
Learning Task-Specific State Representations by
Maximizing Slowness and Predictability

Rico Jonschkowski1 and Oliver Brock1

Abstract. The success of reinforcement learning in robotic tasks is
highly dependent on the state representation – a mapping from high
dimensional sensory observations of the robot to states that can be
used for reinforcement learning. Even though many methods have
been proposed to learn state representations, it remains an important
open problem. Identifying the characteristics existing methods are
optimizing to find good state representations, combining them, and
adding new characteristics will lead to a more robust method for state
representation learning. We define a new characteristic – predictabil-
ity – and combine it with slowness. We implement these character-
istics in a neural network and show that this approach can find good
state representations from visual input in simulated robotic tasks.

1 Introduction
Reinforcement learning has been very successful in a number of
robotic tasks [4]. As for all machine learning methods, the results
depend greatly on the representation of the task – in this case the
definition of the state s in terms of the usually high dimensional sen-
sory observations of the robot. The state should include all the infor-
mation necessary for the task at the right level of abstraction while
ignoring information that is irrelevant.

Finding the right state representation for a robotic learning task
is a difficult problem and a core part of solving the task. Currently,
this part is carried out by humans, not by their robots. However, this
approach does not scale to autonomously learning robots as we can-
not equip the robots with the right representation for every task they
might potentially have to learn. To overcome this problem, robots
must be able to learn suitable state representations from experience.

The goal of state representation learning is the following:
A good state representation for a given task and reinforcement

learning method is a function from past observations and actions to
states that allows the robot to learn the task (receive high rewards
after learning) by applying the reinforcement learning method on
this representation of the task.

This goal description is intuitive and provides a way to compare
representations (by training the robot using these representations and
comparing the sum of rewards). Unfortunately, we cannot directly
use this measure to discover state representations because it takes a
long time to estimate and does not provide a gradient towards better
representations. Thus, we need a different (heuristic) objective that
characterizes good state representations to guide our search for them.

A number of methods have been proposed to find state repre-
sentations. These methods focus on different characteristics that are
thought to describe good state representations and are applicable to

1 Robotics and Biology Laboratory, Technical University of Berlin, Germany,
email: {rico.jonschkowski, oliver.brock}@tu-berlin.de

different kinds of tasks. However, no single characteristic seems to
capture enough information about good state representations in gen-
eral. We argue that multiple of these characteristics need to be com-
bined and new ones added to build a more robust description of the
objective for state representation learning.

Our contributions in this paper are to define a new characteristic –
state predictability – and to combine it with the previously proposed
slowness characteristic.

The rest of the paper is structured as follows: In the next section,
we list and discuss the characteristics that are optimized in other ap-
proaches to state representation learning. In section 3, we describe
the predictability characteristic, show how it can be combined with
slowness, and present our implementation of this approach in a neu-
ral network. In section 4, we demonstrate our method on two simu-
lated robotic tasks. The method discovers state representations from
visual observations for these tasks. This allows the robot to solve the
tasks at a similar level of performance as if it had direct access to a
human designed state.

2 Related Work

Many different characteristics of good state representations have
been proposed explicitly or implicitly. We first list these character-
istics and then explain the intuition behind them.

A good state representation . . .

1. . . . provides good features for learning the value function: Singh
et al. [12] form clusters of discrete states to reduce the temporal
difference error. Piater et al. [9] partition the state space by learn-
ing a decision tree following the same objective. Menache et al.
[8] learn a value function by simultaneously changing the basis
function features and the linear regression weights.

2. . . . is a compact representation of the observations from which the
original observations can be reproduced: Lange et al. [5] discover
state representations by compressing observations using a deep
autoencoder and a self-organizing map. They demonstrate this on
a real slot car task with raw visual observations.

3. . . . has states that change slowly over time such that consecutive
states are proximate in state space: Legenstein et al. [6] demon-
strate that good state representations for reinforcement learning
can be found by slow feature analysis. Luciw and Schmidhuber
[7] extend this idea such that this representation can be built in-
crementally.

4. . . . can predict future observations given future actions: Boots et
al. [1] show how predictive state representations can be learned
from visual data and used in a reinforcement learning setting.



5. . . . can predict future rewards given future actions: Duell et al. [3]
train the weights of a recurrent neural network that simultaneously
learns the state representation, the transition function and the re-
ward function to predict future rewards.

6. . . . is shared by multiple similar tasks: Caruana [2] finds features
for supervised learning that are shared across related tasks. To our
best knowledge this idea has not been applied to finding state rep-
resentations for reinforcement learning.

Characteristic (1) is very general and directly related to the goal
description in the introduction. The proposed methods perform re-
inforcement learning and representation learning simultaneously.
However, these methods alone do not seem to solve the problem.

Dimensionality reduction approaches (2) try to find the underlying
structure of the data. Applying such methods on observations can po-
tentially result in meaningful state representations. The downside of
this method is that it treats every observation independently, ignoring
that they are produced in a dynamic process of interactions between
robot and environment.

Slowness learning (3) focuses on the temporal property of the ob-
servation by maximizing slowness. Slowness is a reasonable assump-
tion for many aspects in our world. Physical objects, for example, do
not ”teleport” but change their position gradually over time. However
the slowest changing features are not necessarily the most important
ones for a given task. We would not want a soccer robot to be fas-
cinated by the slowness of the grass growing on the field while the
game is running.

Predictive state representations (4) describe the current state as
a set of predictions about future observations conditioned on future
actions. Such a state representation allows the robot to choose the ac-
tions leading to the desired outcome. The problem is that it is unclear
which predictions should be included in the state and which should
not. (5) focuses on predicting the reward instead of the observations
which allows it to focus on important aspects.

(6) shows that state representations do not have to be learned from
a single task. While the solution of a task is very specific, the state
representation can be less specific and also (partially) work for re-
lated tasks. For navigation tasks in a room, for example, the robot
can use the same state representation to go to different goal locations
if the state encodes the robot’s position.

All of these methods try to find the structure that simplifies the
given task by focusing on different characteristics. We think that
there is not one general characteristic but a combination of them that
allows to find this structure for a wide variety of tasks.

3 Our Approach
We want to add a new point to the list of characteristics: 7. A good
state representation can predict future states given future actions.
The difference to (4) and (5) is that this characteristic does not de-
scribe the predictiveness, but the predictability of states. This directly
encodes the Markov property.

All of these characteristics (and more) are applicable to different
kinds of tasks and many will have to be combined to solve state rep-
resentation learning. We take one step in this direction by combining
the predictability characteristic (7) with slowness (3) to find state rep-
resentations. To avoid the trivial solution that maps all observations
to a constant state, we also enforce diversity between states. For now,
we restrict ourselves to fully observable tasks which means that the
current state can be computed from the current observation alone.

More technically, the robot learns the state representation from a
sequence {oi, ai, ri}Ni=1 of observations, actions, and rewards gener-

ated by some exploration policy. It does so by simultaneously learn-
ing the state representation si = f(oi) and the transition function
si = T (si−1, ai−1) to minimize the following cost function:

C(s0:N , a0:N , T ) =ω1

N∑
i=1

‖si − si−1‖2+

ω2

N∑
i=k+1

(‖si − si−k‖ − d)2 +

ω3

N∑
i=1

‖T (si−1, ai−1)− si‖2

The first term of this cost function leads to slowness: consecutive
states should have a small distance. The second term enforces vari-
ability between temporally distant states. It includes two parameters:
the number of steps k that lie between distant states and the Eu-
clidean distance d these states are supposed to have. Using this term
works better than maximizing the variance or having a soft mini-
mal distance constraint. The third term fosters predictability of future
states given future actions of the robot. The terms can be weighted
arbitrarily by ω1, ω2, and ω3. We implement this cost function in a
neural network (see Figure 1(a)).

dist distdist

1
1

0 0

o

s

a

f

T

s'

d

k

(a)

o

s

a

f

Q(s,a)

(b)

Figure 1: Neural network implementation of our method for state rep-
resentation learning (a) and Q-learning (b). The green and yellow
circles are neurons organized in layers, most of which are sigmoid
(more accurately tanh) neurons. Only the top neuron in (b) has a lin-
ear activation function. The neurons are colored to illustrate that the
state representation learned in (a) is used in (b). Solid arrows sym-
bolize full connections with adjustable weights between layers. The
dashed arrows are non-adjustable weights, some of which have de-
lays of 1 or k time steps. The red triangles compute the Euclidean
distances that are the outputs of (a) and correspond to the three terms
in the cost function. The target values are written on top of them.

After learning the state representation s = f(o), this part of the
network is used for neural fitted Q-iteration (NFQ) [10] - a batch
version of Q-learning with a neural network as function approxima-
tor (see Figure 1(b)). The idea of NFQ is to alternate two steps:

1. The new Q̂ targets are computed from transition data {s, a, r, s′}
and the current estimate of Q (computed by the neural network):

Q̂(s, a) = α(r + γmax
a′

Q(s′, a′)) + (1− α)Q(s, a)

2. The neural network is trained using Q̂ as target values.



After training, the combined network (see Figure 1(b)) can score dif-
ferent action choices of the robot according to its current observation.
To execute the learned behavior, the robot computes the score for all
its actions and picks the action with the highest value.

4 Evaluation

4.1 Tasks

We performed experiments in simulation with two continuous tasks
with high dimensional raw visual observations and stochastic ac-
tions.

The first task is to drive a slot car as fast as possible while not
going too fast in the right curve as this curve has no side rails (see
Figure 2 (a) and (b)). The track consists of two straight segments
and two half circles summing to a total length of 2 + π meters. The
slot car can choose its velocity from {0, 0.1, 0.2, . . . , 1} meters per
time step to which uniform noise of [−0.05, 0.05] meters per time
step is added. Its observation is a ten by ten pixel gray scale image
of the scene. When its current action would take the slot car into the
right curve and its velocity exceeds 0.5, it gets a reward of -1 and
stays in its current position instead (to simulate being thrown out of
the track), otherwise the slot car gets a reward equal to its velocity.
The optimal strategy for this task is to drive with maximum velocity
except just before and in the first part of the curve, where the robot
should drive 0.4 meters per time step to avoid being thrown out.

The second task is to maneuver a mobile robot to the top right
corner of a room without bumping into the walls (see Figure 2 (c)
and (d)). The room has a size of two by two meters. The corner has a
size of 0.5 by 0.5 meters. The robot can control its velocity in x- and
y-direction, choosing from {−0.4,−0.1, 0, 0.1, 0.4}meters per time
step. Uniform noise of [−0.1, 0.1] times the total velocity is added to
each of the directions independently. If the robot hits a wall it gets a
reward of -1, else it gets a reward of +1 if it is in the top right corner,
and 0 otherwise.

(a) (b) (c) (d)

Figure 2: The slot car task (a,b) and the mobile robot task (c,d).

4.2 Experiments

In each experiment, we initialize the position of the robot randomly
and let it perform random actions for 1000 time steps to collect data
{oi, ai, ri}1000i=1 . From this data the robot learns a five-dimensional
state representation and a Q-function as described earlier.

We test the quality of the learned behavior in 20 randomly initial-
ized episodes of length ten by computing the average reward over
these. We compare the results with using raw image data directly as
state and with using the first five slowest features or principal com-
ponents of the image. Principal component analysis is computed on
the same data as our method. The slow features are obtained by per-
forming a linear slow feature analysis on the first ten principal com-
ponents.

To get an upper and a lower bound on the performance of the robot,
we also compare with using the (x,y) coordinates as the state and to

a robot performing random actions. The experiment is repeated ten
times to compute mean and standard deviation of the average reward.

4.3 Parameters of Our Method

The weights in our cost function are ω1 = 1, ω2 = 1, and ω3 =
4, weighting the predictability term higher than the other terms. We
pick k = 100 as this is sufficiently large so that states that are 100
time steps apart should be roughly uncorrelated and d = 0.5 as this
is a distance that does not saturate the tanh neurons and allows them
to use the linear or the nonlinear parts of the sigmoid.

The network for learning the state representation is trained
for 20,000 epochs using RPROP [11] with strong regularization
λ = 0.01. To avoid local minima, three restarts are performed and
the best network according to the cost function is used as state repre-
sentation.

For neural fitted Q-iteration, the parameters γ = 0.9 and α = 0.5
are used. The neural network is trained for 100 epochs with RPROP
without regularization before the Q̂ values are recomputed. This pro-
cess is iterated 50 times.

4.4 Results

Our method discovers state representations that resemble important
structures of the tasks. The state trajectories look similar in the
learned state space compared to the coordinates of the robot, which
are the intuitive state dimensions in these tasks (see Figure 3). It is
promising that our method can discover these structures from raw
visual observations and actions.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

state dim 1

st
at

e 
di

m
 2

True state trajectory (slot car example)

(a)

0.2
0.3

0.4 0.3
0.2

0.1
0

0.1
0.2

0.1

0.2

0.3

0.4

state dim 2

Estimated state trajectory (slot car example)

state dim 1

st
at

e 
di

m
 3

(b)

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

state dim 1

st
at

e 
di

m
 2

True state trajectory (mobile robot example)

(c)

0
0.5

1

0.40.200.20.40.6

0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

0.5

state dim 2

Estimated state trajectory (mobile robot example)

state dim 1

st
at

e 
di

m
 3

(d)

Figure 3: Sample state trajectories of the random exploration phase
for the slot car task (a,b) and the mobile robot task (c,d). Circles
mark visited states. Lines between them indicate which states were
visited after another. The plots on the left show the state trajectory in
Cartesian coordinates. The plot on the right show the same trajectory
in a learned three-dimensional state space. States are colored accord-
ing to their real coordinates so that it is apparent which states in the
different state spaces correspond to each other.



With the state representations that our method discovers, the slot
car task can be learned to almost the same performance level as if
the robot was given direct access to its coordinates (see Figure 4(a)).
When the robot does not perform state representation learning but
uses its observations as state, it does not learn the best strategy. It
either learns to ignore its observations and always drives slow or it
often drives too fast in the right curve. Using slow features or prin-
cipal components of the observation as state representation leads to
reasonable results in this example.

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(x,y) f(o) SFA(o) PCA(o) o Random

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r 

ti
m

e
 s

te
p

Slot car example

(a)

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(x,y) f(o) SFA(o) PCA(o) o Random

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r 

ti
m

e
 s

te
p

Mobile robot example

(b)

Figure 4: Reinforcement learning success after neural fitted
Q-iteration with different state representations. Using the Cartesian
coordinates of the robot as state provides an upper bound (leftmost
gray bar). Choosing actions at random provides a lower bound (right-
most gray bar). Our method (green bar) is compared to using slow
features, principal components or the observation directly as state
(blue bars).

In the mobile robot task, the state representation found by our
method enables the robot to learn the task as well as if it could di-
rectly observe its coordinates (see Figure 4(b)). Learning this task
from raw observations does not lead to a good strategy. Sometimes
the robot trained directly on observations learned to stay still to avoid
punishment for bumping into walls but often it completely failed and
constantly ran into one direction. State representations found by slow
feature analysis or principal component analysis worked only in a
few trials.

In summary, our experiments show that with our method the robot
discovered state representations from raw observations from which
it could learn the task almost as well as if it had direct access to its
Cartesian coordinates. This was generally not possible by using the
observation, its principal components or slow features as state.

5 Conclusion
By optimizing state predictability combined with slowness, the robot
was able to discover useful state representations that resemble impor-
tant structures of the tasks from visual observations. These represen-
tations enabled the robot to successfully learn tasks that it could not
learn from observations, their slowest features, or principal compo-
nents directly. The performance of the robot using the learned state
representation was comparable to the much easier version of this task
in which the robot was given direct access to a human defined state.

The advantage of low-dimensional state representations that in-
clude all task-relevant dimensions seems to be that it constrains the
solution of the task and thus allows better generalization. However,
this information must be represented in such a way that the solution
becomes compact and, thus, easy to learn. Combining multiple char-
acteristics of good state representations is a promising way to find
such representations.

Our method finds the task-relevant dimensions in the presented
tasks because these are the only dimensions that influence the ob-
servation. For tasks in which there are also irrelevant information in
the observations (e.g., a second slot car if it is not part of the task),
another characteristic needs to be added to focus on relevant infor-
mation. In future work, the reward should be included into the cost
function to identify these dimensions.

Furthermore, the presented method needs to be extended to handle
partially observable problems for which multiple past observations
(and actions) are required to estimate the current state. Finally, the
method should be applied on real robots.

References
[1] Byron Boots, Sajid M. Siddiqi, and Geoffrey J. Gordon, ‘Closing the

learning-planning loop with predictive state representations’, The In-
ternational Journal of Robotics Research, 30(7), 954–966, (2011).

[2] Rich Caruana, ‘Multitask learning’, Mach. Learn., 28(1), 41–75,
(1997).

[3] Siegmund Duell, Steffen Udluft, and Volkmar Sterzing, ‘Solving par-
tially observable reinforcement learning problems with recurrent neu-
ral networks’, in Neural Networks: Tricks of the Trade, volume 7700 of
Lecture Notes in Computer Science, 709–733, Springer Berlin Heidel-
berg, (2012).

[4] Jens Kober and Jan Peters, ‘Reinforcement learning in robotics: A sur-
vey’, in Reinforcement Learning, volume 12 of Adaptation, Learning,
and Optimization, 579–610, Springer Berlin Heidelberg, (2012).

[5] S. Lange, M. Riedmiller, and A. Voigtlander, ‘Autonomous reinforce-
ment learning on raw visual input data in a real world application’, in
Neural Networks (IJCNN), The 2012 International Joint Conference
on, pp. 1–8. IEEE, (2012).

[6] Robert Legenstein, Niko Wilbert, and Laurenz Wiskott, ‘Reinforcement
learning on slow features of high-dimensional input streams’, PLoS
Computational Biology, 6(8), (2010).

[7] Matthew Luciw and Juergen Schmidhuber, ‘Low complexity proto-
value function learning from sensory observations with incremental
slow feature analysis’, in Artificial Neural Networks and Machine
Learning – ICANN 2012, volume 7553 of Lecture Notes in Computer
Science, 279–287, Springer Berlin Heidelberg, (2012).

[8] Ishai Menache, Shie Mannor, and Nahum Shimkin, ‘Basis function
adaptation in temporal difference reinforcement learning’, Annals of
Operations Research, 134, 215–238, (2005).

[9] Justus Piater, Sébastien Jodogne, Renaud Detry, Dirk Kraft, Norbert
Krüger, Oliver Kroemer, and Jan Peters, ‘Learning visual representa-
tions for perception-action systems’, Int. J. Rob. Res., 30(3), 294–307,
(2011).

[10] Martin Riedmiller, ‘Neural fitted q iteration – first experiences with a
data efficient neural reinforcement learning method’, in In 16th Euro-
pean Conference on Machine Learning, pp. 317–328. Springer, (2005).

[11] Martin Riedmiller and Heinrich Braun, ‘A direct adaptive method for
faster backpropagation learning: The rprop algorithm’, in IEEE Inter-
national Conference on Neural Networks, pp. 586–591, (1993).

[12] Satinder P. Singh, Tommi Jaakkola, and Michael I. Jordan, ‘Reinforce-
ment learning with soft state aggregation’, in Advances in Neural Infor-
mation Processing Systems 7, pp. 361–368. MIT Press, (1995).


