
The final publication is available at Springer via http://dx.doi.org/10.1007/s10514-015-9459-7

Learning State Representations with Robotic Priors

Rico Jonschkowski · Oliver Brock

Abstract Robot learning is critically enabled by the avail-
ability of appropriate state representations. We propose a
robotics-specific approach to learning such state represen-
tations. As robots accomplish tasks by interacting with the
physical world, we can facilitate representation learning by
considering the structure imposed by physics; this structure
is reflected in the changes that occur in the world and in
the way a robot can effect them. By exploiting this struc-
ture in learning, robots can obtain state representations con-
sistent with the aspects of physics relevant to the learning
task. We name this prior knowledge about the structure of
interactions with the physical world robotic priors. We iden-
tify five robotic priors and explain how they can be used to
learn pertinent state representations. We demonstrate the ef-
fectiveness of this approach in simulated and real robotic
experiments with distracting moving objects. We show that
our method extracts task-relevant state representations from
high-dimensional observations, even in the presence of task-
irrelevant distractions. We also show that the state represen-
tations learned by our method greatly improve generaliza-
tion in reinforcement learning.

Keywords robot learning · reinforcement learning ·
representation learning · prior knowledge

1 Introduction

Roboticists and AI researchers are striving to create versa-
tile robots, capable of autonomously solving a wide range of
tasks. As different aspects of the environment might be im-
portant for every one of these tasks, robots must have versa-
tile, task-general sensors, leading to high-dimensional sen-
sory input. High-dimensional observations, however, present

Rico Jonschkowski (�) · Oliver Brock
Robotics and Biology Laboratory, Technische Universität Berlin
E-mail: rico.jonschkowski@tu-berlin.de

(a)

(b)

(c)

Fig. 1 State representations learned from visual input in (a) a simu-
lated slot car racing task, (b) a simulated (and simplified) navigation
task, and (c) a navigation task with a real robot. For (a) and (b) the
state representations clearly capture the pertinent information for each
task, i.e., the position of the slot car on the circular race track and the
location of the mobile robot, respectively. For (c) the learned state rep-
resentation is five-dimensional and, therefore, difficult to inspect visu-
ally. The plot shows two projections of the state space onto the first
principal components.

a challenge for perception and learning. This seems unnec-
essary, as every single task can be mastered by only con-
sidering those aspects of the high-dimensional input that are
pertinent to it. To build task-general robots, it is, therefore,
necessary to extract from the high-dimensional sensor data
only those features pertinent to solving the task at hand.

Feature engineering is probably the most common ap-
proach to this challenge in robotics. The mapping from ob-

http://dx.doi.org/10.1007/s10514-015-9459-7

2 Rico Jonschkowski, Oliver Brock

servations to states is designed by hand, using human intu-
ition. Feature engineering has enabled robots to learn and
solve complex tasks. But the downside of this approach is
that we have to define an observation-state-mapping for ev-
ery task that we want the robot to learn.

Representation learning methods use machine learning
instead of human intuition to extract pertinent information
from high-dimensional observations. This approach does not
require specific knowledge about the task. Instead, it uses
general assumptions about the problem structure. However,
the price for its generality is the huge amount of data and
computation required to extract useful state representations.
In robotics, data acquisition is costly and slow. Thus, exist-
ing representation learning approaches are difficult to apply.

Fortunately, robots do not have to solve the general rep-
resentation learning problem. Robots can exploit substantial
knowledge about their environment. Every robotic task con-
sists of interactions with the real world, which is governed
by the laws of physics. As the robot’s internal state captures
properties of the world, the same laws that apply to the phys-
ical world must also apply to this internal state represen-
tation. Robots can learn representations that are consistent
with physics by exploiting prior knowledge about interact-
ing with the physical world, which we term robotic priors.
We believe that formulating and incorporating robotic priors
are the key to effective representation learning in robotics.

In this paper, we formulate five robotic priors (see Sec-
tion 4.1). We describe how to incorporate them into state
representation learning by defining a loss function over state
representations, which measures their inconsistency with the
robotic priors (see Section 4.2). And we explain how, by
minimizing this loss function, our method finds state rep-
resentations that allow robots to effectively learn new tasks
using standard reinforcement learning (see Section 4.3). We
analyze our approach in depth in simulated robotic tasks
based on visual observations: a slot car racing task with
two cars and a navigation task (see Figure 1). We verify
these results in an experiment with a real robot in a simi-
lar navigation task (see Section 5). These tasks contain dis-
tractors that influence the visual observations of the robot
but that are irrelevant for the task. With our method, the
robot learns to extract a low-dimensional state representa-
tion from high-dimensional visual observations that ignores
these task-irrelevant distractions. We show that this change
of representation greatly simplifies the subsequent learning
problem and thereby substantially improves reinforcement
learning performance. We also demonstrate that state repre-
sentations that were learned for one task can also be trans-
ferred to new tasks.

This paper is an extended and revised version of a con-
ference publication [14]. It presents a refined version of our
method, adding regularization, including a different state sim-
ilarity metric, and using non-uniform weighting of the loss-

terms. We also changed the reinforcement learning method
for evaluating the state representation. Additionally, we reim-
plemented our approach. The new implementation allows a
more efficient use of training data by sampling more experi-
ence pairs to estimate the pair-wise loss terms and can han-
dle a higher number of input dimensions. Using this new
implementation of the updated method, we have replicated
our previous experiments. As a result of these changes, the
performance in the reinforcement learning experiment in-
creased dramatically. Additionally, we have extended the ex-
perimental section to present additional insights into the learn-
ing process (see Section 5.1) to show the potential of our ap-
proach for transfer learning (see Section 5.6), and to verify
our results on a real robot (see Section 5.7).

2 Related Work

2.1 Task-Specific, Generic, and Robotic Priors

In Bayesian statistics, the word “prior” refers to the prior
probability distribution that is multiplied by the data likeli-
hood and then normalized to compute the posterior. In this
way, priors represent knowledge, before taking into account
the data, as probability distributions. Following others in the
field of representation learning [1], we use the word prior
more broadly in an analogous fashion. In the context of this
paper, a prior represents knowledge about a class of learning
problems that is available before taking into account data
from a specific problem instance. We do not restrict our-
selves to represent these priors in the form of probability
distributions1. We will now look at different domains, for
which priors can be defined.

Many robotic tasks have been successfully solved us-
ing reinforcement learning, from ball-in-a-cup to inverted
helicopter flight [16]. However, these approaches typically
require human engineering, relying on what we call task-
specific priors, priors that apply only to a specific task. One
way of introducing task-specific priors is feature engineer-
ing: defining a mapping from observations to task-relevant
states by hand.

Work in the area of representation learning strives to re-
move the need for feature engineering by automatically ex-
tracting pertinent features from data. The power of this ap-
proach has been empirically demonstrated in tasks such as
speech recognition [29], object recognition [18], and natural
language processing [5]. All of these examples substantially
improve on the best previous methods based on engineered
representations. To achieve these results, the representation

1 Note, however, that we construct a loss function based on the pri-
ors that are proposed in this paper. This loss could be interpreted as
negative logarithm of a prior probability distribution such that mini-
mizing this loss function is analogous to maximizing the posterior.

Learning State Representations with Robotic Priors 3

learning methods use generic priors, big data, and massive
computation.

According to Bengio et al. [1], the key to successful rep-
resentation learning is the incorporation of “many general
priors about the world around us.” They proposed a list of
generic priors for artificial intelligence and argue that refin-
ing this list and incorporating it into a method for represen-
tation learning will bring us closer to artificial intelligence.
This is exactly what we would like to do in the context of
robotics. However, we believe that the problem of artificial
intelligence is too broad and that therefore generic priors
are too weak. We attempt to find stronger priors, incorporat-
ing more of the structure inherent to the problem, by focus-
ing specifically on robotic tasks. Hence, we call such priors
robotic priors. These priors only pertain to tasks requiring
physical interactions with the world.

Scholz et al. [28] follow the same idea of using physics
based priors to learn a forward model (or transition function)
of the world. Instead of using a generic hypothesis space for
the forward model, they use a restricted parametric hypoth-
esis space based on physics. This can be very helpful for
robotic tasks because we know that the right forward model
must lie in this restricted hypothesis space. However, this
work assumes to already have a suitable state representa-
tion consisting of poses and velocities as well as knowl-
edge about the exact semantics of every state-dimension.
Our work focuses on how a robot could learn to extract such
a state representation from sensory input.

2.2 State Representation Learning

State representation learning is an instance of representation
learning for interactive problems. The goal of state represen-
tation learning is to find a mapping from observations—or,
more generally, from histories of interactions—to states that
allow choosing the right actions. State representation learn-
ing is related to the problem of abstraction selection in hier-
archical reinforcement learning, which deals with selecting
a state representation from a given set [35, 17] or choosing
a subset of state dimensions from a given representation [4].
In contrast to this work, we want to emphasize the need to
construct state representations from sensory input without
relying on predefined task-specific state features.

Note that state representation learning is more difficult
than the standard dimensionality reduction problem, which
is addressed by multi-dimensional scaling [19] and other
methods [27, 34, 7] because they require knowledge of dis-
tances or neighborhood relationships between data samples
in state space. The robot, on the other hand, does not know
about semantic similarity of sensory input beforehand. In
order to know which observations correspond to similar sit-
uations with respect to the task, it has to solve the rein-
forcement learning problem (see Section 3), which it cannot

solve without a suitable state representation. The question
is: What is a good objective for state representation learn-
ing? We will now look at different objectives that have been
proposed in the literature and relate them to our robotic pri-
ors (which we will define in Section 4).

Compression of Observations: Lange et al. [20] obtain state
representations by compressing observations using deep au-
toencoders. This approach relies on the prior that there is a
simple (low-dimensional) state description and on the prior
that this description is a compression of the observations.
While we use the same simplicity prior, we believe that it
is important to also take time, actions, and rewards into ac-
count.

Temporal Coherence: Slow feature analysis [36] finds a
mapping to states that change as slowly as possible, guided
by the prior that many properties in our world change slowly
over time. This method has been used to identify a represen-
tation of body postures of a humanoid robot [8] as well as
for solving reinforcement learning tasks with visual obser-
vations [21]. Luciw and Schmidhuber [23] showed that slow
feature analysis can approximate proto-value functions [24],
which form a compact basis for all value functions. Incor-
porating the same prior, dimensionality reduction methods
have used temporal distance to estimate neighborhood rela-
tionships [11].

Slowness or temporal coherence is an important robotic
prior that our method also relies on. However, the purpose
of the state is to provide a sufficient statistic based on which
the robot can choose the right actions. Therefore, the ac-
tions of the robot must also be considered for learning the
state representation. The following methods and ours take
this valuable information into account.

Predictive and Predictable Actions: These approaches find
state representations in which actions lead to simple, pre-
dictable transformations. Action respecting embeddings, pro-
posed by Bowling et al. [3], aim at a state space in which
actions are distance-preserving. Sprague’s [32] predictive
projections find a representation such that actions applied
to similar states result in similar state changes. Predictive
state representations, proposed by Littman et al. [22], define
states as success probabilities for a set of tests, where a test is
a prediction about future observations conditioned on future
actions. Boots et al. [2] showed how predictive state repre-
sentations can be learned from visual observations. As we
will see, these ideas are related to the proportionality prior,
the causality prior, and the repeatability prior in this paper.

The problem with these methods—and all other meth-
ods discussed so far—is that they generate task-general state
representations. This is problematic when the robot lives in

4 Rico Jonschkowski, Oliver Brock

a complex environment and there is no common state repre-
sentation that works for all tasks. Therefore, we will use the
reward to focus on the task-specific aspects of the observa-
tions and ignore information irrelevant for the task.

Interleaving State Representation Learning and Reinforce-
ment Learning: The approaches presented so far learn state
representations first to then use them for reinforcement learn-
ing. We will now discuss approaches that combine these
steps. Piater et al. [26] use decision trees to incrementally
discriminate between observations with inconsistent state-
action values according to the reinforcement learning algo-
rithm. This method is comparable to an earlier approach of
Singh et al. [31], which minimizes the error in the value
function by clustering states. Menache et al. [25] also adapt
the state representation during reinforcement learning; they
represent the state as a set of basis functions and adapt their
parameters in order to improve the value function estimate.

Methods in this category rely on causality of values. They
assume that the value is attributable to the state. To com-
pute the value, they must solve the reinforcement learning
problem. These steps can be decoupled by factorizing the
value function into the reward function and the state transi-
tion function. This is used by the following approaches, and
also by ours.

Simultaneously Learning the Transition Function: In earlier
work [13], we proposed to learn the state transition func-
tion together with the state representation to maximize state
predictability while simultaneously optimizing temporal co-
herence. A drawback of this approach is that it ignores the
reward and, therefore, cannot distinguish task-relevant from
irrelevant information.

Simultaneously Learning Transition Function and Reward
Function: Some approaches jointly learn an observation-
state-mapping, a transition function, and a reward function,
differing in their learning objective. Hutter [9] proposes min-
imizing the combined code length of the mapping, transition
function, and reward function. Duell et al. [6] learn these
functions to predict future rewards conditioned on future ac-
tions. Jetchev et al. [12] maximize state predictability and
reward discrimination to learn a symbolic state representa-
tion.

These approaches build models of state transitions and
rewards to enforce state predictability and reward discrimi-
nation. Contrary to this approach, we define our learning ob-
jective in terms of distances between state-samples, similar
to the idea of multi-dimensional scaling [19]. In this way, we
can assure the existence of transition and reward functions
for the state representation without having to model them
explicitly.

3 State Representation Learning

Reinforcement learning is the problem of learning how to
maximize future rewards from interacting with the environ-
ment. The standard formalization of this problem is a Markov
decision process (MDP). Solving an MDP means finding a
policy π that selects the right action at based the current
state st in order to maximize future rewards rt+1:∞ [33].
The term “Markov” refers to the following property of the
state: given the current state, all future state transitions and
rewards are independent of past interactions. In other words:
the state summarizes all information from past interactions
that the robot needs to select the best action.

This framework can be generalized to partially observ-
able Markov decision processes (POMDPs), where the ro-
bot cannot directly perceive its state st but only an observa-
tion ot that depends on st [15]. To determine which actions
to choose, the robot must take the entire history of obser-
vations, actions, and rewards into account. The MDP and
POMDP frameworks are able to describe the interactive loop
between the robot and the physical world. They are, there-
fore, well-suited for formalizing many learning problems in
robotics.

As robots must rely on their task-general sensors, they
cannot directly perceive their task-specific state. Instead, they
must extract the state from sensory observations. State rep-
resentation learning is the problem of learning to extract a
state description from a history of interactions (i.e. previous
observations, actions, and rewards) in order to enable effi-
cient learning of the policy. We formalize this problem as
learning a mapping φ to the current state, such that st =

φ(o1:t, a1:t−1, r1:t). Given st, the robot selects the next ac-
tion according to its policy: at = π(st).

In this paper, we focus on a special instance of this prob-
lem assuming that the state can be estimated from a single
observation. The reduces the state representation learning
problem to learning an observation-state-mapping φ, where
st = φ(ot) (see Figure 2).

Fig. 2 The robot-world-interaction. At time t, the robot computes the
state st from its observation ot using observation-state-mapping φ. It
chooses action at according to policy π with the goal to maximize
future rewards rt+1:∞.

To make this simplification, we must assume that the ob-
servation has the Markov property. Technically, this turns
the problem into a Markov decision process such that we

Learning State Representations with Robotic Priors 5

could use the raw observation as state. However, as we will
see later in this paper, the distance metric in the observation
space (e.g., camera images) often does not enable the ro-
bot to learn the task. Even with Markov observations, robots
must learn more useful state representations.

Note that sensory input of robots is often local and, there-
fore, observations are non-Markov for many robotic tasks.
For some tasks, we can make observations Markov by in-
cluding sensory inputs from multiple time steps in ot. How-
ever, the dimensionality of ot multiplies with the number
of time steps that are taken into account and, ultimately,
the state can depend on the entire history of observations,
actions, and rewards. Alternatively, one could learn a state-
filter instead of a observation-state-mapping. With every new
action, observation, and reward, the filter would update the
state. We think that it is crucial to investigate these exten-
sions in future work. For now, we assume Markov observa-
tions and restrict ourselves to learning an observation-state-
mapping. In the next section, we outline how we address this
problem in a robotics-specific way.

4 State Representation Learning in Robotics

In this section, we present our approach to state represen-
tation learning in robotics. First, we list and explain five
robotic priors. Then, we formulate state representation learn-
ing as an optimization problem by turning our robotic priors
into a loss function. Finally, we turn the theory into a method
that minimizes this loss function, thereby learning a state
representation that reflects the priors.

4.1 Robotic Priors

The interaction between the robot and the real world is struc-
tured by the laws of physics. From this fact, we can derive
robotic priors that capture characteristics of all robotic tasks
based on physical interaction.

Simplicity Prior: For a given task, only a small number of
world properties are relevant. This prior is related to Oc-
cam’s razor, a widely accepted principle in science. In our
context, Occam’s razor will favor state representations that
exclude irrelevant information, thereby leading to a lower-
dimensional reinforcement learning problem and improving
generalization.

Temporal Coherence Prior: Task-relevant properties of the
world change gradually over time. This prior is related to
Newton’s first law of motion. Physical objects have iner-
tia and change their velocity only gradually as a result of
external forces. However, temporal coherence also applies
to more abstract properties than physical motion, as most

changes in the world occur gradually. The temporal coher-
ence prior favors state representations that obey this princi-
ple as the robot transitions between states.

Proportionality Prior: The amount of change in task-relevant
properties resulting from an action is proportional to the
magnitude of the action. This prior results from Newton’s
second law of motion, F = m · a. If an action represents
the application of a certain force on an object of a fixed
mass, the acceleration evoked by this force is constant. This
holds true for robot movements and physical interactions
with other objects but also generalizes to more abstract pro-
cesses. As the robot does not know the magnitudes of its
actions beforehand, this prior enforces that multiple execu-
tions of the same action result in the same amount of state
change.

Causality Prior: The task-relevant properties, together with
the action, determine the reward. This and the next prior
resemble Newton’s third law of motion or, more generally,
causal determinism. If the same action leads to different re-
wards in two situations, these situations must differ in some
task-relevant property and should thus not be represented by
the same state. Consequently, this prior favors state repre-
sentations that include the relevant properties to distinguish
these situations.

Repeatability Prior: The task-relevant properties and the
action together determine the resulting change in these prop-
erties. This prior is analogous to the previous one—for states
instead of rewards—and also results from Newton’s third
law of motion. This principle is enforced by favoring state
representations in which the consequences of actions are
similar if they are repeated in similar situations. The re-
peatability prior and the causality prior together constitute
the Markov property of states.

Note that most of these priors are defined in terms of ac-
tions and rewards. Thus, they do not apply to passive sys-
tems that can only observe but not act. These priors are
also not generic artificial intelligence priors applicable to
all tasks and environments, as artificial environments can be
very different from our world, e.g., not obeying Newton’s
laws of motion. However, restricting the problem space to
the physical world allows us to define useful priors.

But even in the physical world, there are still counterex-
amples for each prior. Proportionality does not hold when
the robot hits a wall and its position remains constant even
though it attempts to move with a certain velocity. Causal-
ity is violated due to sensory aliasing when the robot cannot
distinguish two situations with different semantics. Repeata-
bility is contradicted by stochastic actions. As we will see,

6 Rico Jonschkowski, Oliver Brock

all of these counterexamples are present in the experiments
in this paper and our method is robust against them.

Our approach can handle such counterexamples because
the robotic priors are not strict assumptions that have to hold
for the method to work. Instead, our method finds a state
representation that is consistent with these priors as much as
possible. As the robotic priors capture the general structure
of interactions with the physical world, they are useful, even
in the presence of counterexamples.

4.2 Formulation as an Optimization Problem

We will now turn the robotic priors into a loss function L
that is minimized when the state representation is most con-
sistent with the priors. We construct loss terms for all robotic
priors (except for the simplicity prior, see below) and define
L as their weighted sum

L(D, φ̂) = ωtLtemporal coherence(D, φ̂) + ωpLproportionality(D, φ̂)

+ ωcLcausality(D, φ̂) + ωrLrepeatability(D, φ̂).

Each of these terms is computed for an observation-state-
mapping φ̂ and data of the robot interacting with the world,
D = {ot, at, rt}nt=1, which consist of sensory observations
o, actions a, and rewards r for n consecutive steps. The
observation-state-mapping φ̂ is then learned by minimizing
L(D, φ̂) (the .̂ indicates that φ changes during learning).

By linearly combining these loss terms, we assume in-
dependence between the robotic priors. They could also be
combined non-linearly, but the existence of independent coun-
terexamples for each individual prior supports our assump-
tion. There is a weight ω assigned to each loss term because
the typical magnitude varies significantly between these terms.
The weights can counteract this imbalance. Additionally, the
weighting allows to stress the importance of individual pri-
ors by using a higher weight for the corresponding loss term.

We will now describe how the individual robotic priors
are defined as loss terms. For better readability, we will write
ŝt instead of φ̂(ot) when we refer to the state at time t ac-
cording to the observation-state-mapping φ̂.

Simplicity Loss: The simplicity prior is not formulated as a
loss term but implemented by enforcing the state represen-
tation to be of fixed low dimensionality. Future work should
explore formulations of this prior as a loss term, e.g., de-
fined in terms of sparsity, the number of dimensions, or other
properties of the state representation.

Temporal Coherence Loss: States must change gradually over
time. We denote the state change as ∆ŝt = ŝt+1 − ŝt. The
temporal coherence loss is the expected squared magnitude
of the state change.

Ltemp.(D, φ̂) = IE
[
‖∆ŝt‖2

]
.

Proportionality Loss: If the robot has performed the same
action at times t1 and t2, the states must change by the same
magnitude ‖∆ŝt1‖ = ‖∆ŝt2‖.

The proportionality loss term is the expected squared
difference in magnitude of state change after the same ac-
tion was applied.

Lprop.(D, φ̂) = IE
[
(‖∆ŝt2‖ − ‖∆ŝt1‖)2

∣∣∣ at1 = at2

]
.

Causality Loss: Two situations at times t1 and t2 must be
dissimilar if the robot received different rewards in the fol-
lowing time step, even though it had performed the same
action, at1 = at2 ∧ rt1+1 6= rt2+1.

The similarity of two states is 1 if the states are identical
and approaches 0 with increasing distance between them. To
compute the similarity of state pairs, we can use any differ-
entiable similarity function. Previously, we have proposed
to use the exponential of the negative distance, e−‖ŝt2−ŝt1‖,
following research from psychology [30]. However, the bell
shaped function, e−‖ŝt2−ŝt1‖

2

, is a reasonable alternative
and in our experience leads to improved performance.

Therefore, we define the causality loss as the expected
similarity of the state pairs for which the same action leads
to different rewards.

Lcaus.(D, φ̂) = IE
[
e−‖ŝt2−ŝt1‖

2
∣∣∣ at1 = at2 , rt1+1 6= rt2+1

]
.

Repeatability Loss: States must be changed by the actions
in a repeatable way. If the same action was applied at times
t1 and t2 and these situations are similar (have similar state
representations), the state change produced by the actions
should be equal, not only in magnitude but also in direction.

We define the repeatability loss term as the expected
squared difference in the state change following the same
action, weighted by the similarity of the states.

Lrep.(D, φ̂) = IE
[
e−‖ŝt2−ŝt1‖

2

‖∆ŝt2 −∆ŝt1‖2
∣∣∣ at1 = at2

]
.

4.3 Our Method

We will now show how a linear mapping from observations
to states can be learned by minimizing the loss function.

Choosing the Weights: The weights in the loss function bal-
ance the relative importance of the different robotic priors.
We believe that all proposed priors are important. Therefore,
we chose the weights such that they provide gradients with
similar magnitudes for the tasks we are interested in: ωt = 1,
ωp = 5, ωc = 1, ωr = 5.

Note that little effort was put into choosing these param-
eters because the method is robust against a range of weight
assignments. Simple uniform weighting also worked well in
all of our experiments [14].

Learning State Representations with Robotic Priors 7

Approximating the Loss Function: We compute the expected
values in the loss function by taking the mean over training
samples. For the proportionality loss, the causality loss, and
the repeatability loss, this would require taking into account
all O(n2) pairs of training samples. For reasons of compu-
tational efficiency, we approximate each of these computa-
tions by only considering a subset of all pairs: For each train-
ing sample, we randomly choose 10 other samples such that
the resulting pairs fulfill the conditions of the respective loss
term. The mean is then taken over this subset of training
sample pairs.

Learning a Linear Observation-State-Mapping: Our method
learns a linear observation-state-mapping,

ŝt = φ̂(ot) = Ŵ (ot − µo),

where µo is the mean of all observations during training and
Ŵ is a weight matrix that is adapted by performing gradient
descent on the approximated loss function L. Linear func-
tions form a very limited hypothesis space, but this method
can easily be extended to non-linear functions approxima-
tors, e.g., using feature expansion, kernel approaches, or ar-
tificial neural networks.

Note that subtracting the mean observation is equivalent
to subtracting the mean state and does not affect the loss
function, which is defined over relative and not over abso-
lute properties of the state samples. The only purpose of this
step is to center the state representation. This can be useful
for subsequent reinforcement learning depending on which
form of function approximation is used (neural networks,
for example, rely on mean centered input data).

Regularization: Without regularization, this learning scheme
can lead to overfitting. Minimizing the loss for the training
data can potentially increase the loss for unseen test data.
In this case, the learned observation-state-mapping would
not generalize well to new data. We approach this prob-
lem by introducing a L1 regularization on the weights of the
observation-state-mapping. We find the best observation-state-
mapping by solving the following optimization:

φ̂ = argmin
φ

[L(D,φ) + λl1(φ)] ,

where l1(φ) =
∑
i,j

|Wi,j |.

The regularization parameter λ can vary greatly depend-
ing on the task. However, it can be estimated using cross-
validation. In all our experiments, we do this by using the
first 80% of the data for training and the remaining 20% as
validation set. Then we do a grid search over different val-
ues for λ ∈ {0, 0.0003, 0.001, 0.003, ..., 3, 10} and pick the
value that achieved the lowest loss on the validation data af-
ter 100 steps of gradient descent. Using this value, we learn

the final state representation on the entire data set for 100
steps.

Gradient Descent: The representation learning process starts
with initializing the weight matrix W with small random
weights, uniformly chosen from the interval [−0.05, 0.05].
Using this observation-state-mapping, it projects all experi-
enced observations into the state space, computes the loss of
this state representation and the gradient with respect to W ,
and changes W accordingly. This process is repeated, in our
case for 100 learning steps. We dynamically adapt the step
size for each weight dimension using improved Rprop with
weight backtracking [10].

Analytical Gradient: The gradient can be computed analyt-
ically by partial derivatives with respect to all parameters
Ŵi,j for each loss term. The weighted sum of these terms,
together with the gradient of the regularization term, gives
the total gradient.

∂

∂Ŵi,j

Ltemp.(D, φ̂) = IE
[
2 (ŝi,t+1 − ŝi,t)︸ ︷︷ ︸

∆ŝi,t

(oj,t+1 − oj,t︸ ︷︷ ︸
∆ôj,t

)
]
.

∂

∂Ŵi,j

Lprop.(D, φ̂) = IE
[
2 (‖∆ŝt2‖ − ‖∆ŝt1‖)(∆ŝi,t2∆oj,t2

‖∆ŝt2‖
− ∆ŝi,t1∆oj,t1

‖∆ŝt1‖

) ∣∣∣ at1 = at2

]
.

∂

∂Ŵi,j

Lcaus.(D, φ̂) = IE
[
−2e−‖ŝt2−ŝt1‖

2

(ŝi,t2 − ŝi,t1)

(oj,t2 − oj,t1)
∣∣∣ at1 = at2 , rt1 6= rt2

]
.

∂

∂Ŵi,j

Lrep.(D, φ̂) = IE
[
2e−‖ŝt2−ŝt1‖

2
(
(∆ŝi,t2 −∆ŝi,t1)

(∆oj,t2 −∆oj,t1)− (ŝi,t2 − ŝi,t1) (oj,t2 − oj,t1)
‖∆ŝt2 −∆ŝt1‖2

) ∣∣∣ at1 = at2

]
.

Reinforcement Learning Method: To evaluate the utility of
learned state representations, we used a standard reinforce-
ment learning method that can handle continuous state spaces:
fitted Q-iteration based on normalized radial basis function
(RBF) features that are repeated for every action.

We generate these features by applying the k-means al-
gorithm on all state samples to find 100 radial basis func-
tion centers. We set the standard deviation of the radial ba-
sis functions to be half of the average distance from a cen-
ter to the closest next center. The activation of the radial
basis functions are normalized such that they sum to one.
This vector of state features is repeated for every action and

8 Rico Jonschkowski, Oliver Brock

stacked to build, for example, a 2500 dimensional feature
vector when there are 25 discrete actions. In this state-action-
feature vector, all elements are zero except for the radial ba-
sis function activations for the corresponding action.

The state-action-value-function, or Q-function, describes
the value of applying a certain action in a certain state. We
define it as a linear function of the radial basis feature vector,
Q̂(s, a) = β̂T fRBF(s, a). We initialize β̂ with small random
values and perform one step of Q-iteration to estimate the
state-action-values of all training samples.

∀t : Q̂(st, at)← rt+1 + γmax
a

[
Q̂(st+1, a)

]
,

where γ = 0.9 is used to exponentially discount future re-
wards. We then fit the linear function Q̂ to the estimated
state-action-values Q̂(st, at) by assigning β̂ to the vector
that minimizes the sum of squared errors:

β̂ = argmin
β

∑
t

(
βT fRBF(st, at)︸ ︷︷ ︸

Q(st,at)

−Q̂(st, at)
)2
.

We alternate Q-iteration and Q-fitting until convergence.
The resulting Q-function allows the robot to greedily choose
the actions with the highest value, π̂(s) = argmax

a

[
Q̂(s, a)

]
.

5 Experiments

In this section, we extensively evaluate our method in sim-
ulated and real robotic tasks with visual observations. We
test how well our method can map 768-dimensional visual
observations (16× 16 pixels for red, green, and blue) into a
two-dimensional or five-dimensional state space.

First, we look at the learning process in detail to under-
stand how the state representation, the loss, and the gradi-
ent evolve. Then, we analyze learned state representations to
gain insight into the capabilities of our approach. We start by
comparing learned state representations for a simple naviga-
tion task2 when the robot observes the scene from different
perspectives, having either an egocentric view or a top-down
view. The results show that, in both cases, our method learns
a mapping to the same pertinent dimensions.

Next, we investigate in a slot car racing task3 how our
method can handle task-irrelevant distractors. To the best
of our knowledge, this is the first time that this problem is
addressed in state representation learning, even though we
view it as essential (in any real-world environment, the ob-
servations of robots will be subject to task-irrelevant dis-
tractions). We will see that our method can separate task-

2 The navigation task is based on similar experiments in the litera-
ture [2, 32].

3 The slot car racing task is inspired by an experiment of
Lange et al. [20].

relevant properties of the observation from irrelevant infor-
mation. Then, we will also introduce distractors into the nav-
igation task and see that the performance of our method
is not influenced by them. After that, we analyze how the
state representations for both tasks change if they are given
more dimensions than necessary to solve the task. The re-
sults show that, in one of the tasks, our method can identify
the minimal state dimensionality irrespective of the distrac-
tors.

Finally, we demonstrate that the learned state represen-
tations can substantially improve the performance of subse-
quent reinforcement learning. We explain how this effect re-
sults from improved generalization. Additionally, we show
that state representations learned for one task can also enable
reinforcement learning in other related tasks. In the end, we
verify our results from simulation in an experiment with a
real robot.

5.1 Learning Process

During learning, the observation-state-mapping is continu-
ally changed according to the gradient of the loss function
to minimize the loss function of the resulting state repre-
sentation. In this experiment, we will look at this learning
process in detail for one run of the simple navigation task.

(a) Simple nagivation task (b) Observation

Fig. 3 Simple navigation task with fixed orientation. The robot gets
positive reward in the top right corner and negative reward when it
runs into a wall. (b) shows the observation in scene (a).

Simple Navigation Task: In the simple navigation task (see
Figure 3a), the robot is located in a square-shaped room of
size 45×45 units with 4-units-high walls of different colors.
The robot has a height and diameter of 2 units. The orien-
tation of the robot is fixed but it can control its up-down
and left-right velocity choosing from [−6,−3, 0, 3, 6] units
per time step. The robot thus has 25 discrete actions. These
actions are subject to Gaussian noise with 0 mean and stan-
dard deviation of 10% of the commanded velocity. The task
of the robot is to move to the top right corner without hitting
a wall. If the distance to this corner is less than 15 units, the
robot gets a reward +10 unless it is touching a wall, in which

Learning State Representations with Robotic Priors 9

Fig. 4 State representation learn-
ing process. The plots show how
the gradient magnitude (top), the
loss on validation samples (middle),
the reinforcement learning success
(middle), and the state representa-
tion (bottom) change during learn-
ing. Every red dot in the middle plot
shows the evaluation of one policy
based on the learned state represen-
tation. Every dot in the bottom plot
represents one observation mapped
into the state space. The colors de-
note the reward that was received in
that situation (red = +10, blue =
−1, regularization: λ = 0.03).

case it gets a negative reward of −1. The robot perceives its
environment through a camera with a wide angle lens (field
of view 300◦). The 16× 16-pixel RGB image is represented
as a 768-dimensional observation vector. The example ob-
servation (see Figure 3b) shows the dark blue wall in the
middle and the green and the light blue wall on either side
of the image.

Experimental design: The robot explored its environment
performing 5000 random actions. Based on this experience,
it learned a mapping from the 768-dimensional observation
space to a two-dimensional state representation. We inter-
rupted the learning process after every learning step, applied
a standard reinforcement learning method to learn a policy,
and evaluated it for 20 episodes of 25 steps starting from
different initial positions. We repeated this reinforcement
learning and evaluation cycle ten times for every learning
step due to the randomness in the reinforcement learning
method.

Results—Loss Gradient Unfolds State Representation: The
learning process starts from a randomly initialized observation-
state-mapping and the corresponding state representation (see
bottom left in Figure 4). Every learning step changes the

mapping and unfolds the state representation. When this pro-
cess converges, the state representation resembles the task-
relevant properties of the world—in this case the location of
the robot (see bottom right in Figure 4).

The observation-state-mapping is changed following the
loss gradient (see dashed line in top plot in Figure 4). This
gradient is the sum of the loss term gradients, each of which
can point in a different direction (see colored lines in top
plot, Figure 4). The causality gradient pushes apart states
that lead to different rewards after performing the same ac-
tion. It is most active in the beginning when all states are
near each other. The temporal coherence gradient pulls con-
secutive states closer together. It becomes more active when
the state representation is spread out. The repeatability gra-
dient enforces deterministic state changes and is also most
active in the beginning when the state representation is still
very chaotic. The proportionality gradient equalizes distances
across the state space. Its activation declines as the represen-
tation increasingly complies with this objective.

Throughout the training process, the causality loss and
gradient are larger then the corresponding terms of the other
priors. This results from the fact that causality directly op-
poses the other priors. Causality can be optimized by ex-

10 Rico Jonschkowski, Oliver Brock

panding the state space while all other robotic priors can be
optimized by collapsing all states to a single point. To reach
a balance, the causality gradient must be as large as the other
gradients combined.

In the beginning, the different gradient terms do not (en-
tirely) oppose each other and there is a large total gradient
according to which the observation-state-mapping is mod-
ified. Following the total gradient, its magnitude decreases
until a local minimum of the loss function is reached. This
is where the different gradients point in opposing directions,
the total gradient is zero, and the state representation con-
verges.

Note that the resulting state representation discriminates
between states that have different delayed rewards although
immediate rewards are identical. For example, most loca-
tions in the room have the same immediate reward, zero, but
they are still represented by different states. It is important
to differentiate between them because they lead to differ-
ent delayed rewards after performing a number of actions.
Our method discriminates between these situations due to
a synergy of the causality prior and the repeatability prior.
The causality prior discriminates between different imme-
diate rewards. The repeatability prior enforces deterministic
state changes and thereby propagates this discrimination to
situations from which states with different rewards can be
reached. The temporal coherence prior and the proportion-
ality prior make this process more robust using additional
knowledge.

Results—Loss as Proxy for Reward: As the loss decreases
during learning, the reinforcement learning success increases
(see middle plot, Figure 4). In the beginning, the reinforce-
ment success varies greatly between different evaluations.
This is due to the randomness in the reinforcement learning
method we used, especially in random assignment of radial
basis function centers. But during the learning process this
changes in two ways.

First, the reinforcement learning failures (with total re-
ward less than 50) stop after learning step twelve. These fail-
ures are due to incorrect generalization from experience to
new situations. They are caused by a state representation that
does not capture the pertinent dimensions of the task. With
a good state representation, however, every execution of the
reinforcement learning method generalizes well.

Second, the successful reinforcement learning trials (with
more than total reward of 50) become better. There is a strong
correlation between this increase and the loss decrease.

Both results show that minimizing the loss function can
be a good proxy objective for maximizing reward when learn-
ing a state representation. If we wanted to use the reward as
objective directly, every representation learning step would
involve learning policies and evaluating them by perform-
ing actions in the real world. Even worse, the number of

required evaluations increases exponentially with the num-
ber of parameters in the observation-state-mapping, because
we would have to compute a gradient with that many dimen-
sions. The loss function, on the other hand, allows to directly
compute the gradient.

5.2 Invariance to Perspective

To investigate whether our method is invariant to perspec-
tive, we test it in two versions of a simple navigation task
with different visual observations, viewing the scene from
the robot’s perspective and viewing the scene from the top.
In both versions, the robot learns a state representation that
reflects its location which is exactly the information required
to solve the task.

Perspectives in Simple Navigation Task: The simple naviga-
tion task, as described in section 5.1, has egocentric obser-
vations from a camera on the robot. We will refer to this task
as egocentric view version of the simple navigation task (see
Figure 5a). The top-down view version of this task is iden-
tical to this version, except for the observations which are
images of the entire scene taken from the top by a static cam-
era. In these images, the robot shows as a dark spot against
the background. For the robot to be always visible, we had
to increase its diameter to 4 units in this version of the task
(see Figure 5b).

Experimental Design: We performed the following exper-
iment for both versions of the task. The robot explored its
environment performing 5000 random actions and learned
a mapping from the 768-dimensional observation space to
a two-dimensional state representation based on this experi-
ence.

Results—Equivalent State Representations: To compare the
learned state representations, we have plotted the state esti-
mates for 5000 training steps based on egocentric view ob-
servations (see Figure 5c) and based on top-down view ob-
servations (see Figure 5d). In both cases, the samples form a
square in state space, suggesting that the state is an estimate
of the location of the robot in the square room. We can show
that this is in fact what is learned by coloring each state sam-
ple according to the reward that the robot received in this
state during training. The result resembles very accurately
the reward definition in Figure 3a. The learned state repre-
sentation is equivalent in both versions of the task. There are
two orthogonal axes in the state representations that corre-
spond to the coordinates of the robot. Of course, these axes
in state space do not have to align between experiments; they
can be rotated or flipped.

Learning State Representations with Robotic Priors 11

(a) Egocentric view version (b) Top-down view version

(c) State representation (egocentric) (d) State representation (top-down)

3.2

1.6

0.0

1.6

3.2

Red Green Blue

S
ta

te
 d

im
.

1
S

ta
te

 d
im

.
2

(e) Observation-state-mapping (egocentric)

2.0

1.0

0.0

1.0

2.0

Red Green Blue

S
ta

te
 d

im
.

1
S

ta
te

 d
im

.
2

(f) Observation-state-mapping (top-down)

Fig. 5 Results for two versions of the sim-
ple navigation task with fixed orientation.
The observation of the robot is either an
egocentric view (a) or a top-down view (b)
of the scene. (c) and (d) show the rep-
resentations of 5000 training samples in
state space for both versions. Each dot re-
sults from applying the learned observation-
state-mapping φ? to an observation. The
color relates the state samples to the reward
received in that situation during training.
(e) and (f) display the learned observation-
state-mappings, i.e., the respective weight
matrices which linearly project pixel val-
ues in the different color channels to state
dimensions. Regularization and final loss
on validation samples: egocentric version,
λ = 0.03, L = 0.36; top-down version,
λ = 0.1, L = 0.52.

Results—Different Observation-State-Mappings: In the two
versions of the task, the sensory observations of the robot
are very different. Nevertheless, it learned a mapping from
these observations to the task-relevant dimensions: the loca-
tion of the robot. Note that the mappings from observations
to states must be very different to result in this identical state
representation (see Figures 5e and 5f).

Results—Loss Explains Quality Difference: Even though the
state representations for both versions are equivalent in prin-
ciple, they are of different quality. The state representation
based on egocentric observations is much clearer compared
to the more blurry state representation based on top-down
view observations, where situations with different rewards
are mapped to similar states. Reinforcement learning based
on such a representation will be less successful compared
to the state representation based on egocentric observations.
Presumably, the low resolution top-view observations can-
not be (linearly) mapped to the location of the robot with
high accuracy because they do not contain sufficient infor-
mation.

This quality difference is also reflected in the final loss
on validation samples L. L = 0.36 for the egocentric ver-
sion and L = 0.52 for the top-down version of the task. This
reconfirms that the defined loss is a sensible quality measure
for state representations.

5.3 Ignoring Distractors

In this experiment, we test whether our method distinguishes
task-relevant properties of the observations from irrelevant
information. First, we investigate this in a slot car racing
task with two cars. While the robot observes two slot cars, it
can only control one of them. The other car does not play a
role in this task apart from potentially distracting the robot.
The robot does not know beforehand which car is relevant
for the task. Second, we extend the simple navigation task
with task-irrelevant distractors and test our method in this
scenario.

The Slot Car Racing Task: An example scene from the slot
car racing task is shown in Figure 6a. The robot can control

12 Rico Jonschkowski, Oliver Brock

(a) Slot car racing with distractor (green car) (b) Observation

(c) State samples (reward)

40

20

0

20

40

Red Green Blue

S
ta

te
 d

im
.

1
S

ta
te

 d
im

.
2

(d) Observation-state-mapping

(e) State samples (red car) (f) State samples (green car)

Fig. 6 Results for the slot car racing task
(a) with visual observations (b). Plots (c),
(e), and (f) show the learned state represen-
tation. The color relates state samples to re-
ward (c), the position of the relevant car (e),
and the position of the distractor (f). Plot
(d) shows the weight matrix of the learned
observation-state-mapping. The regulariza-
tion and final validation loss are λ = 0.001
and L = 0.49.

the velocity of the red car, choosing from [0.01, 0.02, . . . , 0.1]
units per time step. The velocity is subject to zero mean
Gaussian noise with standard deviation of 10% of the com-
manded velocity. The robot’s reward is proportional to the
commanded velocity—unless the car goes too fast in a sharp
turn and is thrown off the track. In this case, the robot gets a
negative reward of −10. The robot cannot control the green
slot car. The velocity of this car is chosen randomly from
the same range as for the red car. The green slot car does
not influence the reward of the robot or the movement of the
red car. The robot observes the scene from the top through a
16× 16-pixel RGB image (see Figure 6b).

Experimental design: The robot explored randomly for 5000
time steps and then learned a mapping from 768-dimensional
observations to two-dimensional states.

Results—Relevant Information Extracted: To understand the
learned state representation, we have plotted the states of the

5000 training steps with one dot per state sample (see Fig-
ure 6c). The states form a circle which corresponds to the
topology of the track. We have colored the state samples ac-
cording to the reward. The three blue clusters in this plot
correspond to the three sharp turns on the track, where the
robot had routinely driven too fast during training and thus
received negative reward. We also colored the states accord-
ing to the ground truth position of the red slot car (see Fig-
ure 6e) and the green slot car (see Figure 6f). The figures
show that the position along this circle in state space cor-
responds to the position of the controllable slot car on the
track. One round of the red slot car corresponds to a circular
trajectory in state space. Our method was able to distinguish
task-relevant from irrelevant information in the observations
and, at the same time, found a compressed representation of
these pertinent properties.

Results—Two-Dimensional Representation of Position: The
position of the slot car on the track is one-dimensional and,

Learning State Representations with Robotic Priors 13

(a) (b) (c)

(d) (e) (f)

Fig. 7 Distractors in the simple nav-
igation task. (a-c) show three sit-
uations at an interval of ten time
steps. The robot is exploring while
the distractors move randomly. (d-
f) show the corresponding observa-
tions (note how they are influenced
by the distractors).

(a) State representation

0.4

0.2

0.0

0.2

0.4

Red Green Blue

S
ta

te
 d

im
.

1
S

ta
te

 d
im

.
2

(b) Observation-state-mapping

Fig. 8 Results for simple navigation
task with distractors. Regularization
and final validation loss are λ = 0.3
and L = 0.36.

thus, could be captured in one-dimensional state represen-
tation. However, such a representation would not conform
with the temporal coherence prior. The positions at the be-
ginning and the end of the track would be maximally apart
in such a representation, even though they are actually very
close together due to the circularity of the track. To repre-
sent a circular one-dimensional property, we need a two-
dimensional Euclidean space.

Simple Navigation Task with Distractors: To verify the re-
sults from the slot car racing task in the simple navigation
task, we added seven distractors to this task: three circles
on the floor and four rectangles on the walls that move ran-
domly (see Figure 7). The distractors are observed by the
robot but do not influence its movement or reward. They are
irrelevant for the task and should thus not be included in the
state representation4

Experimental design: The robot explored randomly for 5000
time steps and then learned a mapping from 768-dimensional
observations to a two-dimensional state.

4 The colors of the distractors were chosen to be equal to their back-
ground in the green and the blue color channel of the RGB image. They
can be ignored by not taking into account the observation dimensions
that correspond to the red color channel.

Results—Identical State Representation: The state represen-
tation that the robot learned in the presence of visual dis-
tractors captures the task-relevant properties and entirely ig-
nores the distractors. In fact, the learned representation is
identical to the one learned without the presence of distrac-
tors (compare Figures 8a and 5c). Also, the validation loss
after training is 0.36 in both tasks.

Results—Different Observation-State-Mappings: There are
major differences in the learned observation-state-mappings
between the task with and without distractors (compare Fig-
ures 8b and 5e). In the task including the distractors, the
weights are more evenly distributed across the image. In this
task, the highest weight is smaller by an order of magnitude
compared to the task without distractors. This makes sense
because the observations vary much more in this task, lead-
ing to stronger regularization (λ = 0.3 instead of 0.03) and
a more robust mapping.

5.4 Mapping to a Higher-Dimensional State Space

In the previous experiments, we gave the robot an appropri-
ate number of dimensions for the state representation. In this
section, we investigate what happens in these same exam-
ples when the robot learns state representations with more

14 Rico Jonschkowski, Oliver Brock

dimensions than necessary. To this end, we repeated the ex-
periments for the slot car task and for the simple navigation
task with distractors, only now learning a five-dimensional
instead of a two-dimensional state representation. After ex-
ploration for 5000 time steps and state representation learn-
ing, we took the 5000×5-matrixM containing the estimated
states for these experiences and performed a principal com-
ponent analysis of this matrix.

1 2 3 4 5
Principal component

0.0

0.1

0.2

0.3

0.4

No
rm

al
iz

ed
 e

ig
en

va
lu

e

(a) Eigenvalues of state samples

(b) Projected state samples (red
car)

(c) Projected state samples (green
car)

Fig. 9 Results for the slot car task with a five-dimensional state space
(λ = 0.003, L = 0.45).

Results—Alternative Explanations for the Reward: In the
slot car task, the state sample matrix M has rank four. There
are two larger eigenvalues and two smaller eigenvalues (see
Figure 9a). If we project the state samples on their first two
principal components, we can see that the dimensions with
the larger eigenvalues correspond to the position of the con-
trollable red slot car on the race track (see Figure 9b). The
third and fourth principal component correspond to the po-
sition of the non-controllable green slot car (see Figure 9c).

If the green car is irrelevant for the task, why is it repre-
sented in the state? The robot maximizes state dissimilarity
between situations where it received different rewards even
though it performed the same action. If the robot chooses the
same velocity but the slot car is thrown off one time while it
stays on track another time, it makes the states of these two
situations dissimilar. The most powerful discrimination be-
tween these situations is the position of the red slot car. But
sometimes small differences in position or the stochasticity
of the actions can make the difference between the two out-
comes. The robot thus finds alternative explanations like the

position of the green slot car. The eigenvalues show that this
property has a lower impact on the state than the position
of the controllable red slot car. Our method includes these
alternative explanations if there are enough dimensions in
the state space. When the state space is limited, the method
focuses on pertinent dimensions as shown in Section 5.3.

Results—Identifying the Dimensionality of the Task: For the
navigation task, we find that all but the first two eigenval-
ues of M are close to zero (see Figure 10a). The rank of
the matrix is effectively two. This means that all state sam-
ples lie on a plane in the five-dimensional state space. We
can visualize this plane by projecting the state samples on
their first two principal components (see Figure 10b). The
state space again corresponds to the location of the robot
just as in the two-dimensional experiment. Apparently, the
robot does not need to include additional properties of the
world into the state representation in order to explain the re-
ward. Thus, even with a five-dimensional state space, the ro-
bot learns that the task is two-dimensional and captures only
those properties of its observation ignoring the distractors.

1 2 3 4 5
Principal component

0.0

0.1

0.2

0.3

0.4

0.5

0.6

No
rm

al
iz

ed
 e

ig
en

va
lu

e

(a) Eigenvalues of state samples (b) Projected state samples

Fig. 10 Results for the navigation task with a five-dimensional state
space (λ = 1, L = 0.36).

5.5 Improved Performance in Reinforcement Learning

The preceding experiments have shown some promising fea-
tures of our method. But in the end, the quality of state
representations can only be measured by their utility for
subsequent learning. In this experiment, we will see that
our method can substantially improve reinforcement learn-
ing performance and that it needs very few data to do so.

Extended Navigation Task: To construct a more challenging
task for this experiment, we extended the navigation task
by allowing the robot to change its orientation. The robot
can turn and move forwards or backwards choosing its ro-
tational velocity from [−30,−15, 0, 15, 30] degrees per time
step and its translational velocity from [−6,−3, 0, 3, 6] units
per time step for a total of 25 actions. All actions are subject

Learning State Representations with Robotic Priors 15

1000 2000 3000 4000 5000 6000 7000

Training steps

0

100

200

300

400

R
e
tu

rn
 p

e
r

5
0

 s
te

p
 e

p
is

o
d

e

RL on ground truth pose
RL on learned states

RL on principal components

RL on slow features

RL on observations

Fig. 11 Reinforcement
learning (RL) curves
for different state
representations. Lines
show means, surfaces
display their standard
errors.

to Gaussian noise with 0 mean and 10% standard deviation.
This task includes the same visual distractors described be-
fore. The objective of the task also did not change. The robot
must move to within 15 units of the top right corner, where
it gets a reward of 10 unless it runs into a wall, in which case
it gets a reward of −1 (see Figure 12).

Fig. 12 Extended navigation task with distractors.

Experimental design: The robot explored its environment
ε-greedy. With probability 0.9, it performed a random ac-
tion, otherwise it performed the best action according to its
policy. After every 500 time steps, the exploration was inter-
rupted. From its accumulated experience, the robot learned
an observation-state-mapping and a policy which it used in
the following 500 exploration steps. After learning, the robot
was also tested for 20 episodes, each consisting of 50 steps
starting from random initial configurations. Based on these
tests, we computed the average sum of rewards. This cycle
of exploration, learning, and testing was carried out until the
robot had explored for 7500 time steps. The entire learning
experiment was repeated ten times.

We performed the experiment multiple times with the
same reinforcement learning method and different state rep-

resentations: the five-dimensional state representation from
our method, the five slowest features of the observations
(computed using linear slow feature analysis [36]), the first
five principal components of the observations, and the raw
768-dimensional observation. To get an upper bound on the
reinforcement learning performance, we also compared with
a simpler version of this task without distractors in which
the robot has access to its ground truth pose. In this case it
uses its position (normalized to [−1, 1]) and the cosine and
sine of its orientation as state, which we consider an optimal
representation for this task.

Results—Improved Generalization: We want to start ana-
lyzing the results in Figure 11, by comparing our method
(green) against performing reinforcement learning directly
on the raw observations (blue). These results show that the
robot was not able to learn the task by directly applying re-
inforcement learning on the observations. When tested, the
robot usually rotated in place or did not move at all. Using
the state representation found by our method, however, it
learned this task getting an average reward of about 430 per
50 step episode. This corresponds to reaching the goal area
after 7 steps on average without ever running against a wall.
Where does this difference come from? Our method basi-
cally acts as a regularization on the learning problem by ex-
tracting the right information from sensory input. This leads
to better generalization from experiences to new situations.

Virtually every learning algorithm, including the one we
used for reinforcement learning, generalizes according to
the smoothness prior, which is: “similar inputs lead to simi-
lar outputs” or in this case “similar states require similar ac-
tions”. Therefore, experiences are generalized to situations
that have a similar representation where similarity is usually
defined in terms of Euclidean distance. How do the distance

16 Rico Jonschkowski, Oliver Brock

0.0 0.2 0.4 0.6 0.8 1.0
Normalized distance to reference sample
0

5

10

15

20

25

30

35

40

45

Nu
m

be
r o

f s
am

pl
es

Observation space
State space

(a) Histogram of distances (b) Ground truth pose of NNs

(c) Ref. (d) NNs in obs. space (e) NNs in state space

(f) Generalization in obs. space (g) Generalization in state space

Fig. 13 Distances and gen-
eralization in the observa-
tion space (blue) compared
to the learned state space
(green). (a) shows the dis-
tances of different observa-
tion samples to the reference
sample (c). (d) and (e) dis-
play the nearest neighbors
(NNs) of the reference sam-
ple. The ground truth pose
of these samples is displayed
in (b). (f) and (g) illustrate
how the distance metric af-
fects generalization.

metrics implied by the observation space and the state space
compare?

We examined this with another experiment. In this ex-
periment, the robot explored randomly for 5000 steps and
learned a five-dimensional state representation based on this
experience. For the following analysis, we used every tenth
of the training samples (to make sure that they are suffi-
ciently different from each other). We chose one of these
samples as a reference and computed the distances between
the reference sample and all other samples both in obser-
vation space and in state space. This analysis reveals two
important differences that have a huge impact on general-
ization.

First, the distances from the reference to every other sam-
ple have a much smaller variance in observation space com-
pared to state space. In other words: Every sample is roughly
equally far away in observation space. The nearest neighbor

(NN) of the reference is almost half as far away as the most
distant sample (see Figure 13a). This effect is caused by the
high dimensionality of the observation space. In this space,
everything is far apart. One would need an exponential num-
ber of samples to adequately fill the space. This poses a big
problem for the smoothness prior in subsequent learning. In
order to generalize to the most similar situations, one will
automatically also generalize to other less similar situations
because their distances from the reference are alike.

Second, the nearest neighbors of the reference sample in
observation space can have very different semantics with re-
spect to the task. To illustrate this, we show the ground truth
pose of the reference sample and its three nearest neighbors
in both observation space and state space (see Figure 13b).
The nearest neighbors in state space correspond to simi-
lar poses such that it makes sense to generalize knowledge
about which action to take from one situation to its neigh-

Learning State Representations with Robotic Priors 17

bors. For the nearest neighbors in observation space, this is
not the case. The reference observation (see Figure 13c) and
its nearest neighbors in observation space (see Figure 13d)
exemplify why observations from these different poses are
close in observation space: The arrangement of distractors in
their visual input coincides. The alignment of the walls, on
the other hand, which provides information about the robot’s
location, differs greatly from the reference observation.

Note that this second issue is not specific to the pixel-
representation. The same applies to different image repre-
sentations: histogram of colors, histogram of gradients, point-
features, and in fact every generic representation. Generic
representations must include these task-irrelevant distractors
because for other tasks, for example “follow the red rectan-
gle”, this is the important information and other information
is irrelevant and distracting.

Both issues violate the smoothness prior that is used by
the reinforcement learning method. The consequences for
generalization are shown in Figures 13f and 13g. The color
shows the strength of the generalization from the reference
sample to every other sample and vice versa (computed as
the activation of a radial basis function centered at the refer-
ence sample).

Results—Pertinent State Representation: The two baselines,
principal component analysis (orange) and slow feature anal-
ysis (red), also improve reinforcement learning performance
to some degree due to the low dimensionality of the state
representation. However, these methods also suffer from be-
ing distracted by information in the visual input that is not
task-related.

Both methods cannot distinguish relevant from irrele-
vant information because they are purely based on obser-
vations. Our method, on the other hand, takes actions and
rewards into account and is, therefore, able to learn state
representations that pertain to the task.

The reason why principal component analysis still per-
forms reasonably well is that it finds those dimensions that
can explain the largest variances in the observations and the
robot’s pose is one important factor for that.

Results—Almost as Useful as Ground Truth Pose: We now
compare the results of our approach to the upper bound of
the reinforcement learning method—using the ground truth
pose of the robot as state (gray, dashed line, see Figure 11).
We have to keep in mind how much easier this task is com-
pared to coping with 768-dimensional visual observations
influenced by distractors. Still, our method is able to learn
a state representation that is almost as useful for reinforce-
ment learning as the true pose of the robot. The final differ-
ence in average reward corresponds to taking one additional
step until reaching the goal. The state representation learned
by our method was almost as good as the best omniscient
state representation that we could think of.

Results—Little Training Data Required: Interestingly, our
method required few data to learn useful representations.
Even at the very beginning, the learning curves based on the
ground truth pose (gray) and based on the learned represen-
tation (green) are comparable. This shows that our method
needs less training data to learn a useful state representation
than the reinforcement learning method needs to learn the
right policy.

5.6 Transfer Learning

Ultimately, versatile robots must be able to learn a multitude
of tasks, many of which are related. For effective learning,
experience must be reused and transferred between tasks.
For different tasks, the robot often needs to extract different
information from its sensory input. If, for example, the ro-
bot is given the task to follow an object instead of moving
to a fixed location, the absolute pose of the robot becomes
meaningless and an object that was a distraction for the nav-
igation task becomes important for the new task. While dif-
ferent tasks generally require different state representations,
many tasks are also related, for example moving to different
locations in the same environment. Such related tasks share
or partly share useful state representations, for example the
robot pose. Other tasks are composed of subtasks, for exam-
ple moving to a certain location, picking something up, and
then delivering it to another location. When tasks are com-
bined from subtasks, their state representations could also
be combined from the subtasks’ state representations, which
would allow to incrementally learn even very complex state
representations.

Such an incremental learning scheme requires that the
learned state representations are general enough to be reused
in higher level tasks. This is not self-evident for state rep-
resentations learned for a specific task. Navigating to the
top right corner, for example, only requires to know the di-
rection and the distance to this corner. While these features
form a useful state representation for this specific task, they
do not enable the robot to navigate to other locations. In-
terestingly, our previous experiments suggest that this is not
the kind of state representation that our method produces.
Instead, the learned state representations capture the task di-
mensions in a general way even though they were learned
from data for a specific task. In this experiment, we want to
quantify how reusable these state representations are across
related tasks. We measure this by the utility of applying an
observation-state-mapping that was learned for the extended
navigation task in a set of new related tasks.

Three New Tasks: Task A is identical to the extended nav-
igation task with distractors, except that the goal area has
been changed to the opposite corner (see Figure 14a). In task
B, the goal area is a rectangle in the top of the room. In this

18 Rico Jonschkowski, Oliver Brock

(a) Task A

R
e
tu

rn
 p

e
r

5
0

 s
te

p
 e

p
is

o
d

e

RL on learned states
RL on learned states (transfer)

1000
Training steps

2000 3000 4000 5000 6000 70000

100

200

300

400

(b) Learning curves for task A

(c) Task B

1000
Training steps

2000 3000 4000 5000 6000 7000

R
e
tu

rn
 p

e
r

5
0

 s
te

p
 e

p
is

o
d
e

RL on learned states
RL on learned states (transfer)

-100

 0

 100

 200

 300

 400

(d) Learning curves for task B

(e) Task C

1000
Training steps

2000 3000 4000 5000 6000 7000

RL on learned states
RL on learned states (transfer)

R
e
tu

rn
 p

e
r

5
0

 s
te

p
 e

p
is

o
d
e

-100

0

100

200

(f) Learning curves for task C

Fig. 14 Transferring learned
state representations from
the extended navigation task
to new tasks. Lines show
means, surfaces display
mean estimate standard
errors.

area, the robot receives a reward of +10. Next to this rect-
angle, there is another rectangular area in which the robot
receives negative reward of −20 (see Figure 14c). In task
C, the robot receives reward of +10 for moving right and
negative reward of −10 for moving left when it is in the top
third of the room. In the bottom third of the room, this is re-
versed: the robot is rewarded positively for moving left and
negatively for moving right (see Figure 14e).

Experimental design: In this experiment, we measure the
utility of a transferred state representation for reinforcement
learning based on the cumulative reward obtained by the ro-
bot. We use the same design as in Section 5.5, except that the
observation-state-mapping is not learned continually during
the trial in which it is tested. Instead, the state representa-

tion is learned from 5000 random exploration steps. The
learned observation-state-mapping is then used in the new
tasks without changing it. We compare the utility of state
representations learned specifically for the new tasks and
those transferred from the extended navigation task.

Results—Successful Transfer of Learned State Representa-
tions: We compare the reinforcement learning performance
in tasks A, B, and C based on the transferred state repre-
sentation to the performance based on the state represen-
tation learned for each specific task (see Figure 14). Since
both state representations lead to similar learning curves, the
transferred state representation must be as useful for solving
tasks A, B, and C as the state representations specifically
learned for each task. These results show that, across this

Learning State Representations with Robotic Priors 19

(a) Mobile robot (b) Distractor (c) Real navigation task

(d) Observation from cameras (left, front, right, back)

Fig. 15 The navigation task with a
real robot (c). The observation (d) is
a combined image from the down-
sampled output of the four RGB
cameras attached to the robot (a). (d)
shows the yellow wall to the left,
the blue wall in front, the red wall
to the right, and the green wall in
the back of the robot (three cameras
are tilted). Our method was applied
on this observation without any ad-
ditional preprocessing. (b) shows a
distractor in front of the robot.

set of related tasks, our method is invariant to which specific
task it was learned for.

Since task A is equivalent to the extended navigation
task, it may be surprising that the reinforcement learning
performance in task A is not as good as in the experiment
in Section 5.5 (compare green curves in Figures 14b and
11). We think that this performance difference depends on
whether the same or different data were used for state rep-
resentation learning and reinforcement learning. When the
learned observation-state-mapping is applied to new data, it
will not generalize perfectly. While the learned policy seems
to be robust against these deviations during testing, the re-
inforcement learning method appears to be more sensitive,
which might result in a non-optimal policy.

For tasks B and C the learning curves suggest that the
performance based on the transferred state representation
might even be better than the performance based on the task-
specific state representation. At this point, we do not want to
speculate about the reason for these differences, but we will
further investigate this in future research on state representa-
tion learning across related tasks. Overall, these results are
very promising as they demonstrate the potential to reuse
the learned state representations which is a prerequisite for
incrementally combining them to form more complex state
representations.

5.7 Verification on a Real Robot

Simulations are a great tool to conduct experiments under
ideal conditions. However, simulations always carry the risk
of ignoring important aspects of the problem. Therefore, we
also need to verify our results in a real world scenario. For a
video of this experiment, see:

https://youtu.be/BolevVGJk18

Real navigation task: We tried to replicate the extended nav-
igation task as closely as possible using an iRobot Create
equipped with four standard web cams (see Figure 15a).
This robot was placed in a square room with yellow, blue,
red, and green walls of length 3.2 meters (see Figure 15c).
The camera settings (especially contrast and saturation) were
chosen such that the colored walls are clearly visible. The
images of the four web cams were down-sampled to 8 × 6

pixels and combined into a single image which the robot re-
ceived as 576-dimensional observation (see Figure 15d).

For computing the reward and for analyzing the results,
it was necessary to estimate the pose of the robot. This was
done using a particle filter based on input from a laser scan-
ner on the robot. Neither the pose information, nor the laser
scanner input was used by the robot during the task.

Experimental design: The experimental design was similar
to the navigation tasks in simulation. The robot explored
ε-greedy (see Figure 16d) and was interrupted after every
500 steps to learn an observation-state-mapping and a pol-
icy using the same methods and parameters as in the simu-
lation experiments. After 2000 training steps (about 50 min-
utes), the robot was tested five times starting from different
positions in the room. The resulting trajectories are shown
in Figure 16e. During the entire experiment, a person was
acting as a visual distractor (see Figure 15b). The person
walked around randomly, avoiding collisions with the robot,
but otherwise moving independently from it.

Results—Verification on a Real Robot After 2000 training
steps, the robot had learned to move to the top right corner
in the presence of the visual distractor (see Figure 16e).

This experiment reproduces our findings from simula-
tion in the real world. Our method is able to extract the right
information to solve this task from visual input, even in the
presence of distractors. At least in this simple setting, it was
able to cope with illumination changes, shadows and occlu-
sion from the distractor, non-Gaussian noise in actions due

https://youtu.be/BolevVGJk18

20 Rico Jonschkowski, Oliver Brock

(a) (b) (c)

(d) 2000 training steps (e) Five test episodes

Fig. 16 Training and results
on a real robot. (a-c) show the
robot and the moving distrac-
tor during the training phase.
(d) shows the trajectory of
the robot during its 2000
training steps. (e) displays
five robot trajectories us-
ing the learned observation-
state-mapping and policy.

to delays in the wireless connection, change of battery level
and many other effects that were not modeled in simulation.

6 Conclusion

We have presented a new approach to state representation
learning in robotics. The first key idea to this approach is to
focus on state representation learning in the physical world
instead of trying to solve the general problem of state repre-
sentation learning in arbitrary (artificial) environments. Re-
ducing the problem domain in this way allows us to use
robotics-specific prior knowledge. We strongly believe that
such prior knowledge will be vital to create versatile robots.

The second key idea is a specific way to use prior knowl-
edge for state representation learning. We evaluate represen-
tations by how consistent they are with our priors about the
world. We proposed five robotic priors—simplicity, tempo-
ral coherence, proportionality, causality, and repeatability—
and showed how they can be turned into an objective for
state representation learning.

Our experiments demonstrate that the inclusion of robotic
priors can greatly improve learning performance and gener-
alization. The magnitude of this effect is significant, in spite
of the generality of the employed priors. We believe that
the inclusion of robotic priors will broaden the applicabil-

ity of learning and lead to an increase in task-versatility of
autonomous robotic systems.

The five robotic priors presented here should be viewed
as a first exploration into this matter. We believe there is
an important need for formulating and evaluating additional
priors to reflect the structure inherent to various domains in
robotics. Hopefully, this will lead to a broader discussion
about what the “right” robotic priors might be and how they
could be leveraged in the most effective way to achieve au-
tonomy and task generality in robots.

7 Acknowledgments

We gratefully acknowledge financial support by the Alexan-
der von Humboldt foundation through an Alexander von
Humboldt professorship (funded by the German Federal Min-
istry of Education and Research). We would like to thank
Sebastian Höfer, Johannes Kulick, Marc Toussaint, and our
anonymous reviewers for their very helpful comments and
suggestions.

References

1. Yoshua Bengio, Aaron C. Courville, and Pascal Vin-
cent. Representation learning: A review and new per-

Learning State Representations with Robotic Priors 21

spectives. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35(8):1798–1828, 2013.

2. Byron Boots, Sajid M. Siddiqi, and Geoffrey J. Gordon.
Closing the learning-planning loop with predictive state
representations. International Journal of Robotics Re-
search, 30(7):954–966, 2011.

3. Michael Bowling, Ali Ghodsi, and Dana Wilkinson.
Action respecting embedding. In 22nd International
Conference on Machine Learning (ICML), pages 65–
72, 2005.

4. Luis C. Cobo, Kaushik Subramanian, Charles Lee Isbell
Jr., Aaron D. Lanterman, and Andrea Lockerd Thomaz.
Abstraction from demonstration for efficient reinforce-
ment learning in high-dimensional domains. Artificial
Intelligence, 216(1):103–128, 2014.

5. Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. Natural
language processing (almost) from scratch. Journal of
Machine Learning Research, 12(8):2493–2537, 2011.

6. Siegmund Duell, Steffen Udluft, and Volkmar Sterz-
ing. Solving partially observable reinforcement learn-
ing problems with recurrent neural networks. In Neural
Networks: Tricks of the Trade, volume 7700 of Lecture
Notes in Computer Science, pages 709–733. Springer
Berlin Heidelberg, 2012.

7. Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimen-
sionality reduction by learning an invariant mapping.
In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1735–
1742, 2006.

8. Sebastian Höfer, Manfred Hild, and Matthias Kubisch.
Using slow feature analysis to extract behavioural man-
ifolds related to humanoid robot postures. In 10th In-
ternational Conference on Epigenetic Robotics, pages
43–50, 2010.

9. Marcus Hutter. Feature reinforcement learning: Part I:
Unstructured MDPs. Journal of Artificial General In-
telligence, 1(1):3–24, 2009.

10. Christian Igel and Michael Hüsken. Empirical evalua-
tion of the improved RPROP learning algorithms. Neu-
rocomputing, 50(1):105 – 123, 2003.

11. Odest Chadwicke Jenkins and Maja J. Matarić. A
spatio-temporal extension to ISOMAP nonlinear di-
mension reduction. In 21st International Conference
on Machine Learning (ICML), page 56, 2004.

12. Nikolay Jetchev, Tobias Lang, and Marc Toussaint.
Learning grounded relational symbols from continu-
ous data for abstract reasoning. In Autonomous Learn-
ing Workshop at the IEEE International Conference on
Robotics and Automation, 2013.

13. Rico Jonschkowski and Oliver Brock. Learning task-
specific state representations by maximizing slowness
and predictability. In 6th International Workshop

on Evolutionary and Reinforcement Learning for Au-
tonomous Robot Systems (ERLARS), 2013.

14. Rico Jonschkowski and Oliver Brock. State representa-
tion learning in robotics: Using prior knowledge about
physical interaction. In Robotics: Science and Systems
(RSS), 2014.

15. Leslie Pack Kaelbling, Michael L Littman, and An-
thony R Cassandra. Planning and acting in partially
observable stochastic domains. Artificial intelligence,
101(1):99–134, 1998.

16. Jens Kober, J. Andrew Bagnell, and Jan Peters. Re-
inforcement learning in robotics: A survey. Inter-
national Journal of Robotics Research, 32(11):1238–
1274, 2013.

17. George Konidaris and Andrew G. Barto. Efficient skill
learning using abstraction selection. In 21st Interna-
tional Joint Conference on Artificial Intelligence (IJ-
CAI), pages 1107–1112, 2009.

18. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. ImageNet classification with deep convolutional
neural networks. In Advances in Neural Information
Processing Systems (NIPS), pages 1106–1114, 2012.

19. Joseph B. Kruskal. Multidimensional scaling by opti-
mizing goodness of fit to a nonmetric hypothesis. Psy-
chometrika, 29(1):1–27, 1964.

20. Sascha Lange, Martin Riedmiller, and Arne
Voigtländer. Autonomous reinforcement learning
on raw visual input data in a real world application.
In International Joint Conference on Neural Networks
(IJCNN), pages 1–8, 2012.

21. Robert Legenstein, Niko Wilbert, and Laurenz Wiskott.
Reinforcement learning on slow features of high-
dimensional input streams. PLoS Computational Biol-
ogy, 6(8):e1000894, 2010.

22. Michael L. Littman, Richard S. Sutton, and Satin-
der Singh. Predictive representations of state. In
Advances in Neural Information Processing Systems
(NIPS), pages 1555–1561, 2002.

23. Matthew Luciw and Juergen Schmidhuber. Low com-
plexity proto-value function learning from sensory ob-
servations with incremental slow feature analysis. In
22nd International Conference on Artificial Neural Net-
works and Machine Learning (ICANN), pages 279–287,
2012.

24. Sridhar Mahadevan and Mauro Maggioni. Proto-value
functions: A laplacian framework for learning represen-
tation and control in markov decision processes. Jour-
nal of Machine Learning Research, 8(10):2169–2231,
2007.

25. Ishai Menache, Shie Mannor, and Nahum Shimkin. Ba-
sis function adaptation in temporal difference reinforce-
ment learning. Annals of Operations Research, 134(1):
215–238, 2005.

22 Rico Jonschkowski, Oliver Brock

26. Justus Piater, Sébastien Jodogne, Renaud Detry, Dirk
Kraft, Norbert Krüger, Oliver Kroemer, and Jan Peters.
Learning visual representations for perception-action
systems. International Journal of Robotics Research,
30(3):294–307, 2011.

27. Sam T. Roweis and Lawrence K. Saul. Nonlinear di-
mensionality reduction by locally linear embedding.
Science, 290(5500):2323–2326, 2000.

28. Jonathan Scholz, Martin Levihn, Charles Isbell, and
David Wingate. A physics-based model prior for object-
oriented MDPs. In 31st International Conference on
Machine Learning (ICML), 2014.

29. Frank Seide, Gang Li, and Dong Yu. Conversational
speech transcription using context-dependent deep neu-
ral networks. In Interspeech, pages 437–440, 2011.

30. Roger N. Shepard. Toward a universal law of general-
ization for psychological science. Science, 237(4820):
1317–1323, 1987.

31. Satinder P. Singh, Tommi Jaakkola, and Michael I. Jor-
dan. Reinforcement learning with soft state aggrega-

tion. In Advances in Neural Information Processing
Systems (NIPS), pages 361–368, 1995.

32. Nathan Sprague. Predictive projections. In 21st Inter-
national Joint Conference on Artificial Intelligence (IJ-
CAI), pages 1223–1229, 2009.

33. Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning: An Introduction. MIT Press, 1998.

34. Joshua B. Tenenbaum, Vin De Silva, and John C. Lang-
ford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500):2319–
2323, 2000.

35. Harm van Seijen, Shimon Whiteson, and Leon J. H. M.
Kester. Efficient abstraction selection in reinforcement
learning. Computational Intelligence, 30(4):657–699,
2014.

36. Laurenz Wiskott and Terrence J. Sejnowski. Slow
feature analysis: unsupervised learning of invariances.
Neural Computation, 14(4):715–770, 2002.

	Introduction
	Related Work
	State Representation Learning
	State Representation Learning in Robotics
	Experiments
	Conclusion
	Acknowledgments

