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Abstract— We present an incremental method for motion
generation in environments with unpredictably moving and
initially unknown obstacles. The key to the method is its
incremental nature: it locally augments and adapts global
motion plans in response to changes in the environment, even
if they significantly change the connectivity of the world. The
restriction to local changes to a global plan results from the
fact that in mobile manipulation, robots can ultimately only
rely on their on-board sensors to perceive changes in the
world. The proposed method addresses three sub-problems
of motion generation with three algorithmic components. The
first component reactively adapts plans in response to small,
continuous changes. The second augments the plan locally in
response to connectivity changes. And the third extracts a
global, goal-directed motion from the representation maintained
by the first two components. In an experimental evaluation
of this method, we show a real-world mobile manipulator
executing a whole-body motion task in an initially unknown
environment, while incrementally maintaining a plan using only
on-board sensors.

I. INTRODUCTION

Many scenarios in mobile manipulation do not comply
with the assumptions made by common motion generation
methods. For example, motion planners based on the PRM
or RRT methods [1] require information about the entire en-
vironment to determine a valid plan. In contrast, mobile ma-
nipulators may have to obtain this information incrementally,
as they move through the environment. Planning methods
also require substantial computation time to determine paths
in complex, large-scale environments, especially for systems
with many degrees of freedom. This is not adequate for
mobile manipulation scenarios, where a robot cannot “stand
and think” for extended periods of time.

We propose an incremental, sensor-based motion gen-
eration method. It is based on the simple insight that
(a) the world changes in a continuous fashion, (b) significant
connectivity changes occur relatively infrequently, and that
(c) all of these changes must be observed to be reflected in a
plan. These (obvious) insights lead to different assumptions
to those of existing planning methods, assumptions that can
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Fig. 1.  An example motion generation task for a mobile manipulator.
The WAM+XR4000 maintains the orientation of a tray while avoiding
unstructured obstacles (green). The robot uses only on-board RGB-D sensors
and has no prior model of this environment.

be met in the context of mobile manipulation. First, we
assume that most changes to the world only require local
changes to the plan. Second, we assume that most of these
changes are relatively simple motion planning problems. And
third, we assume that information about the environment is
obtainable exclusively through on-board sensors.

The proposed method is incremental in that it continu-
ously constructs, extends, and refines global motion plans
(roadmaps) based on sensory input. Incrementality is realized
by dividing the overall motion generation problem into
three types of sub-problems, each of which can then be
solved by the most appropriate method. First, to respond to
small, continuous changes in the world, we employ online
trajectory modification to adapt the existing edges of the
roadmap. Second, to update local connectivity changes or to
reflect significant changes to our world model, we employ
an efficient motion planner to add new milestones and
edges to the roadmap. Third, to ensure the global motion
goal is attained, we use graph search in our incrementally
maintained roadmap.

We evaluate this incremental approach to motion gen-
eration in a real-world mobile manipulation scenario (also
shown in Figure 1), demonstrating that it satisfies the fol-
lowing three requirements. First, the motion satisfies fask
constraints: in our experimental evaluation, the robot main-
tains its end-effector orientation while carrying a tray of
objects. Second, the robot deals with unpredictable dynamic



obstacles: the robot handles significant connectivity change
in the environment. Third, the robot relies only on on-board
sensors: throughout the experiment, the mobile manipulator
acts truly autonomous and does not rely on external sensors
or pre-built maps of the world.

II. RELATED WORK

A. Control and Local Optimization

The artificial potential field method [2] is one of the
earliest obstacle avoidance approaches. It combines repulsive
forces from obstacles with an attracting force at the robots
goal. The method is computationally efficient and reacts
directly to sensor data. Reactive methods can be applied to
entire trajectories in configuration space [3] or in the work
space [4], maintaining prior planned paths in dynamic envi-
ronments. Trajectory modification can also be realized with
stochastic optimal control [5], covariant optimization [6], or
sequential quadratic programming [7]. However, all of meth-
ods in this category require approximate global solutions as
initialization and are subject to local minima.

B. Motion Planning

Probabilistic roadmap methods [8] and the rapidly ex-
ploring random tree planners [1] are widely used in mo-
bile manipulation planning [9, 10]. Sampling-based motion
planners can accommodate dynamic obstacles with known
trajectories [11] and they also handle sensor-generated world
models [12]. However, they are difficult to apply in unpre-
dictable environments as unexpected changes in the environ-
ment invalidate large parts of the tree or roadmap.

The high computation time of most global planners can
be reduced significantly by guiding the planning process
with workspace information. A very relevant planner for our
work is the exploring/exploiting tree (EET) planner [13]. We
incorporate the EET in our method to solve local planning
problems; these solutions are used to incrementally update a
roadmap.

C. On-Line and Reactive Planning

Several approaches presented in the literature aim to equip
global planners with reactive capabilities. We analyze if these
methods satisfy the requirements of applications in mobile
manipulation.

1) Replanning: Replanning [14] is a simple method to
adapt a solution path in unpredictable environments and
has been applied successfully for small mobile manipulation
tasks [12]. Replanners observe the feasibility of a planned
motion at execution time. The planner plans one trajectory
and checks its validity continuously. For invalid trajectories,
the planner is simply evoked again. In realistic scenarios,
replanning might lead to significant interrupts in the motion
of the robot: in the time a new plan is computed, it can be
immediately invalidated by new changes in the environment.

2) Online Adaption: Some methods plan one [15] or
more [16] initial paths using a global search that subse-
quently are adapted using trajectory optimization methods.
In environments with small changes, these methods lead to
satisfactory results. However, when trajectory modification
fails, the planner has to be invoked again, falling back into
the category of replanning approaches.

3) Feedback Motion Planning: Feedback motion planning
methods [17, 18] integrate the strengths of global planning
and control to find policies over the whole state space.
Such a plan is pre-computed offline for all possible states
of the world. The robot then can query for optimal actions
depending on its state. However, constructing a complete
global feedback motion plan that incorporates unpredictably
moving obstacles is infeasible, due to the inherent complexity
of motion planning. To use feedback planning in mobile
manipulation, one must resort to approximate methods that
leverage additional structure present in the problem. This is
exactly the route we take with the proposed approach, which
can be considered an incremental feedback motion planner.

4) Adaptive and Elastic Roadmaps: Adaptive, roadmap-
based methods can be viewed as a specific category of
feedback motion planners. They validate edges in the
roadmap at run time, thus adapting the plan to environmental
changes [19, 20]. In unpredictable dynamic environments,
multi-query roadmaps outperform single-query tree-based
planners, as the invalidation of an edge simply leads to the
selection of another path in the roadmap. Such roadmap-
based methods are an efficient way to reuse previously found
connectivity.

The work presented here extends the elastic roadmap
framework [21, 22], which falls into this category of motion
generation approaches. In elastic roadmaps nodes and edges
correspond to reactive controllers. These controllers respond
to changes in the environment and maintain validity as
long as possible with only local methods. Elastic roadmaps
combine the global properties of planning, the reactivity
of control, and the advantages of multi-query methods. A
similar approach [23] combines an adaptive roadmap with
local replanning but does not consider real sensor data and
task constraints.

III. INCREMENTAL ELASTIC ROADMAPS

Above we stated three assumptions for incremental,
sensor-based planning: (a) most changes in real world
problems result from small, continuous object motions,
(b) significant changes to the connectivity occur rarely, and
(c) changes in the environment can only influence the plan
if they are perceived by the robots on-board sensors. The
goal of this section is to present a roadmap-based planning
method based on these assumptions.

These three assumptions motivate a division of the prob-
lem into three sub-problems. The first component adapts the
roadmap within the sensing range to reflect the continuous
changes in the environment (a). The second component
detects the rarely occurring significant changes (b) that can



not be handled by the first component. The component ad-
dresses these changes and treats them by solving local motion
planning problems. This component is efficient because it
only plans within the robots sensing range (c). The following
three sections introduce these three main components of our
method.

A. Handling continuous change

Most common control or trajectory optimization methods
address continuous change in plans efficiently. We will
present one particular solution using the previously published
elastic roadmap framework [21]. We provide an overview but
refer the reader to the prior publication for technical details.

The elastic roadmap framework uses a roadmap, i.e. a
graph, as the underlying representation. Edges in the elas-
tic roadmap are not specific paths in configuration space
but instead controllers. A vertex or milestone represents
a configuration of the robot. Two vertices are connected
by an edge in the roadmap iff the controller is able to
move the robot between them. By replacing the edge with a
controller that includes obstacle avoidance behavior, we gain
the flexibility to locally react to small changes in the world
without incurring the need to replan. We can imagine these
edges as being “elastic”.

Each milestone is also associated with a controller that
modifies it in response to changes in the environment. Now
vertices can also move around. The result is an elastic
network of moving milestones reacting to dynamic changes
in the environment. Robust motion plans can be generated by
sequencing the controllers along the edges so as to connect
the start and the goal milestone in the roadmap.

The elastic roadmap framework is computationally effi-
cient and able to maintain the roadmap for large environ-
ments [21]. When the controllers associated with vertices and
edges are task-constrained operational space controllers [24],
the motion generated with the elastic roadmap satisfies global
constraints as well as task-constraints while achieving reac-
tive obstacle avoidance. But when the environment changes
significantly, the roadmap may not be able to find a solution
to the planning problem. To overcome this limitation, the
next Section introduces the second component of our method.

B. Handling connectivity changes

The second component of our method addresses signif-
icant, rarely occurring changes in the environment. This
efficient reasoning about connectivity is the major technical
contribution of this paper and completely novel. Therefore
we describe technical details in Section IV. When adapting
an existing elastic roadmap to a dynamic environment certain
changes can not be handled sufficiently only using local
adaptation. We subsume all of these changes as changes of
connectivity. Reasons for changes in connectivity could be
the appearance of an obstacle - in this case the roadmap
would need to capture paths around the obstacle. It could
also be the disappearance of an obstacle, i.e. a door opening
up a new possible shortcut in this case the roadmap would
need to include new edges passing through the door.

To react to significant changes we need an efficient way
to capture connectivity. Reasoning about the connectivity of
the high-dimensional configuration space is a hard prob-
lem. We will present the workspace connectivity graph, a
method that approximates configuration space connectivity
with workspace connectivity. This graph can be constructed
very efficiently at high rates. Using the workspace con-
nectivity we check if the connectivity represented in the
roadmap differs from the current state of the environment.
If there is a difference, we modify the roadmap locally by
inserting or removing milestones and edges. The removal
of milestones is simple. We create and insert milestones by
using sampling-based motion planners. Configuration space
search becomes feasible when we guide the planners with
the found workspace connectivity.

C. Global planning

The remaining planning problem is extracting a global
plan that leads the mobile manipulator from its current
position to a goal. As we already devised methods to create
and maintain a roadmap in the previous two Sections this
last planning problem is a trivial graph search. We compute
the distance between adjacent milestones and use Dijkstra’s
algorithm on the elastic roadmap to extract the shortest
path. As the roadmap changes continuously, we have to
recompute the shortest path frequently. In our experiment the
roadmaps contained roughly 200 milestones and we achieved
satisfying rates. For very large roadmaps, this process should
be improved with an incremental graph search algorithm
such as D* [25].

IV. UPDATING ROADMAP CONNECTIVITY

In this Section we will present details on our method to
augment elastic roadmaps to deal with connectivity changes.
Fig. 2 serves as an introductory example for this process.
It shows how our method constructs a roadmap iteratively
from scratch. In all images, the grey background is the
representation of the environment. The upper row of the
figure shows five tunnels through the free workspace. These
tunnels are the result of a workspace analysis that detects
parts of the workspace where the current roadmap does not
represent the connectivity sufficiently. The lower row shows
the outcome of the method’s second step: a local planner
generates paths guided by the workspace tunnels. The paths
get integrated as milestones into an elastic roadmap. The final
roadmap approximates the connectivity of the environment
well as shown in the lower right image.

A. Approximating workspace connectivity

The workspace connectivity graph is an efficient represen-
tation of the connectivity of the environment. Its creation is
based on a sphere-based wavefront algorithm similar to the
one used in decomposition-based planning [26]. The algo-
rithm floods the free workspace with spheres (see Fig. 3b).
It tries to minimize the amount of spheres by greedily
preferring larger spheres over small ones. In a second step
we construct an undirected graph where nodes correspond



Fig. 2.

Tllustration of the roadmap generation process: Figure a - ) show the continuous generation of the roadmap from the start configuration in the

lower right corner to the goal in the upper left corner. Each figure shows a workspace tunnel (top) and the incremental elastic roadmap after the resulting

path was inserted (bottom)

to the sphere centers. We add edges between nodes if two
sphere overlap significantly (see Fig. 3c). Each path through
this graph is a sequence of overlapping spheres that can be
seen as a tunnel through the free workspace.

a) b) c)

Fig. 3.  Illustration of the workspace connectivity graph: a) shows a
sample environment with six passages. b) shows the decomposition of
the workspace with spheres. c¢) shows the resulting workspace connectivity
graph.

B. Generating paths in workspace

The incremental planner uses the workspace connectivity
graph to extract tunnels through the free workspace, These
tunnels then guide our underlying sampling-based planner.
We only consider tunnels that help us in the current mo-
tion generation task by (/) leading to the goal and (2)
distinguishing from the current elastic roadmap. We define
the cost of an edge e in the workspace connectivity graph
as a sum of the Euclidian distance and a penalty term
kcovered- Kcovered 18 @ constant that should be higher than
all other distances. It is only added if there is a milestone
inside one of the spheres incident to e. We summarize the
construction of the workspace connectivity graph and theis
cost function in Algorithm 1. After the graph construction we
apply Dijkstra’s algorithm to compute a minimal cost path.
The minimal cost path is a tunnel of overlapping spheres that
connect start and goal. The tunnel leads through unoccupied
workspace and is as short as possible. We then use several
of these tunnels to guide sampling-based motion planners
locally, create milestones, and add them to the roadmap.

Algorithm 1: CREATE_WGRAPH(pstart, Vioadmap)

1 Graph G = (V,E);Priority Queue Q < 0;Sphere Sstart
2 Sstart-CENMET <— Pstart

3 sstart.radius < DISTANCE(pqmn)

4 Q.PUSH(sstan,sstm.radius)

5 repeat
6
7
8
9

Stop < Q.POP()
G.ADD_VERTEX (s10p )

forall the s in V do

if OVERLAP(s,St0p) > I'min then

10 cost <— DISTANCE(s, stop)

11 forall the v in V,yuqnqp do

12 if s.COVERS_MILESTONE(v) then

13 | cost < cost+kcovered

14 G.ADD_EDGE(s, stop, cost)

15 for i=1to N-syp.radius do

16 Snew-center < SAMPLE_POINT_ON_SURFACE(sp)
17 Snew-Tadius <— DISTANCE (syop.center)

18 if spe.radius > ryin AND ~COVERED (spey, V) then
19 | QPUSH(snew, Snew-radius)

20 until Q=0

21 return G

V. IMPLEMENTATION

In this Section we will introduce an implementation of
the last two remaining components of our method. First we
will introduce a sampling-based motion planner that can be
guided efficiently by tunnels in the workspace connectivity
graph. Then we will introduce a sensor-based world repre-
sentation that can be updated at the required rates.

A. Locally guided motion planning to find connectivity

Generally, all sampling based motion planners can be
used in our method provided they satisfy the following two
requirements: first, the planner needs to generate paths that
satisfy task constraints. Second, the planner should be able
to use workspace information to guide sampling.



In our implementation we integrate the exploring / exploit-
ing tree (EET) planner [13]. The EET satisfies both stated
conditions. The EET accommodates task-space constraints
easily, although this was not explicitly stated in the original
publication. The EET samples task frames and then grows
a search tree in configuration space. By restricting the
sampling of task frames to those satisfying task constraints
the EET only searches paths that lie completely on the task
manifold.

The second requirement is that sampling can be guided
efficiently by workspace information. While in many cases
the guidance of free workspace is helpful, sometimes it can
lead the planner in wrong directions. The key of the EET
planner is that it adaptively balances the usage of information
(which is exploitation) with a broader search in configuration
space (which is exploration). This balancing lets the planner
rely on workspace information as much as possible if the
information is helpful. In regions where the information is
misleading the planner relies less on it and searches more
broadly. The adaptive usage of workspace information lets
the EET perform up to three orders of magnitude better than
standard RRT planners [13], on a large number of realistic
problems.

Once the EET finds a new path the algorithm places mile-
stones at an regular interval Aq into the elastic roadmap. Each
milestone becomes an initial configuration for a controller
that reacts to changes in the environment.

B. Environment representation

As our planner is incremental, we need a sensor-generated
representation that we extend efficiently with the measure-
ments of on-board RGB-D sensors. We use a distance
function computed over a 3D voxel grid [27]. This function,
which contains the distance to the closest obstacle, can
be updated incrementally in constant time with a brushfire
algorithm [28]. The distance function also allows for efficient
collision checking, which we need for the local sampling-
based motion planning. We approximate the robots volume
with bounding spheres and test possible collisions for each
sphere separately.

VI. EXPERIMENT

In this real-world experiment we show the incremental
elastic roadmap is able to satisfy our three initially stated
requirements for motion generation. We show the method is
able to

« satisfy task constraints. The robots carries a tray while
avoiding obstacles. During motion it has to solve a
whole-body planning task of lowering the tray to avoid
collisions.

o deal with unpredictable dynamics. The robot reacts to
appearing as well as disappearing connectivity in the
environment. The robot handles appearing obstacles in
the environment but also the removal of previously seen
obstacles.

« rely only on-board sensors. In the experiment the robot
uses only the sensor data from one RGB-D camera
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Fig. 4. Sketch of the experiment with walls W| — W labeled for explanation.
Start (S) and Goal (G) and intermediate position (P) are shown in red. Wy
is moved when the robot reaches P.

mounted on-board. The robot has no prior information
about the structure of the environment.
In the next section we will discuss the setup of the experi-
ment and afterwards evaluate the results.

A. Setup

For the experiment we implemented the proposed method
on a mobile manipulator consisting of a Nomad XR4000
base and a Barrett WAM arm, resulting in a robot with ten
degrees of freedom. Mounted on the base is an Asus Xtion
Pro RGB-D sensor which obtains depth information in front
of the robot.

The goal of the experiment is an orientation constrained
pick and place task: The mobile manipulator moves a tray
upright to a goal location. The mobile manipulator starts
with no information about the environment and assumes
the unknown environment is free of obstacles. During the
experiment a person moves a wall. The robot has no access
to global localization during motion.

Figure 4 shows the setup of the experiment. The robot is
standing in front of wall W; and oriented towards it. The
goal of the experiment is to bring the mounted tablet to the
goal position behind wall W;. The robot has a limited sensing
range and only observes wall W; in the beginning. Due to
the setup the robot will first choose a path to the right of
wall Wj. Once it reaches a position (P) where it can observe
this path is blocked a person moves wall Wy to the border of
the scene. This frees the passage below a curtain. The robot
proceeds on a path around the left of W to the goal.

In total the experiment contains three different sources of
unpredictable dynamics: First, as the robot starts without
prior knowledge, it integrates new measurements continu-
ously in its world model. Every detection of a new obstacle
represents a change to the robots perceived environment and
invalidates previously planned paths. Second, the manual
removal of a wall opens up connectivity that was blocked
before. The robot has to notice the change of connectivity
and react by planning a new alternative locally. Third,
there are additional dynamics present because of the robots
odometry error. Without global localization, the world is
moving constantly relative to the robot. The roadmap also
has to adapt to this motion.

B. Evaluation

The experiment is depicted in Figure 5. After 9s the
planner finds the two paths which describe the connectivity



of the scene at the beginning. After an initial period of
switching between these two paths to map out the initial
scene the robot starts to move on a path to the right of
wall W; and detects walls W, and W3. The planner reacts
to the change by removing all paths around the right of W
and chooses a path around Wy at 152s. A person moves Wy
to the border of the scene and enables a new disjoint path
alternative. The robot continues on its path and observes that
Wy is missing. The planner adapts the current path to pass
below the curtain at 187 s and generates a shortcut through
the freed space at 2165s. The robot passes below the curtain
at 296s and retracts the arm to avoid collision. It continues
on the path and reaches the goal at 405 s.

The experiment shows that the method continuously finds
new connectivity at responsive rates. It approximates the
connectivity of the scene throughout all stages of the exper-
iment. At the beginning the planner is able to find the two
initial path possibilities in quick succession. Both significant
changes in connectivity are incorporated into the roadmap:

o The restriction of the connectivity to one possibility

after the detection of wall W, and Wj.

o The appearing connectivity after wall W, is removed.
The experiment also highlights the necessity of local feed-
back to preserve the connectivity of the roadmap. The initial
paths are adapted to the continuous detection of W and Wjy.
During the experiment the base of the mobile manipulator
is subject to significant odometry error. The roadmap is
able to compensate this position uncertainty with feedback
as well. During the experiment the mobile manipulator
never has to ’stop and think’ except for a short time of
initial roadmap construction. After initialization the roadmap
always supplies alternative paths and the robot fulfils the task
in one continuous motion.

VII. CONCLUSION

We presented an incremental, sensor-based motion gener-
ation method, suitable for problems in mobile manipulation.
The key contribution of this methods consists in the division
of the motion generation problem into three sub-problems:
addressing continuous changes in the world, addressing
connectivity changes, and finally obtaining global motion.
By dividing the problem in this fashion, we can employ the
most appropriate and efficient method for solving each sub-
problem. As a result, the method is able to efficiently gen-
erate global, task-constrained, and reactive feedback plans.
The generation and execution of these plans is based on a
world model the robot acquires throughout its motion. We
demonstrate the effectiveness of this approach on a real-
world manipulator performing a constrained end-effector task
in a complex and unpredictably changing environment. The
proposed method can fail because the underlying map only
stores the last known state of the world. This map might be
in a state where all paths to the goal are blocked even if
there is a path to the goal. To handle these cases, we have to
integrate our previous results on reasoning about uncertainty
in an elastic roadmap planner [22]. This is left for future
work.
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