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Abstract

We present an approach for learning state representations in multi-task reinforce-
ment learning. Our method learns multiple low-dimensional state representations
from raw observations in an unsupervised fashion, without any knowledge of which
task is executed, nor of the number of tasks involved. The method is based on a
gated neural network architecture, trained with an extension of the learning with
robotic priors objective. In simulated experiments, we show that our method is
able to learn better state representations for reinforcement learning, and we analyze
why and when it manages to do so.

1 Introduction and Related Work

(a) (b)
Figure 1: Slot car racing – the agent
has learn how to drive any of the cars
as far as possible (left), based on its raw
observations (right).

Effective reinforcement learning hinges on an appropriate
state representation for a particular task. Whereas state
representations are commonly hand-crafted, novel learning
methods are able to extract state representations from raw
input data, for example from images (Lange et al., 2012;
Mnih et al., 2015; Jonschkowski & Brock, 2015; Watter
et al., 2015; Levine et al., 2015). Most of these methods
focus on policy and representation learning for single tasks
and therefore exhibit limited generalization capabilities.

In this paper, we present MT-LRP, an algorithm for learn-
ing state representations for multiple tasks by learning with robotic priors. MT-LRP is able to
acquire different low-dimensional state representations for multiple tasks in an unsupervised fashion.
Importantly, MT-LRP does not require knowledge about which task is executed at a given time or
about the number of tasks involved. This is an important requirement for robotic life-long learning,
where robots should be able to determine autonomously if a task requires a separate state represen-
tation (grasping a pen is different from opening a door) or not (grasping a red or brown cup can be
achieved with the same state representation). The representations learned with MT-LRP enable the
use of standard reinforcement learning methods to compute effective policies from few data.

MT-LRP is implemented as two neural networks, coupled by a gating mechanism (Sigaud et al., 2015)
as illustrated in Figure 2. The first network, χ , detects which task is being executed and selects the
corresponding state representation. The second network, ϕ , learns task-specific state representations.
This gated network architecture is similar to the one proposed by Droniou et al. (2015). Their network
∗The first two authors contributed equally to this work.
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simultaneously learns discrete classes jointly with continuous class variations (called submanifolds)
in an unsupervised way. In our approach, we learn discrete tasks rather than discrete classes; we
learn task-specific state representations rather than class-specific submanifolds. We train the two
coupled networks simultaneously using the robotic priors learning objective (Jonschkowski & Brock,
2015), exploiting physics-based prior knowledge about how states, actions, and rewards relate to each
other. Both networks learn from raw sensor data, without supervision and solely based on the robot’s
experiences.

Figure 2: Overview of the gated network for state representation learning for multiple tasks.

We show in simulation experiments that MT-LRP is able to learn multiple state representations and
task detectors from raw observations and that these representations allow to learn better policies from
fewer data when compared with prior state representation learning methods. Moreover, we analyze
the contribution to this result of each the method’s individual components.

2 Multi-Task State Representation Learning: MT-LRP

We formulate MT-LRP in a reinforcement learning (RL) setting using a Markov decision process
(MDP) (S,A,T,R,γ). We consider an episodic setting with episodes of finite length, a continuous
state space S and a discrete action space A.

State Representation Learning for Reinforcement Learning We assume that the agent cannot
directly observe the state s but only has access to observations o ∈ O, which are usually high-
dimensional and contain task-irrelevant distractors. This requires the agent to extract the state
from observations by learning an observation-state-mapping ϕ : O→ S, and use the resulting state
representation S to solve the RL problem. To learn the state representation, we apply learning with
robotic priors (Jonschkowski & Brock (2015), from now on referred to as LRP). This method learns
ϕ from a set of temporally ordered experiences D = {(ot ,at ,rt)}d

t=1 by optimizing an objective
function LRP(D,ϕ) that expresses different priors about suitable state representations for robot
RL. We optimize it using gradient descent, assuming ϕ to be differentiable. For more information
regarding the robotic prior objective, we refer the reader to the supplementary material.

Multi-Task State Representations Consider a scenario in which an agent is learning multiple
distinct tasks. For each task τ ∈ {1, . . . ,T}, the agent now requires a task-specific policy πτ : Sτ → A.
We approach the problem by learning a task-specific state representation ϕτ : O→ Sτ for each policy,
and a task detector χ which determines the task, given the current observation. We will consider a
probabilistic task-detector χ : O→ [0,1]T that assigns a probability to each task being active.

In order to solve the full multi-task RL problem, we must learn χ, {ϕτ}τ∈{1,...,T} and {πτ}τ∈{1,...,T}.
We propose to address this problem by MT-LRP, a method that jointly learns χ and {ϕτ}τ∈{1,...,T}
from raw observations, actions, and rewards. MT-LRP then uses the state representations {ϕτ} to
learn task-specific policies {πτ}τ∈{1,...,T} (using standard RL methods), and switches between them us-
ing the task detector χ . To solve the joint learning problem, MT-LRP generalizes LRP (Jonschkowski
& Brock, 2015) in the following regards: (i) we replace the linear observation-state-mapping from
the original method with a gated neural network, where the gates act as task detectors that switch
between different task-specific observation-state-mappings; (ii) we extend the list of robotic priors
by the prior of task coherence, which allows us to train multiple task-specific state representations
without any specification (or labels) of tasks and states.
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Gated Neural Network Architecture We use a gated neural network architecture as shown
schematically in Fig. 2. The key idea is that both the task detector χ as well as the state repre-
sentation ϕ are computed from raw inputs. However, the output of the task detector gates the output
of the state representation. Effectively, this means the output of χ(o) decides which task-specific
state representation ϕτ is passed further to the policy, which is also gated by the output of χ(o).

Formally, χ(o) = σ(χpre(o)) is composed of a function χpre with T -dimensional output and a softmax
σ that ensures that χ computes a proper probability distribution over tasks. The probabilities are then
used to gate ϕ . To do this, we decompose ϕ into a pre-gating function ϕpre that extracts features
shared across all tasks (i.e. ”multi-task” in the sense of Caruana (1997)), and a T ×M×N gating
tensor G that encodes the T (linear) observation-state mappings (M = dim(s) and N is the output
dimension of ϕpre). The value of the state’s i-th dimension si computes as the expectation of the dot
product of gating tensor and ϕpre(o) over the task probabilities χ(o):

si = ϕi(o) =
T

∑
k=1

χk(o) 〈Gk,i,:,ϕpre(o)〉. (1)

Learning Objective To train the network, we extend the robotic prior loss LRP by a task-coherence
prior Lτ :

L= LRP(D,ϕ)+ωτLτ(D,χ), (2)

where ωτ is a scalar weight balancing the influence of the additional loss term. Task coherence is the
assumption that a task only changes between training episodes, not within the same episode. It does
not presuppose any knowledge about the number of tasks or the task presented in an episode, but it
exploits the fact that task switching weakly correlates with training episodes. It applies directly to the
output of the task detector, χ(o), and consists of two terms:

Lcon+sep
τ = Lcon

τ +Lsep
τ

= IE
[
H(χ(ot1),χ(ot2))

∣∣∣ episodet1 = episodet2

]
+ IE
[
e−H(χ(ot1 ),χ(ot2 ))

∣∣∣ episodet1 6= episodet2

]
,

(3)

where H denotes the cross-entropy H(p,q) =−∑x p(x) logq(x). The first term Lcon
τ enforces task

consistency during an episode. We use it to penalize χ if it assigns different task distributions to
inputs ot1 , ot2 that belong to the same episode. The second term Lsep

τ expresses task separation and
encourages χ to assign tasks to different episodes. This loss is complementary to task consistency, as
it penalizes χ if it assigns similar task distributions to ot1 , ot2 from different episodes.

3 Experiments
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Figure 3: Reinforcement learning curves
(mean and standard error) for different state
representations for the two-slot car scenarios
(static visual cue).

We evaluate MT-LRP in the multi-task slot-car rac-
ing scenario (inspired by Lange et al. (2012)), where
the agent controls one of multiple cars (Figure 1),
with the goal of traversing the circuit as fast as pos-
sible without leaving the track due to speeding in
curves. However, the agent does not know a priori
which car it controls, and only receives the raw vi-
sual signal as input. Additionally, uncontrolled cars
driving at random velocity, act as visual distractors.
We turn this scenario into a multi-task problem in
which the agent must learn to control each car, where
controlling the different cars corresponds to separate
tasks. To indicate the car that the agent controls, we
indicate a picture of the car in the upper left corner.
We provide the technical details of our experimental
set-up as well as additional experiments, including
a second mobile navigation scenario, in the supple-
mentary material.
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Figure 5: Reinforcement learning perfor-
mance in the three-slot car scenario with static
visual cue.
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Figure 6: Task coherence: Average reward
per episode (8000 samples).

3.1 Results

We will now present the main results of our experiments: (i) we show that MT-LRP enables the
agent to extract better representations for RL; (ii) we provide insight in how the learner detects/learns
task and state representations; (iii) we show the contribution of each of the task-coherence loss terms.

MT-LRP Extracts Better State Representations for RL Figure 3 shows the learning curves for
RL based on state representations learned by the different methods in the two-slot-car scenario (static
visual cue condition, see supplementary material). No method reaches the performance of the upper
baseline, mainly due to aliasing errors resulting from the low image resolution. MT-LRP gets very
close to the performance of the upper baseline, especially for very low amounts of training data
(d < 2500), whereas LRP does not even attain this level of performance for the full training set
d = 8000 as LRP can only learn to extract the position of all cars, not the relevant one. The gap
between MT-LRP and LRP increases even more if we add another car (Figure 5).
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Figure 4: State representation learned
per task (different markers) and per gate
unit (different colors)

MT-LRP Detects All Tasks and Learns Good State
Representations To gain more insight into what is
learned, we analyze the state representations extracted
by MT-LRP in Figure 4. Each point in the figure cor-
responds to one observation, markers indicate the task
and colors the most active gate unit. We see that the first
gate unit (blue) is always active for task 1 (circle), and
the second gate unit for task 2, and that the states reflect
the circular structure of the slot car racing track. We thus
conclude that MT-LRP has learned to identify the tasks
and to represent the position of each car on the track.

Task-Consistency is Critical for Learning Perfor-
mance To understand the influence of the different task-
coherence prior variants, we compared their performance
in Figure 3.1. We see that relying solely on the robotic
priors gives poor results, mainly because the gate units are not used properly: more than one gate unit
is activated per task (χ has high entropy). Adding the task-separation prior forces the network to use
as many gates as possible (5 in our case), leading to bad state representations. Interestingly, using
task consistency only gives roughly the same result as using task consistency and task separation.
This indicates that the robotics prior loss is sufficient to encourage the learner to separate different
tasks: however, the task-consistency loss is required to guide the learned in identifying the tasks.

4 Conclusion

We have presented MT-LRP, a method for multi-task state representation learning with robotic priors.
The method learns in an unsupervised fashion, solely based on the robots own observations, actions,
and rewards. Our experiments confirmed that MT-LRP is effective at simultaneously identifying tasks
and learning task-specific state representations. This capability is beneficial for scaling reinforcement
learning to realistic scenarios that require dedicated skills for different tasks.
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Supplementary Material

Learning with Robotic Priors

We describe the learning with robotic priors (Jonschkowski & Brock (2015) used by MT-LRP. This
method learns ϕ from a set of temporally ordered experiences D = {(ot ,at ,rt)}d

t=1 by optimizing the
following loss:

LRP(D,ϕ) = ωtLtemp.(D,ϕ)+ωpLprop.(D,ϕ)+ωcLcaus.(D,ϕ)+ωrLrep.(D,ϕ). (4)

This loss consists of four terms, each expressing a different prior about suitable state representations
for robot RL. We optimize it using gradient descent, assuming ϕ to be differentiable. We now explain
the four robotic prior loss terms in Eq. (4).

Temporal Coherence enforces states to change gradually over time (Wiskott & Sejnowski, 2002):

Ltemp.(D,ϕ) = IE
[
‖∆st‖2

]
,
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where ∆st = st+1− st denotes the state change. (To increase readability we replace ϕ(o) by s.)
Proportionality expresses the prior that the same action should change the state by the same magnitude,
irrespective of time and the location in the state space:

Lprop.(D,ϕ) = IE
[
(‖∆st2‖−‖∆st1‖)

2
∣∣∣ at1 = at2

]
.

Causality enforces two states st1 ,st2 to be dissimilar if executing the same action in st1 generates a
different reward than in st2 .

Lcaus.(D,ϕ) = IE
[
e−‖st2−st1‖

2
∣∣∣ at1 = at2 ,rt1+1 6= rt2+1

]
.

Repeatability requires actions to have repeatable effects by enforcing that the same action produces a
similar state change in similar states:

Lrep.(D, ϕ̂) = IE
[
e−‖st2−st1‖

2‖∆st2 −∆st1‖
2
∣∣∣ at1 = at2

]
.

Additionally, the method enforces simplicity by requiring s to be low-dimensional.

Note that learning with robotic priors only makes use of the actions a, rewards r, and temporal
information t during optimization, but not at test time for computing ϕ(o) = s. Using a, r and t in
this way is an instance of the learning with side information paradigm (Jonschkowski et al., 2015).

Slot-Car Racing

Experimental Set-Up

The agent controls the velocity of one car (see Fig. 1), receives a reward proportional to the car’s
velocity, chosen from [0.01, 0.02, . . . , 0.1], and a negative reward of −10 if the car goes too
fast in curves. The velocity is subject to Gaussian noise (zero mean, standard deviation 10%) of
the commanded velocity. All cars move on independent lanes and do not influence each other.
The agent observes the scenario by getting a downscaled 16x16 RGB top-down view (dimension
N = 16×16×3 = 768) of the car circuit (Fig. 1(b)).

In our experiments, there are two or three cars on the track, and the agent controls a different one
in every episode. To recognize the task, the agent must be able to extract a visual cue from the
observation which correlates with the task. We study two types of visual cues:
Static Visual Cue: The arrangement of cars stays the same in all episodes and a static visual cue (a
picture of the controlled car) in the top-left image corner indicates which car is currently controlled.
Dynamic Visual Cue: The agent always controls the same car (with a certain color), but in each task
the car is located on a different lane (as in Fig. 1(b)).

The results for the static-visual-cue experiment are presented in the main part of the paper, and for
the dynamic-visual-cue experiment below.

Data Collection and Learning Procedure: The agent collects 40 episodes per task, each episode
consisting of 100 steps. To select an action in each step, the agent performs ε-greedy exploration by
picking a random action with probability ε = 0.3 and the best action according to its current policy
otherwise. The agent computes a policy after every τ episodes, by first learning the observation-state
mapping ϕ (state representation) and then computing policies π1, . . . ,πτ (based on the outcomes
of the learned χ and ϕ). To monitor the agent’s learning progress, we measure the average reward
the agent attains on T test episodes, i.e. one test episode of length 100 per task (using the greedy
policy), amounting to 8000 experiences in total. To collect sufficient statistics, the whole experiment
is repeated 10 times.
Policy Learning: We consider the model-free setting with continuous states S, discrete actions A and
solve it using nearest-neighbor Q-learning kNN-TD-RL (Martín H et al., 2009) with k = 10. More
recent approaches to model-free RL would be equally applicable (Mnih et al., 2015).
Learning Strategies and Baselines: We compare five strategies. We run a) MT-LRP with 5
gate units (two/three more than necessary), state dimensionality M = 2 and using Lcon+sep

τ as task-
coherence prior. We compare MT-LRP to several state representation methods; for each method we
evaluate different M and report only the best performing M: a) robotic priors without gated network,
LRP (M = 4), b) principal components analysis (PCA) on the observations (M = 20) and c) raw
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observations (M = 768). Additionally, we evaluate d) a lower baseline in the form of a randomly
moving agent and e) an upper baseline by applying RL on the known 2D-position of the slot car
under control (M = 2). In Figure 3, the random baseline was omitted as it ranges around an average
reward of −84.9 with standard error 0.72.

We use the same RL algorithm for all methods. To learn the state representations with robotic priors,
we base our implementation on Theano and lasagne, using the Adam optimizer with learning rate
0.005, batch size 100, Glorot’s weight initialization and ωt = 1,ωp = 5,ωc = 1,ωr = 5,ωτ = 10.
Moreover, we apply an L1 regularization of 0.001 on ϕ .
Additionally, we analyze the contribution of task coherence priors by applying MT-LRP to the full
set of 8000 experiences a) without task-coherence, b) with task consistency Lcon

τ only c) with task
separation Lcon

τ only) and d) without task consistency and separation Lcon+sep
τ .

Results: Dynamic Cue Scenario
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Figure 7: Reinforcement learning curves
(mean and standard error) for different state
representations for the two-slot car scenarios
(dynamics visual cue).

The results for the dynamic-visual-cue scenario are
shown in Figure 7. We see that LRP-4 (i.e. with state
dimensionality 4) performs on par with MT-LRP. We
hypothesize that, for the dynamic cue, LRP is able to
extract the position of the car on regardless of which
lane it is in using a single linear mapping. Figure 8
confirms this hypothesis: LRP filters for the car’s
color (blue) along the track and assigns increasing
weights to these pixels which results in the extraction
of its position. It also assigns constant weights along
the track in the red channel using the lane change of
the two cars as an offset. This results in a mapping to
two circles similar to Fig. 4, where the state encodes
both the position and the task. Such a mapping can be
expressed by a linear function precisely because the
features that are relevant for one task do not reappear
in another task (e.g. a blue slot car in track 1 does
not appear in the task where the blue car is in track
2). However, there exists no equivalent linear mapping for the static-visual-cue variant of the slot-car
problem, because cars that are relevant for one task are also present in every other task.
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We can generalize from this insight as follows.
A single linear observation-state-mapping is suf-
ficient for multiple tasks if the state representa-
tion for every task can be extracted by a linear
function using only features that stay constant
for all other tasks. If this is the case, than there
is no need for decoupling the extraction of task
and state.

Mobile Navigation

In the mobile navigation scenario (Figure 9), we
study how MT-LRP scales to nonlinear prob-
lems. The agent has to navigate to the top-right
corner of a room, only receiving partial views as observations. To enable the agent to localize, MNIST
digits and a background pattern are printed on the ground, similar to the task proposed by Piater et al.
(2011). Different arrangements of numbers and background patterns then correspond to different
tasks.

Experimental Set-Up

The agent moves in a 60x60 pixel room by shifting up, down, left or right by 2 pixels. Motion is
restricted to a range of 50x50 pixels. On the ground of the room, we arrange 9 random MNIST
numbers, cropped to 20x20 pixels, in a 3x3 grid. As an observation, the agent receives a 20x20 image
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centered at the agent’s current location. The agent receives a positive reward of 100 when located in
the upper right region (x >= 30 and y >= 30) of the room, and a negative reward of 1 when trying
to move outside the 50x50 pixel range. We apply the agent to four tasks, each characterized by
a different arrangement of numbers. Additionally, each arrangement is combined with a different
background image (white, grey, horizontal and vertical stripes) in order to enable the task detector to
extract the task from a single partial view.

Data Collection and Learning Procedure: The agent collects 10 episodes per task, each episode
consisting of 50 steps. At the beginning of every episode, the agent is positioned at a random location
and then moves randomly. In this scenario, we omit the RL part, and only assess the learned state
representations visually, by comparing them to the ground truth position of the agent; our previous
work showed that a representation sufficiently close to the ground truth position enables successful
RL in such navigation scenarios (Jonschkowski & Brock, 2015).
Learning Strategies and Baselines: We apply MT-LRP to a network with 4 gate units and set the
hyperparameters to ωt = 1,ωp = 5,ωc = 2,ωr = 5,ωcon

τ = 10,ωsep
τ = 50.

Neural Network Structure: We use two convolutional neural networks of similar structure for
χpre and ϕpre, each consisting of a pair of convolutional/max-pooling layers (16 filters of size 5x5,
pool size 2x2) and a 32-dimensional fully connected layer mapping to the two-dimensional state
representation. For the convolutional and fully connected layers, we use reLU activations.

Results
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Figure 9: Mobile navigation scenario. Left: example room. Middle: example observations. Right:
State representations extracted by MT-LRP. Color encodes reward, form the activated gate.

Figure 9 shows the representations extracted in the mobile navigation task. We see that MT-LRP
identifies all tasks, but splits one task across two gates (resulting in five clusters and a task-detection
accuracy of 0.899). All except one representation approximate the square room structure with the
high-reward area in the upper right corner. However, dropping the task separation loss changes the
result: MT-LRP then uses fewer gates and tends to map representations for all tasks to a single
representation – LRP produces a similar result. The reason is the sufficiently high representational
power of the used convolutional network architecture. Once the task gets more complex the gated
structure is required, as shown in the slot-car experiments.
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