
Towards Combining Robotic Algorithms and Machine Learning:
End-To-End Learnable Histogram Filters

Rico Jonschkowski Oliver Brock

Abstract— Problem-specific robotic algorithms and generic
machine learning approaches to robotics have complementary
strengths and weaknesses, trading-off data-efficiency and gen-
erality. To find the right balance between these, we propose to
use robotics-specific information encoded in robotic algorithms
together with the ability to learn task-specific information from
data. We demonstrate this approach in a proof of concept: the
end-to-end learnable histogram filter. This fully differentiable
implementation of a histogram filter encodes the structure of
recursive state estimation using prediction and measurement
update but allows the specific models to be learned end-to-end,
i.e. in such a way that they optimize the performance of the
filter, using either supervised or unsupervised learning.

I. INTRODUCTION

The classic paradigm in robotics is to write problem-
specific robotic algorithms, e.g. for recursive state estima-
tion [1], that capture some essential truth about the problem
which makes them very robust and data efficient. The field
is currently shifting towards the new paradigm of machine
learning, in particular deep learning, that allows robots to
adapt to their tasks without human intervention and enable
solutions even for those tasks which we humans cannot solve
algorithmically, e.g. image classification. However, these two
paradigms should not be viewed as exclusive but rather as
complementary approaches that need to be balanced to trade-
off their strengths and weaknesses. We propose to combine
these approaches by exploiting robotics-specific information
that is encoded in state-of-the-art algorithms and utilizing
machine learning to determine the specifics of the given task.

This paper presents a proof of concept for this idea by
demonstrating this combination for the histogram filter1[1],
a method for recursive state estimation that represents the
belief as a histogram over continuous states. Histogram
filters require the specification of a motion model and a
measurement model which define how the robot’s actions
and observations affect its belief. We combine the original
algorithm with learning by implementing the histogram filter
and its models in a differentiable way. Consequentially, we
can learn these models end-to-end using backpropagation,
which means that the models can be optimized for the
overall performance of the filter rather than being learned
individually using a proxy objective.

We tested the end-to-end learnable histogram filter in a
partially observable 1-D localization task, in which neither
the measurement model nor the motion model is known

The authors are with the Robotics and Biology Laboratory, Technische
Universität Berlin, Germany

1If applied to discrete states, the filter is known as discrete Bayes filter.

Fig. 1. The end-to-end learnable histogram filter. Motion model (purple)
and measurement model (green) are learned; everything else is predefined.

beforehand. The results show the advantage of the pro-
posed method over both a histogram filter with individually
learned models and standard end-to-end learnable recurrent
networks.

Recent work has applied the same idea to Kalman fil-
ters [2]. In contrast to their work, our method learns both
models jointly and is able to represent multi-modal beliefs.

II. COMBINING ROBOTIC ALGORITHMS
AND MACHINE LEARNING

Each information that a robot requires for solving a given
task must either be hard-coded in the robot’s algorithms or
learned from data. Consequently, there is a trade-off between
how much information must be put into the algorithms
and how much information must be extracted from data.
Algorithms form a spectrum from being task-specific, which
makes them data-efficient and robust, to being fairly generic,
which increases the range of possible tasks at the cost of
requiring more data.

Robotic algorithms are at the specific end of this spectrum
as they often require detailed models tailored to a specific
task, e.g. a histogram filter with a specific motion model and
measurement model works for one robot in one environment.
Machine learning algorithms are at the other end of the
spectrum. They are fairly generic (only assuming properties
such as smoothness or hierarchy) and use large amounts of
data to determine the specifics, which makes them applicable
to a wide range of tasks, provided that there are enough data.

Since the set of robotic tasks is more restricted than the
set of tasks usually considered in machine learning, we have

the opportunity to incorporate additional information about
robotic tasks into learning. Physics, for example, is a constant
that governs the interaction of any robot and its environment
and can be used to make learning more efficient [3, 4]. But
even beyond physics, robotic tasks include rich structure that
can be exploited.

Robotic algorithms (implicitly) encode information about
the structure of robotic tasks. We propose to use this robotics-
specific information from robotic algorithms and combine
it with machine learning to fill in the task-specific details
based on data. We are convinced that this is a promising
approach to strike the right balance between generality and
data-efficiency in robotics.

III. PRELIMINARIES

Before we demonstrate the combination of robotic al-
gorithms and machine learning in form of the end-to-end
learnable histogram filter, we will cover preliminaries about
histogram filters and deep learning in this section.

A. Histogram Filters

A Bayes filter is method to recursively estimate the
probability distribution over a latent state (e.g. robot pose)
based on the history of observations and actions (e.g. camera
images and odometry). A histogram filter is a type of
Bayes filter that represents this belief as a histogram; a
discretization of the state space with one probability value
per discrete state s.

Histogram filters—and all Bayes filters—repeatedly up-
date their belief by alternating two steps: prediction and
measurement update. These steps are based on the previous
belief Bel(st−1), the previous action at−1 and the current
observation ot . The prediction step for a given state st ,

Bel(st) = ∑
st−1

p(st | st−1,at−1)Bel(st−1), (1)

sums over all previous states st−1 and computes how likely
the state would change from st−1 to st if action at−1 was
applied times how likely state st−1 actually was. It thereby
sums over all possible ways through which state st could
have come about. To make the prediction, the histogram filter
requires the definition of a motion model p(st | st−1,at−1).

The measurement update,

Bel(st) ∝ p(ot | st)Bel(st), (2)

then multiplies the predicted belief Bel(st) by the likelihood
of the current observation ot and normalizes the result, which
is an application of Bayes’ rule. This step requires the
definition of a measurement model p(ot | st).

Later in the paper, we will see how it is possible to train
the entire histogram filter end-to-end to optimize state esti-
mation performance. Towards this goal, we will formulate the
prediction, the measurement update, and the corresponding
models in the deep learning framework.

B. Neural Networks / Deep Learning

The most important aspect of artificial neural networks /
deep learning [5] is the training of a sequence (or network)
of functions by backpropagation—the repeated application of
the chain rule to compute the gradient of the learning objec-
tive with respect to the network parameters. Any sequence
of differentiable functions can in principle be trained with
backpropagation. The histogram filter, however, consists of
a loop rather than a sequence of functions.

a) Backpropagation Through Time: Loops in the net-
work prohibit the direct application of backpropagation. Still,
we can train such recurrent networks (e.g. an implemen-
tation of a recursive state estimation loop) if we unroll
the network for a number of time steps, which creates a
sequence of functions (or feedforward network) with shared
parameters and inputs from different time steps. Applying
the backpropagation algorithm to this unrolled network is
called backpropagation through time and allows us to train
recurrent networks.

b) Probabilities and Activation Functions: Since we
want to model probability mass functions with neural net-
works, we need to constrain their outputs to represent prob-
abilities. Network outputs should be non-negative numbers
that sum to one. We can achieve this with the softmax
activation function, softmax(xi)=

exi

∑ j ex j , which exponentiates
and normalizes the network output.

IV. END-TO-END LEARNABLE HISTOGRAM FILTERS

The end-to-end learnable histogram filter (E2E-HF) is a
differentiable implementation of a histogram filter that allows
both motion model and measurement model to be learned
end-to-end by backpropagation through time. Alternatively,
we can view the E2E-HF as a new recurrent neural network
architecture that implements the structure of a histogram
filter (Fig. 1).

A. Belief

The histogram over states is implemented as a vector b of
probabilities with one entry per bin,

bt = [Bel(St = 1), Bel(St = 2), . . . , Bel(St = |S|)].

We can also think of the belief as a layer where the activation
of each neuron represents the value of one histogram bin.
The belief is the output of the current step and an input to
the next step—together with an action at and an observation
ot+1.

B. Prediction

The most direct implementation of the prediction step
would be to define a learnable function f that maps state
and action to a histogram over next states,

f : st−1,at−1 7→ [p(St = 1 | st−1,at−1), p(St = 2 | st−1,at−1),

. . . , p(St = |S| | st−1,at−1)],

and to use f in the prediction step (Eq. 1). However, this
approach is computationally expensive and allows arbitrary

“motions” of the robot, e.g. that an action has an entirely
different effect at every state. Instead, we can often assume
robot motion to be consistent across the state space,

p(st | st−1,at−1) = p(∆st | at−1),

where ∆st = st−st−1. With this assumption, we can compute
the prediction bt as a convolution

bt = p(∆st | at−1)∗bt−1,

where the belief bt−1 is convolved with a fixed motion filter
p(∆st | at−1) for the given action at−1.

The convolution is a predefined part of the end-to-end
learnable histogram filter, but the mapping from action to
motion filters is learned:

f : at−1 7→ [p(∆St =−x | at−1), p(∆St =−x+1 | at−1),

. . . , p(∆St = x | at−1)],

where x is the maximum state change that is considered such
that 2x+1 is the size of the motion filter.

The filter is computed by a learnable motion model (see
purple part in Fig. 1) which can be any feed forward
network (e.g. a linear function with a softmax nonlinearity).
Due to the softmax nonlinearity, the convolutional filter is
constrained to be a probability distribution (positive numbers
that sum to one). Note that this implementation of the
prediction assumes that actions cause the same state change
regardless of the state they are applied to. Actions such as
“move towards the nearest door” cannot be represented in
this way because their effects depend the states they are
applied to.

C. Measurement Update

For discrete observations, it is straight-forward to imple-
ment the measurement model p(ot | st) for all states in a
function

g : ot 7→ [p(ot | St = 1), p(ot | St = 2), . . . , p(ot | St = |S|)].

We will refer to the resulting vector of likelihoods as got . It is
important that this vector is normalized across observations
not across states (which is what a softmax activation function
would do). To realize the correct normalization, we need to
compute the unnormalized likelihood vector g̃o for every ob-
servation o and compute the softmax over the corresponding
scalars in different vectors rather than over the scalars of the
same vector.

go =
eg̃o

∑oi eg̃oi
.

With this implementation of the measurement model, the
measurement update (Eq. 2) can be implemented directly
(see green part in Fig. 1). The likelihood of the current
observation for each state is computed by the measurement
model, which can again be any feed forward network,
provided that the softmax nonlinearity as applied correctly
as described above. It should be possible to extend this
approach to continuous observations, if we can approximate
the normalization using the sampled observations.

Fig. 2. 1D-hallway task

D. Learning

The filter can be learned end-to-end in a supervised way
using backpropagation through time based on a sequence of
observations, actions, and true (discretized) states, e.g. using
the categorical cross-entropy loss between the belief the true
state.

The end-to-end histogram filter can also be learned by
optimizing any other differentiable loss function, e.g. in an
unsupervised way by predicting the next observation based
on the measurement model and the current belief. Pred(ot) =

∑st p(ot | st)Bel(st), where Pred(ot) is the probability of that
observation given the current belief.

V. EXPERIMENTS

We compare the E2E-HF with both a histogram filter for
which the models are learned individually (HF) and different
variants of vanilla recurrent neural networks (RNNs) and
long-short-term memory networks (LSTMs) [6] with 32
hidden units. We should expect that 1) the added robotics-
specific information contained in the E2E-HF increases data-
efficiency compared to RNNs and LSTMs and that 2) end-
to-end learning improves the performance of the E2E-HF
compared to HF with individually trained models. Further-
more, we investigate whether 3) the E2E-HF can be learned
without any state labels (E2E-HF unsupervised). As this
work is still in an early stage, we are using a well known
toy task.

A. 1D-Hallway Task

In this task (see Fig. 2), a robot moves in a one-
dimensional hallway with indistinguishable doors2. It does
not know its position and only has access to its actions
(LEFT / RIGHT / DO NOTHING) and observations (DOOR
/ NO DOOR). The task of the robot is to localize in this
partially observable environment based on its stream of
actions and observations, without knowing its motion model
or measurement model beforehand. In our specific setting,
the hallway has ten states (0-9), five of which have doors (0,
1, 2, 4, and 8). Training and test data are generated using a
random walk. All models are trained on overlapping 32-step
segments of a single trajectory of varying length (up to 1600
steps) and then tested on 1000 new trajectories of 32 steps.

B. Results

1) When we compare the different learning curves for su-
pervised learning (see Fig. 3), we see that the histogram filter
architecture is much more data efficient than the standard

2The 1D-hallway task is based on an illustrative example in [1].

Fig. 3. Learning curves for different methods from 10 trials. Solid lines
are means, shaded surfaces are standard errors. For the E2E-HF learned
without state-labels/supervision, we also show the median as a dashed line.

recurrent deep learning architectures for this task. It only
needs 200 to 400 training samples to achieve high accuracy.

2) End-to-end learning (E2E-HF) surpasses individual
learning (HF) because it optimizes the models for the filtering
process. This allows the model to accommodate for modeling
errors–in this case, the false assumption that every starting
state is equally likely, which is violated since the random
walk often leads the robot to the edges of the environment.
The E2E-HF can compensate for such errors by adapting
the measurement model (see also Fig. 4, second from left).
In the shown example, the histogram filter first prefers the
right hypothesis even though both hypotheses are equally
consistent with the evidence. It only switches to the other
hypothesis after seeing counter-factual evidence at step 16. In
some cases, this will help the filter to prefer outer hypotheses
which are indeed more likely in the training and test data.

3) The histogram filter can be trained even without any
state labels by predicting future observations using the mea-
surement model (E2E-HF unsupervised). Even though our
current approach to unsupervised learning can get stuck in
local minima (which leads to the high variance), the high
median performance is promising (see dashed line in Fig. 3).
Of course, the histogram filter might learn a flipped state
representation (see Fig. 4, left) which we counted as correct
for the learning curve.

Fig. 4. Belief tracked during one test run (top-to-bottom) by different
models, each trained on 400 steps. The black line shows the true trajectory.

VI. CONCLUSIONS

In this paper, we have proposed to use robotic algorithms
as the source of robotics-specific information that can be
combined with machine learning. We are convinced that this
approach is very promising to balance data-efficiency and
generality in robotics.

We have presented a proof of concept for this idea in
form of the end-to-end learnable histogram filter. By making
the histogram filter and its models fully differentiable, we
combine the structural assumptions of a Bayes filter with
the end-to-end learnability of a recurrent neural network.

The structural assumptions regularize learning to make it
more data efficient, while end-to-end learning has advantages
over individual learning of the motion and measurement
model: 1) the models can learn to accommodate for each
others errors to improve the overall performance; 2) we
can use any objective function for learning, which allows
unsupervised learning of the histogram filter, i.e. it does not
require state labels.

In this paper, we have only shown the combination of
robotic algorithms and machine learning for one specific
algorithm. There are many robotic algorithms that can po-
tentially benefit from being combined with machine learning
in a similar fashion.

REFERENCES
[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,

MA: MIT Press, 2005.
[2] T. Haarnoja, A. Ajay, S. Levine, and P. Abbeel, “Backprop KF:

Learning Discriminative Deterministic State Estimators,” arXiv preprint
arXiv:1605.07148, 2016.

[3] R. Jonschkowski and O. Brock, “Learning state representations with
robotic priors,” Autonomous Robots, vol. 39, no. 3, pp. 407–428, Jul.
2015.

[4] J. Scholz, M. Levihn, C. L. Isbell, and D. Wingate, “A Physics-Based
Model Prior for Object-Oriented MDPs,” in ICML, 2014.

[5] I. Goodfellow, Y. Bengio, and A. Courville, “Deep Learning,” 2016.
[6] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.

	Introduction
	Combining Robotic Algorithmsand Machine Learning
	Preliminaries
	Histogram Filters
	Neural Networks / Deep Learning

	End-To-End Learnable Histogram Filters
	Belief
	Prediction
	Measurement Update
	Learning

	Experiments
	1D-Hallway Task
	Results

	Conclusions

