. We then derive

the orientation of the object based on the robot’s proprioception. The bounding box, orientation, and the known class are

used to train a neural network. This network detects a task-relevant region of interest in the first stage while discarding

distractions. It simplifies the training of the pose estimation and improves the robustness against environmental changes e.g.

visual distractors.

Method Lock 1 Lock 2 Lock 3

SIFT-based visual servoing 30% - -
W/o augmentation 0% - -

Our approachn 100% 100% 100%

TABLE I: Comparison of success rates for grasping locks.

Augmentation significantly improves the success rate.

near-homogeneous color of the lock’s body. This approach

cannot generalize to grasp lock 2 and lock 3, as these

locks differ in size and appearance from lock 1. The other

baseline w/o augmentation fails to grasp all locks in all trials

(0/10). All failure cases happen when the lock is rotated, and

the network cannot predict the orientation correctly, as the

demonstrated data does not contain data for rotated images.

This baseline is not able to apply to other locks due to the

limited training data.

Our approach, by contrast, robustly grasps lock 1 in this

dynamic environment. The grasping performance is signifi-

cantly improved with the additional information provided by

augmentation. It exemplifies that a demonstration alone is

not informative enough to infer a reliable policy for grasp-

ing. Augmentation overcomes this problem by efficiently

completing the missing information in a demonstration i.e.

images from different perspectives. Furthermore, the policy

extracted from lock 1 can reliably grasp lock 2 and lock 3

with a 100% success rate, even though the appearance of

locks’ backbones differs significantly. We achieve the gener-

alization by only focusing on task-relevant visual features.

2) Opening: In the second part of the experiment, we

validate our approach to open locks after a grasp was

established. We first provide a demonstration to open lock 1.

The algorithm segments this demonstration into 4 segments

and computes motion directions ~m1:4 as described in Sec-

tion III-B. For each segment, it also hypothesizes a set of

force directions ~f1:4,h as described in Section III-C. We plot

~m1:4 and ~f1:4,h in Fig 5. Our approach then validates these

hypotheses and constructs a hybrid automaton as described

in Section III-C. The resulting hybrid automaton is shown in

Fig. 5: Based on a EE trajectory of a demonstration with

lock 1, we divide it into four distinct segments and compute

a motion direction for each segment (left). We then derive

a set of force directions based on the motion directions and

positions for each segment (right).

Fig. 6.

To assess the impact of augmentation, we use the method

developed in [2] as a baseline, which extracts the required

motion direction ~m and force direction ~f directly from

the demonstration. This approach is identical to the in-

contact behavior of our approach, except it does not perform

augmentation.

We run 10 trials per lock for each method. As clearly

seen in Table II, the approach without augmentation performs

poorly and only succeeds 5/30 times (17%) on all locks.

Specifically, the baseline approach was never able to open

lock 1. All failed trials for lock 1 are because the robot fails

to pass the pin through the narrow slot, as shown in Fig. 7.

In contrast, our approach reliably passed through the

narrow slot as it exerted a force ~f directed towards that

narrow passage. The algorithm could only select this force

direction due to augmentation. As a result of augmentation,

the learned policy succeeds 30/30 times (100%).

These results show that naive demonstrations cannot guar-

antee sufficient force information to reason environmental

constraints present in the task. Nevertheless, our augmen-

tation phase completes the missing information by actively



Fig. 6: This figure shows the augmentation results of latch lock 1. The real images correspond to four segmented compliant

motions with valid augmented force directions (see Fig. 5). The first compliant motion (S1) involves sliding the knob to the

left while keeping contact in the ~v1,3 direction. Then the robot encounters a contact in the motion direction and switches to

S2, in which the robot lifts the knob and maintains contact in the future motion direction ~m3. This leads the robot to enter

the narrow slot and triggers a breaking contact event. Next, the robot transitions to the sliding motion (S3) and detects a

making contact event by reaching the limit of the lock. Note that in S3, none of the hypothesized force directions is valid.

Therefore, the augmented force direction for S3 is a zero-vector. Finally, the robot simply lowers the knob and opens the

lock.

Method Lock 1 Lock 2 Lock 3 Avg.

W/o augmentation [2] 0% 30% 20% 17%
Our approach 100% 100% 100% 100%

TABLE II: Comparison of success rates for opening three

locks. The performance gap between the baseline approach

and our approach shows that augmentation is key to success-

fully extracting a reliable manipulation policy for physically

operating mechanisms.

Fig. 7: The robot can successfully traverse the slot by

lifting the knob upwards (blue) and applying force along

the augmented force direction (orange), which is orthogonal

to the slot direction. By contrast, the robot fails to detect the

narrow slot and gets stuck when it maintains contact in the

demonstrated force direction (red).

uncovering these environmental constraints, leading to the

successful extraction of a generalizable policy.

3) Full-Task Execution: After individually examining

grasping and opening, we test the method’s performance in

grasping and opening locks as a whole task. We challenge

the robustness of our approach in a dynamic and cluttered

environment (see supplementary video). Concretely, we place

Method Lock 1 Lock 2 Lock 3 Avg.

Our Approach 100% 100% 70% 90%

TABLE III: Success rates of full-task executions including

grasping and opening locks. All three failures in lock 3 were

due to the robot failing to grasp the knob.

distractors on the table and change the position of the lock

when the robot is approaching. We run 10 trials per lock and

calculate the success rate. The result is depicted in Table III.

Our approach achieves 100% for locks 1 and 2, even in this

highly uncertain environment. The success rate of lock 3

decreases to 70% due to the false-negative detection for

the knob, which exposes the limitation of the generalization

ability of our approach for grasping. We will discuss this

limitation in Section VI. These experimental results prove

that the augmentation paradigm can yield generalizable and

robust policies, even using only a single demonstration.

B. Opening Drawers

The previous experiments established that augmentation

can improve the generalization and robustness of contact-

rich manipulation behavior. We will now perform additional

experiments to show that augmentation also enables to solve

other problems than latch locks. We will begin with opening

the two drawers in Fig. 8.

These drawers can only be opened after a revolute handle

is rotated, and these drawers differ in the required opening

angle for those handles. We record a demonstration on the

drawer with a smaller opening angle and train our method

as described in Section III. The visual augmentation phase

gathers additional images for 3 minutes. The contact aug-

mentation phase discovers two segments. The first segment

is to rotate the handle while the robot exerts a contact force



Fig. 8: The hybrid automaton extracted from the left drawer

can generalize to the right drawer even if they have different

rotation angles. When the robot opens drawers, it first

pushes down on the handle and complies with the contact-

based EC provided by the revolute joint of the handle (S1).

Simultaneously, the robot maintains contact in the pulling

direction by employing an augmented force direction. This

contact generates a breaking contact event that enables the

robot to transition to the subsequent complaint pulling action

(S2). Overall, our approach reliably accomplishes the task

(grasping and opening) with a 100% success rate.

to pull on the drawer, and the second phase is to pull open

the drawer. A breaking contact event necessarily occurs at

the transition between these phases.

To compute the success rate, we run 10 trials to open this

drawer in a dynamic environment (i.e. human disturbances)

with changes in the background. We achieved a 100%

success rate using our approach on both the original as well

as the transferred drawer that requires further rotation of the

handle. These results demonstrate our method’s robustness

in operating various mechanisms from a single augmented

demonstration. They also show the ability to yield behav-

ior generalizing to unseen but similar object instances by

using environmental constraints as the representation of the

manipulation policy.

C. Opening Chain Locks

We performed additional experiments with chain locks

(see Fig. 9) to exemplify that our approach can apply to

various mechanisms. For the purpose of simplicity, we 3-

D print a larger-sized knob and use it for all chain locks.

Again, we obtained a grasping policy similar to the latch

lock experiment. We explain here the contact-rich policy in

more detail.

The demonstration of the opening chain lock 1 consists

of two compliant motions: sliding the knob to the side and

pulling it outwards. By augmentation, the robot finds a force

direction, which makes it pull on the knob while it slides

it along the slit in the lock. This facilitates the detection

of a breaking contact event that triggers the transition from

sliding to pulling.

Overall, our approach succeeds 10/10 times for chain

lock 1 and 9/10 times for chain lock 2 and 3, respectively. We

achieve this generalization by augmenting contact-changing

events for the contact-rich policy, which exploits the contact-

based ECs. The failure in chain lock 2 is due to the

Fig. 9: We conduct experiments on chain locks with a 3D-

printed knob. A demonstration of chain lock 1 generalizes

to chain lock 2 and 3, achieving a 93% success rate. The

transferability of the policy is achieved by exploiting the

contact-based ECs.

robot past the slot while sliding the knob, and our control

policy cannot recover from such failures. This motivates

us to investigate corrective demonstrations to extract failure

recovery behaviors to enhance the robustness of the contact-

rich control policy [32]. The failure in chain lock 3 is

caused that the 3D-printed knob is not fixed with the chain

after several trials. Nonetheless, this additional experiment

provides further evidence that our environmental-constraints-

based policy generalizes well to unseen yet similar instances.

VI. LIMITATIONS

The proposed approach has two major limitations. First,

it is restricted to prehensile manipulation with articulated

mechanisms, which are constrained by the environment. In

this context, our approach can augment vision- and contact-

based ECs that physically exist in the environment but not

task constraints e.g. reference frames [33]. However, we

believe that the ideas presented here can form the basis for

an overarching LfD approach. Towards this end, we plan to

extend our approach by incorporating human corrections into

the demonstration proccess to reveal information that is not

augmentable by the robot alone, such as additinal types of

task constraints and failure recovery strategies [34].

As a second limitation, only relevant for augmentation

in the contexst of visual servoing, manifests itself in the

performance decrease for lock 3. The extracted policy for

grasping cannot reliably generalize to objects with substan-

tially different visual appearances. This is not surprising

for an approach based on visual appearance. However, we

believe this limitation can be overcome by incorporating 3D

information into the servoing process [35], [36].

VII. CONCLUSION

We present a novel LfD approach for contact-rich manip-

ulation tasks. Our approach takes as input a single human

demonstration, by itself insufficient to produce a general

policy. The method then autonomously gathers additional

task-relevant information, following the insight that gen-

eralization for contact-rich tasks depends on structuring

policies based on environmental constraints. Our extensive

real-world experiments show the transfer of learned policies



to previously unseen but similar mechanisms that vary in

size and appearance. The high success rate across all of

our experiments supports this paper’s main insights: En-

vironmental constraints are the appropriate representation

for contact-rich manipulation policies. Demonstrations do

not contain sufficient information to fully instantiate these

policies. Augmentation identifies the missing information

and is able to extract general policies from only a single

human demonstration.
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