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Abstract— In many robotic applications, softness leads to
improved performance, robustness, and safety, while lower-
ing manufacturing cost, increasing versatility, and simplifying
control. The advantages of soft robots derive from the fact
that their behavior partially results from interactions of the
robot’s morphology with its environment, which is commonly
referred to as morphological computation (MC). But not all
MC is good in the sense that it supports the desired behavior.
One of the challenges in soft robotics is to build systems
that exploit the morphology (good MC) while avoiding body-
environment interactions that are harmful with respect to the
desired functionality (bad MC). Up to this point, constructing
a competent soft robot design requires experience and intuition
from the designer. This work is the first to propose a systematic
approach that can be used in an automated design process. It
is based on calculating a low-dimensional representation of an
observed behavior, which can be used to distinguish between
good and bad MC. We evaluate our method based on a set of
grasping experiments, with variations in hand design, controller,
and objects. Finally, we show that the information contained
in the low-dimensional representation is comprehensive in the
sense that it can be used to guide an automated design process.

I. INTRODUCTION

Soft robotics is a successful branch of robotics. In many
applications, softness leads to improved performance, ro-
bustness, and safety, while lowering manufacturing cost,
increasing versatility, and simplifying control [1], [2]. In spite
of these advantages, there currently is no systematic method
for exploiting the benefits of softness in robot design. At the
moment, human designers rely on experience and intuition
to design competent soft robots.

The advantages of soft robots derive from the way their
behavior is generated. As with traditional robots, the be-
havior of soft robots is affected by the control commands
a robot receives. However, this control-based behavior is
modified through compliant interactions of the robot with its
environment. These compliant interactions adapt the behavior
to a particular context, without the need for explicit control.
It is therefore important to note that the behavior of soft
robots is not exclusively the result of control, it partially
results from interactions of the robot’s morphology with
its environment. This latter part of the robot’s behavior,
stemming from interactions, is referred to as morphological
computation (MC) [3], [4].
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Fig. 1. Typical RBO Hand 2 grasp motion used to identify good and bad
MC. The grasp shown here is an instance of good MC, which means that
the compliance of the hand contributed to a firm grasp with a very simple
controller. Bad MC can be observed, if the object is not tightly held which
leads an increased interaction of the hand and the object, e.g., by slowly
slipping out of the hand. The goal of this paper is to differentiate the two
and make the results applicable in an automated design process.

But not all MC is good. The interactions between a soft
robot and the environment can also be harmful, for example,
if it un-does what control accomplished or simply causes
failure. We call this bad or ugly MC. Of course, MC can be
good if the control-based behavior is modified in a favorable
way (these informal definitions of good, bad, and ugly MC
will be stated more precisely in Sec. II). To illustrate this
with an example from soft manipulation: If MC leads to
the adaptation of a soft hand to the shape of an object that
results in a good grasp (see Fig. 1), we call that good MC.
If the compliance of the fingers lead to a less firm grasp,
we consider this bad MC. Both forms of MC describe hand-
object interactions, but only the former is desirable, while
the latter is to be avoided.

The automated design of soft robots must minimize bad
MC and maximize good MC, relative to a particular task. In
this paper, we propose for the first time a method to identify
good and bad MC from observed behavior. If the observed
behavior can be represented in some high-dimensional space,
our method identifies sub-spaces associated with good MC
and sub-spaces associated with bad MC. Such a criterion is
a first and important step towards a quantitative design of
soft robots.



We apply our method to soft grasping using an anthro-
pomorphic robot hand based on pneumatic soft continuum
actuators, known as RBO Hand 2, [5]. Compared to a rigid
manipulator, the design of a soft manipulator that is able to
safely grasp a variety of objects is less obvious. To visualize
this point, one can image a balloon slowly being filled
with air. If otherwise unconstrained, the balloon will expand
almost equally in all directions. For RBO Hand 2’s fingers,
this would be an undesired behavior. Hence, a thread was
carefully wrapped around the fingers in such a way that it
allows and expansion of the dorsal (outer) side of the fingers,
while it suppresses an expansion on the ventral (inner)
side [5]. As a result, the hand closes when the air pressure
is increased. Stated otherwise, certain degrees of freedom
(DOF) of the fingers were restricted, while others where
retained. The method proposed in this paper is designed
to automatically detect which DOFs should be suppressed
and which should be enhanced in order to achieve a desired
behavior with minimal control.

The method consists of two steps. First, the components
of the behavior that can only be attributed to the physical
hand-object interaction are extracted from the data. Second,
the covariance of the DOFs is calculated. We show, that this
form of dimensionality reduction can be used to distinguish
between good and bad MC in a way that is applicable in an
automated design process. The method is not limited to soft
manipulation but can be applied to soft robotics in general.

The next section presents MC in more detail, together
with a quantification for it. The quantification allows a more
formal understanding of good and bad MC. This is followed
by a presentation of our method, the experimental results,
and a discussion, before this work closes with conclusions.

II. GOOD VS. BAD MORPHOLOGICAL COMPUTATION

It has been shown that the physical properties of the
morphology (and their interaction with the environment) can
perform functions that are normally attributed to the brain,
and thereby, reduce the required computational complexity
significantly [3], [6], [7]. This is known as morphological
computation (MC) [4], [3].

Good MC are body-environment interactions which con-
tribute to the desired behavior in a way that reduces the re-
quired controller complexity. Bad MC are body-environment
interactions which make the desired behavior more difficult
to maintain (e.g., object slipping out of the hand due to
the hand’s compliance). We may define ugly MC as body-
environment interactions, which are neither clearly good
or bad. This will be discussed in more detail below (see
Sec. VII).

A. Quantifying Morphological Computation

We proposed an information-theoretic quantification of
MC in [8] that was successfully evaluated on muscles mod-
els [9]. In what follows, we will describe the concept behind
the measure used in this work based on the causal model
of the sensorimotor loop (SML) [10]. The left-hand side of
Fig. 2 displays a schematics which shows the interaction of

the agent’s controller, sensors, actuators, and environment.
It is important to note here, that we use the term world to
capture the body and environment (which is in alignment
with the agent-environment distinction used in reinforcement
learning). The right-hand side of Fig. 2 shows the causal
graph for the SML of a reactive system, in which the random
variables W , S, A, and W ′, refer to the current world state,
current sensor state, current actuator state, and finally, the
next world state (a discussion about non-reactive systems
with respect to MC is found in [8]). In the context of this
work, the world states W and W ′ are defined as the Cartesian
coordinates of each simulated joint (see Sec. V), and the
action state are the four air pressure channels that control
the motion of the hand. The causal graph is completed by
the three kernels α, β, and π, which represent the world
dynamics, sensor model, and policy. We denote a random
variable with a capital letter X , its instance with a lower-
case letter x, and its alphabet with a calligraphic letter X .
Hence, the random variable X takes values x ∈ X .
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Fig. 2. Left: Schematics of the sensorimotor loop (SML), which shows the
interaction between the controller/brain, actuators, sensors, and environment
(adapted from [11]); right: Causal model of the SML. W , S, A, W ′ refer to
the world, sensor, and actuator state of the current time step and the world
state of the consecutive time step

Let us assume that the world state at a given time step
does not have any influence on its state at the next time
step. This means, that in the diagram shown in Fig. 2,
the causal link between W and W ′ is not present. For
this case, we would argue that there is no MC, because
the robot’s state is fully determined by the controller’s
action. The quantification MCW uses the Kullback-Leibler
divergence DKL(p(w′|w, a)||p(w′|a)) (which corresponds to
the conditional mutual information I(W ′;W |A)) to measure
how much the observed behavior differs from the case in
which we assume that the world does not influence itself. It
is formally given by:

MCW =
∑

w′,w,a

p(w′, w, a) log2

p(w′|w, a)

p(w′|a)
. (1)

A full discussion of the measure and algorithm can be found
in [8], [9]. We can now describe good and bad MC more
formally in the next section.

B. Formal discussion of good and bad MC

The Eq. (1) can be rewritten in the following form

MCW = I(W ′;W |A) = H(W ′|A)−H(W ′|W,A). (2)



This shows that MCW is maximal, if the conditional entropy
H(W ′|A) is maximal (the influence of the second term is
discussed below), which means that the uncertainty about
the next world state W ′ given an action A must be large.
In the context of this work, maximizing H(W ′|A) could
result from a soft manipulator which changes its state in an
uncontrolled fashion, e.g. a hand which vibrates every time
it moves. This is something that should clearly be avoided.
The second term restricts this to some extent by forcing
the reduction of next world state’s uncertainty given the
previous world and action states, but the argument still holds
in principle. Not all behaviors that maximize the conditional
entropy H(W ′|A) while minimizing H(W ′|W,A) will be
beneficial, i.e. good in all scenarios.

The measure given in Eq. (1) is used in the analysis of
our method below. It is formalized for discrete systems only.
Hence, the data need to be pre-processed before MCW can
be applied. This is discussed next.

C. Calculating MCW on the recorded data

Estimating information theoretic quantities based on lim-
ited samples in high dimensional spaces is a challenging
problem, subject of ongoing investigations, and beyond the
scope of this work. To account for this problem in our
case, we chose to estimate MC only based on the Cartesian
coordinates of the finger tips. Eq. (1) is defined for discrete
systems, which means that a binning is required. We empir-
ically determined 300 bins for each coordinate and 10 bins
for the controller commands (see [9] for discussion).

III. IDENTIFYING GOOD AND BAD MC

The goal of this work is to find a method to systematically
identify DOFs that contribute to a high grasp success (good
MC), i.e. that allow for a high versatility with a simplified
control and to distinguish them from bad MC (those DOF
that impede good grasping). In other words, we want to
enhance compliance that contributes to a good grasp and
reduce compliance that reduces the grasp success. A scenario
is an automated design process in simulation, in which a
morphology is evaluated based on grasp attempts of several
objects. In a purely evolutionary setting, the morphological
parameters, e.g. the stiffness of the DOFs, would be open
to random modifications. Soft manipulators inherently have
many DOFs, which renders such an approach barely practi-
cal. Instead, a method to extract the characteristics of a grasp
behavior is required that can be used to guide an automated
optimization process.

In the following sections, we first motivate covariance
matrices as a method of dimensionality reduction and a way
to extract the characteristics of motions. The calculations are
performed on pre-processed data that only contain the hand’s
motion which results from the interaction of the hand with
the object (see Sec. III-B). To avoid artifacts, only a portion
of the recorded grasps was used, which is described the last
segment of this section.

A. Characterizing behaviors by their covariance

This section describes covariance matrices as a method of
dimensionality reduction that captures the characteristics of
grasps, and hence, can be used to distinguish between good
and bad MC. This is motivated by other work (e.g. [12]),
which showed that covariance matrices can be used to obtain
a meaningful hierarchical clustering of, e.g. humanoid behav-
iors. In this particular example, different crawling behaviors
were clustered closer together based on the covariances.
The distance between clusters reflected the difference in the
behaviors, e.g. crawling vs. climbing out of a pit.

The hypothesis is that large covariance coefficients which
are shared among experiments with high grasp success relate
to useful compliance and should be reinforced during the
design process. Likewise, large coefficients shared among
unsuccessful grasps should be suppressed, because they
indicate harmful compliance. We will discuss this in more
detail further below (see Sec. VII). We first describe how we
calculate the covariance matrix of a grasp, before we discuss
how the data are pre-processed. The covariance matrix of a
data set B ∈ RT×N is given by

C(B) = (cij)i,j=1,2,...,N =
1

T

T∑
t=1

(Bt,i − B̄i)(Bt,j − B̄j),

where Bt,j refers to the entry in the t-th row and j-th column
of B, and B̄j = 1

T

∑T
t=1Bt,j is the mean value of the j-th

column. In the context of this work, the matrix B contains the
x, y, z values of each coordinate frame of the simulated hand
(see Fig. 3) over time. The index j refers to each coordinate,
hence Bt,1, t = 1, . . . , T is the recorded data for x1 for
an entire grasp. This means that the covariance coefficient
c36 contains the covariance of the first and second frame’s
z coordinate. Hence, a large positive coefficient c36 would
mean that the movements along the z-axis of the first and
second frame should be highly correlated for a successful
grasp. In an automated setting, the coupling of these two
frames’ movements would be enforced by increasing the
stiffness along these DOFs.

B. Extracting motions that result from MC

We are interested in the interaction of a soft manipulator
with an object. Therefore, we pre-process the data before
calculating the covariance matrices in the following way.
For each combination of a RBO Hand and controller (see
below, Sec. V), we first record the prescriptive behavior,
which is the hand’s movement without any graspable object
present in the scene. We refer to this data set as Bp. The
recording of the grasp itself is denoted by Bg . The element-
wise difference of these two behaviors describes movements
of the coordinate frames that are the result of the hand’s
interaction with the object and it is denoted by B = Bg−Bp.
Hence, the covariance matrix C(B) contains information
about correlations of movements that only relate to the soft
manipulator’s compliance.



C. Avoiding artifacts

A potential concern is that all recordings in which the
object was dropped early or not grasped at all, will not
differ significantly from the prescriptive behavior, and hence
B = Bg − Bp will be mostly zero. This can be avoided
if only a fraction of the time steps are taken into account,
which is why we evaluated different time frames in our
analysis. We chose to present the results based on 75 time
steps (excluding the 10 approaching time steps, see Sec. V)
to avoid a clustering based on grasp success vs. grasp failure
as well as a clustering only reflecting the object’s shape.

The next section describes the clustering method that was
used to visualize the similarities of different grasps based on
their covariance.

IV. VISUALIZING CLUSTERS OF GRASP BEHAVIORS

We used t-SNE [13] to obtain a two dimensional repre-
sentation of the covariance matrices C for visualization. This
method, t-Distributed Stochastic Neighbor Embedding, con-
structs pairwise similarities of the input data and visualizes
them in n dimensions, where n = 2 is chosen in this work.
These visualizations capture the local structure of the data,
while also revealing global structure such as the presence of
clusters at several scales. The results section will show the
obtained clusters colored with the grasp success (explained
next) and MCW (see Sec. II-A), but this information was
not used during the clustering itself.

A. Determining grasp success

The grasp success is determined by the average distance
of the object to the hand during the last 10 time steps of each
recorded behavior. The distance is measured between the
object’s geometric center and the coordinate frame located at
the first frame of the second finger (see Fig. 3). The object
size is then subtracted from the measured distance to ensure
comparability of the results for all objects. It was discussed
above, that the covariance matrices were only calculated on
a subset of the recorded data. This is not the case for the
grasp distance, which was always estimated on the last 10
time steps of each full recording.

The next section discusses how the data were acquired.

V. RBO HAND GRASP SIMULATIONS

We used a simulation of the RBO Hand in order to obtain
a large data set of fully observed grasping behaviors (see
Fig. 1). Recent improvements to simulation algorithms [14]
enable us to simulate complete grasp attempts in near
real-time. The simulator is implemented with the SOFA
framework [15] and relies on its Compliant module [14].
In this setup, soft hands are modeled as a tree of Cosserat
beams (i.e. kinematic chains with ball joints), to which a
collision surface is attached [16]. Fig. 3 (right-hand side)
shows the actual simulation model. Large trihedra indicate
the links (beam elements), purple trihedra the joint location
between two adjacent links. The surrounding wire-frame
is the collision mesh, which is attached to the links via
linear blend skinning and follow the motion of the actuator’s

“backbone”. Mechanical parameters are computed using a
recently published model [5].

Fig. 3. Left: different hand morphologies and the set of objects used
during the experiments; right: Illustration of the model used to simulate
soft hands: The trihedra indicate discrete links, adjacent ones are connected
by passively compliant ball joints (purple trihedra) in between. The surface
mesh is attached to the frames, and is used to compute collision and model
contact.

Using simulation makes it especially easy to obtain motion
data, e.g. fingertip frame motion. In addition, simulations
can be run in parallel, which results in a much larger data
set to conduct the investigation on. Another advantage of
using simulation is that the hand morphology can be changed
easily. For this paper, we created two variations of the
RBO Hand 2 (see Fig. 3, left-hand side) and simulated them
as well as the original hand. These three hands were com-
bined with three distinct motion primitives that implement
variations of the surface-constrained grasp (see Fig. 1). This
yields nine hand-controller combinations to compare. In the
morphology domain, the spread between the four fingers was
varied, and in the control domain the roll angle of the wrist
during the grasping motion was varied in {−15◦, 0◦, 15◦}.

A. Simulation data

In total, the simulated hand consists of 32 coordinate
frames (see Fig. 3). The dynamics of each finger (and thumb)
are modeled by five coordinate frames. The remaining 7
coordinate frames are distributed along the palm and used
to control the wrist and arm motion. For each frame, the
simulator records the pose, of which only the 3D positional
data are used in this work. The underlying assumption is
that the orientation of the coordinate frames can be recon-
structed from the x, y, z coordinates of consecutive frames.
Furthermore, as we are interested in analyzing grasping, we
transformed all coordinate frames into the wrist frame, which
means that the state of the hand is given by 31 coordinate
frames, and hence, by a vector bt ∈ R93.

We recorded the data for different hand designs, con-
trollers, objects, and object’s initial position (see Fig. 3
and previous section). The data include nine different hand-
controller configurations, eight different objects, and finally,
27 different initial positions (x, y, θ) for each object,
resulting in total 1944 recorded behaviors.

Each grasp is recorded for 300 time steps with a step width
of 0.01 s and can be divided into four phases: 1. approaching
of the object (hand moves downwards for 10 time steps),



2. grasping (30 time steps), 3. lifting (30 time steps), and
finally, 4. evaluation of the grasp stability (final time steps).
Hence, each grasp is captured in the matrix Bg = R300×93.

VI. RESULTS

We present the covariance matrices of the grasps clustered
with t-SNE (see Sec. IV) and colored by grasp success,
morphological computation, object type, and object initial
position. This allows to understand what kind of information
is stored in the covariance matrices and if it can be used to
distinguish between good and bad MC. For the sake of clarity
and because of space restrictions, we decided to only plot
and discuss the results for one RBO Hand and one controller
as the results hold for every other combination too.
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(a) Clustering of grasp behaviors, colored by grasp distance. Smaller
values (blue) correspond to better grasping The instances within the
gray ellipse are those of interest, with high grasp success and high
MC.

MCW

2

3

4

5

(b) Clustering of grasp behaviors, colored by MCW. Larger
values (red) relate to better grasping. The instances within the
gray ellipse are those of interest, with high grasp success and
high MC.

Fig. 4. Clustering of grasp behaviors, colored by grasp success (a) and
MCW (b)

The main results are shown in Fig. 4. Fig. 4(a) shows the
clusters colored by grasp success and Fig. 4(b) shows the
clusters colored by MCW. By comparing the two plots, it is
seen that the two large clusters resulting from the covariance
matrices, can be very well explained by good grasping with
high MC (highlighted with gray ellipse in background) and
unsuccessful grasps.

To verify that the clustering cannot be equally well ex-
plained by the object shape or object initial position, we
also plot the clusters colored by these two parameters. Fig. 5

shows that neither the object’s shape nor its initial position
can be used to fully explain the clustering. It also seems that
the two sub-clusters of the cluster with high grasp success
and high MC can partly be explained by the object’s shape.
This means that, as can be expected, the covariance matrices
not only contain information about correlations of DOFs that
contribute to good grasping with high MC, but also some
information about the grasped object. The object’s initial
position (see Fig. 5) is least informative in describing the
two major clusters.
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Fig. 5. Top: This figure shows that there is some form of distinction
possible based on the shape of the grasped object. Yet, the objects do not
explain successful vs. unsuccessful grasping and high vs. low MC (compare
with Fig. 4(a) and Fig. 4(b)); bottom: This figure shows that the clustering
cannot be explained by the object’s initial position.

VII. DISCUSSION

Fig. 4 and Fig. 5 showed that a clustering based on
the covariance matrices of the difference between grasping
and its corresponding prescriptive behavior leads to clusters
which are best explained by high grasp success and high
MC (based on the quantification MCW). The local relation
of the instances reflect the similarities of the corresponding
covariance matrices, which is what was referred to as sub-
spaces of good and bad MC in the introduction.

If we look at representative examples of covariance ma-
trices from sub-spaces with high density, two conclusions
can be drawn. First, the matrices have a regular structure,
which means that there is a high regularity in how the DOFs
interact. Second, successful grasps have stronger positive
covariance coefficients and weaker negative coefficients com-
pared to less successful grasps. Ugly MC can now be defined
as large coefficients, which are similar for successful and
less successful behaviors, and hence, are not conclusive. To
summarize, we can identify coefficients that relate to good,
bad, and ugly MC in clusters with high density. Together
with the regularity of the matrices, this suggests that the
covariance coefficients can be used in an automated design



process to guide modifications of the morphology (which is
discussed next).

A. Covariance coefficients can guide an automatic design
process

Positive coefficients correspond to DOFs which increase
and decrease together. Negative coefficients correspond to
DOFs which act reversely, i.e. if one increases, the other
decreases. The latter could correspond to a finger movement,
in which one of the coordinate frames moves upwards
(positive z-movement) while the other coordinate frame
moves downwards (negative z-movement). This would be an
example of compliance that un-does what the controller tried
to achieve. As the hand closes (e.g. negative z-movement of
one the finger’s coordinate frame) the “harmful” compliance
of the finger (e.g. positive z-movement of another coordinate
frame) prohibits a firm grasp.

A comparison the covariance matrices reveals that stronger
negative coefficients correspond to less successful and
stronger positive correlations correspond to successful grasp-
ing. Given the density of the sub-spaces (see Fig. 4), it
should be possible to identify positive coefficients which
are most dominant over all successful grasps. The related
DOFs should be enforced, e.g. by increasing the stiffness
between them. Strong positive coefficients that are dominant
in all unsuccessful grasps mean that the relative motion of the
related DOFs should be softened. Negative coefficient can be
used analogously. Hence, the dimensionality reduction based
on covariance matrices can support a systematic modification
of the morphological properties (e.g. stiffness) of a soft robot
in an automated design process.

The final section concludes this work and gives an outlook
on currently ongoing work.

VIII. CONCLUSIONS

Currently, the success of a soft robot design relies on the
expertise and intuition of its designer. The reason is that, up
to this point, there is no systematic way to analyze how the
compliance of a soft robot contributed to a desired behavior.
Such a systematic approach is the first required step in an
automated design process of soft robots. This work is the
first to propose such a method and to discuss how it could
potentially be used to guide an automated design process.

We described physical processes which result from the
interaction of the soft materials with the environment and are
beneficial as good morphological computation. Naturally, in
soft robots, there are body-environment interactions that are
harmful, which means that they might render the actions sent
to the robot worthless. We referred to this form of compliance
as bad morphological computation. Hence, for an automated
design process of soft robots, we need a systematic way to
identify good and bad morphological computation based on
observations of the robot’s interaction with its environment.

For this purpose, we conducted a series of grasp experi-
ments, with variations of RBO Hand 2 shape, object, object
initial position, and controller. We showed that the covariance

matrices calculated on the difference of grasping to prescrip-
tive behavior contain information that allows to distinguish
between good and bad morphological computation based
on observations alone. We discussed how the covariance
coefficients relate to the compliance of the corresponding
degrees of freedom and how the coefficients can be used to
guide an automated design process.

The next step is to evaluate the proposed method in an
automated process to design a soft manipulator for a specific
task. To this point, we are able to identify good and bad MC,
i.e. to distinguish DOFs which support the desired behavior
form those which harm the success. The final step is to
use this information in a simulated set-up to modify the
parameters of, e.g. a simulated hand. In particular, the co-
variance coefficients of grasps in clusters with high density
(small differences between the C-matrices), that also have
high MC and a good grasp, will be used to modify the
softness/stiffness of RBO Hand 2’s DOFs. This is the topic
of currently ongoing research.
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