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Abstract— Environment-constrained grasping exploits bene-
ficial interactions between hand, object, and environment to
increase grasp success. Instead of focusing on the final static
relationship between hand posture and object pose, this view of
grasping emphasizes the need and the opportunity to select the
most appropriate, contact-rich grasping motion, leading up to
a final static grasp configuration. This view changes the nature
of the underlying planning problem: Instead of planning for
static contact points, we need to decide which environmental
constraint (EC) to use during the grasping motion. We propose
a method to make these decisions based on depth measurements
so as to generate robust grasps for a large variety of objects.
Our planner exploits the advantages of a soft robot hand and
learns a hand-specific classifier for edge-, surface-, and wall-
grasps, each exploiting a different EC. Additionally, we show
how the model can continuously be improved in a contextual
multi-armed bandit setting without an explicit training and
test phase, enabling the continuous improvement of a robot’s
grasping skills throughout life time.

I. INTRODUCTION

Humans routinely exploit environmental contact during
grasping and manipulation: picking up a coin by sliding
it to the edge of a table, putting a key in a lock, or
getting peanuts from a bowl. Contact with the environment is
beneficial because it reduces the uncertainty present in free-
space positioning and creates easily measurable feedback
events [1]. The importance of this principle is reflected in
the recent popularity of compliant, under-actuated robotic
hands [2]–[4]. And even though these hands are designed to
exploit contact with the environment, the majority of existing
grasp planners do not incorporate these benefits. Instead, they
regard the environment as an obstacle and explicitly avoid
contact with it.

In this paper, we show how to plan grasps that leverage the
benefits of exploiting environmental contact. We characterize
the specific conditions under which contact-exploiting grasp
strategies are successful. This characterization is based on
feature descriptors extracted from depth data. Our approach
to grasp planning outsources the fine details of a grasp to the
soft hand, i.e. it exploits the shape adaptability of soft hands
and the possibility of extensively making contact with the
environment during grasping. As a result, the grasp planning
problem becomes much simpler and low dimensional. In-
stead of searching the configuration space of the hand for
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Fig. 1. The main focus of this paper is the visual detection of opportunities
in the environment to perform powerful candidate grasps that exploit the
environment and to decide based on a single depth image of an on-board
camera which of these grasps is the most promising to perform. To solve this
planning/decision problem in an data-efficient way, we use a multi-armed
bandit formulation that trades off exploration and exploitation.

suitable grasps, we only have to select the most suitable
of a small number of powerful contact-exploiting strategies:
edge-, surface-, and wall-constrained grasps.

We formulate grasp strategy selection as a multi-armed
bandit problem [5]. This allows us to learn outcome mod-
els for each strategy from scratch while also finding the
most promising strategy for each novel problem scenario as
quickly as possible based on prior experience. Among the
compared bandit algorithms, we show that UCB [22] with
Gaussian Processes performs best while modeling rewards
via k-NN and acting ε-greedy [6] is less susceptible to reward
disturbances. In contrast to traditional grasp planners, our
method does not require a priori knowledge in the form of
geometric models of the environment or object. Instead, it
plans directly on the sensor input of an RGB-D camera. We
estimate models for each grasp type that relate point feature
histograms [7] to grasp success. Although past grasping
methods have done this [8], our description explicitly in-
corporates information about the environmental features that
are relevant in a grasp. This paper contributes an experience-
driven modeling of grasp outcomes, a selection procedure
based on these strategy-specific models, and experiments
that show our method generating grasp strategies for an
anthropomorphic soft hand and a 7-DOF manipulator.

II. RELATED WORK

According to our contributions, we decompose the relevant
related work into three categories: publications that focus on
grasps that exploit the environment, work which represents
grasps based on sensor input to deal with novel scenarios,
and approaches that look at how to improve grasp perfor-



(a) Surface-constrained grasp for a box (b) Edge-constrained grasp for a CD (c) Wall-constrained grasp for a lemon

Fig. 2. The different grasping strategies: Each strategies consists of a series of controllers that are triggered based on contact or location events.

mance based on accumulated experience. For each category
we emphasize similarities and differences concerning the
problem at hand and the proposed solution.

A. Environmental Constrained Grasping

More traditional grasp planning techniques either ignore
the environment or treat it as an obstacle with which con-
tact must be avoided [9]. There are few grasp approaches
which take pre-grasp manipulations with the environment
into account, e.g. sliding flat objects across a table before
picking them up [10]. Other methods categorize the grasp
opportunities present in the environment, such as planes and
edges, and represent their topology in a graph structure [11]
but ignore the effect of object properties in grasp planning.
One reason for exploiting the environment are motion errors.
Compensating those errors via contact can be formalized
as an optimal control problem [12] or as a sampling-based
motion planning problem [13]. In contrast to this paper,
all these methods do not focus on how to generalize these
motions across a variety of objects.

B. Descriptors for Modeling Grasp Success

Since general models based on contact forces require a
lot of prior knowledge, a variety of grasp representations
have been proposed that describe the object’s local geometry
in a grasp-variant frame [8]. The advantage of the majority
of these representations is that they can be used with raw
sensor data, thus, allowing grasp planning for unknown
objects. Additionally, they can be learned from different
data sources including real-world trials, which circumvents
the problems that occur when relying on realistic physics-
based simulations [14]. Examples are matching depth tem-
plates [15], histogram-like features [16], or image-based
descriptors derived with convolutional architectures [17],
[18]. Our method is similar, but differs w.r.t. the fact that
our features exploit information of the relationship between
object and environment by aligning the depth data to the
main axis of the exploited EC. Another difference is that
our proposed solution must predict the outcome of an time-
extended contact interaction.

C. Grasp Selection as Exploration vs. Exploitation

The data-driven techniques cited above usually consider
a training phase, requiring a large set of grasp examples,

followed by a test phase in which the learned grasp model is
applied. We focus on the problem of acquiring grasp experi-
ences to make more informed decisions while concurrently
trying to grasp as successful as possible. Active learning ap-
proaches to grasping favor grasps that have a high probability
of success or large uncertainty. Slaganicoff et al. [19] learn
approach directions based on object dimensions, while Mon-
tesano et al. [20] use expected improvement as exploration
criteria to find the most promising grasping point based on
image features. Krömer et al. [21] were the first to use a
contextual bandit setting to find grasps. They estimate the
reward and its uncertainty of grasps in SE(3) via Gaussian
process regression and apply a variant of UCB [22] to choose
a grasp. Given a grasp model that is expensive to evaluate,
the bandit setting can also be used to find good grasps with
as few samples as possible. Laskey et al. [23] present a 2D
grasping model based on uncertainty in shape, pose, friction
coefficient, and gripper approach and explore grasps using a
Bayesian MAB algorithm. A similar model was extended to
3D [24]. Here, grasps are represented as local depth maps
along the approach direction. In both of these models the gap
between simulation and reality was not considered. Bandit
formulations are also used for large-scale grasp acquisition
on real robotic systems [17], [25].

III. CANDIDATE GRASPING STRATEGIES

We consider three different grasping strategies: surface-
constrained, edge-constrained and wall-constrained
grasps (see Fig. 2). All of these grasps are composed
by alternating between simple straight-line motions and
sensor event triggers, such as contact. This motion
representation is similar to finite state machines or hybrid
automata [26]. Its main advantage is the ability to reduce
uncertainty by introducing unambiguous discrete sensor
events.

The surface-constrained grasp strategy consists of a
top-down motion until the wrist-based force-torque measure-
ments exceed a fixed threshold. Subsequently, fingers are
closed while the hand is maintaining contact.

The edge-constrained grasp strategy starts with a similar
top-down movement until contact but then slides the object
towards an edge following a straight line. A location-based
event triggers upon arrival at the edge and fingers close.



(a) RGB-D sensor input (b) Surface grasp

(c) Edge grasp (d) Wall grasp

Fig. 3. Detected grasp strategies for a banana on a table: The camera image
is overlaid with the grasp frames and a mesh depicting the hand orientation.
The backs of the two books give rise to a possible wall grasp strategy.

This strategy allows the fingers to access the object from
underneath, which enables grasping heavy or thin objects.

The wall-constrained grasp strategy first goes into con-
tact with a surface and then pushes the object towards a
wall-like surface. As soon as another contact event triggers
the fingers close.

All strategies extensively exploit the environment during
grasping, which is especially suited for soft manipulators.
We use the RBO Hand 2 [4], a pneumatically actuated
anthropomorphic hand made out of silicone that inherently
adapts to the shape of a variety of objects when being
inflated. In contrast to traditional, stiff hands, unplanned
contacts do not necessarily lead to catastrophic outcomes.

Instantiating Candidate Strategies From RGB-D Input

We detect the opporunity to execute one of those grasp
strategies based on geometric features in the environment,
extracted from RGB-D sensor measurements [11]. A graph is
constructed whose nodes represent regions in the workspace
that are accessible within a single action: sliding, caging,
free-space movement, plus the three aforementioned grasps.
These regions are directly extracted from visual features,
e.g. sliding is related to planar patches, an edge grasp to a
convex edge, a wall grasp to a concave edge etc. Within this
graph a directed edge connects two nodes if it is possible
to transit from one action to another which depends on
hand pose and contact state (for details see [11]). Finally,
a graph search is used to find all possible paths that end in a
grasp. These paths can be reformulated as hybrid automata
and make up the set of candidate grasp strategies. While
previously [11] the object pose was assumed to be known a
priori, we now use a simple heuristic to determine what to
grasp: we use the largest segment close to the largest surface.
Fig. 3 shows an example scene with three detected candidate
strategies.

IV. GRASP FEATURES TO INFORM GRASP SUCCESS

The candidate grasp strategies are planned based on the
geometry of the environment and the rough location of the
object to be grasped; object knowledge is ignored. Although
in EC grasping the interactions with the environment dom-
inate the object-specific interactions, information about the
object is still crucial to predict grasp success.

To compute features for each of the three strategies, we
use different local grasp frames. The grasp frame for the
wall strategy is aligned with the normals of the wall and
support surface. The surface grasp’s frame is aligned with
the normal of the support surface and the orientation of the
hand. Finally, the frame for the edge strategy is aligned to the
direction of the edge and the normal of the adjacent plane.
These choices of grasp frames reflect the insight that the
success of the strategies is mostly invariant in the direction of
the contact normal of the environmental contact that is being
exploited. We crop the 3D points in the local neighborhood
of the candidate grasp frame and analyse three geometric
descriptors to characterize the associated grasp strategy:
Shape Distributions [27] are signatures that are based on
samples from a shape function such as the distance between
two random surface points or the angle between three points.
We use the distance measure and sample it 2000 times within
the grasp region. Distances are discretized into a histogram
of 128 bins, each representing a space of 3 mm.
Shape Histograms [28] decompose the 3D space into bins,
which can have the shape of shells, sectors or combinations
of them. We use 128 slices of 2 mm along the height axis
with the intention of capturing geometric properties that
influence grasp success. A wall grasp succeeds only if the
fingers can slip underneath the object which depends on
its flushness with the support surface. Since a depth sensor
will not measure points in case of these cavities, our shape
histogram should capture this property.
Point Feature Histograms [7] are a popular feature descrip-
tor for 3D object detection and recognition. They calculate
a signature based on the relation of 3D points and their
normal information. We use these histograms to characterize
the local neighborhood of the grasp frame.

We assume that similarity in these feature spaces also
translates to similarity in the resulting physics of the grasps.
This is an oversimplification, since effects of mass and
friction, for example, cannot be estimated from those fea-
tures. Still, when casting the problem of predicting grasp
success as a binary classification problem based on the
geometric descriptors, we can show that a substantial amount
of grasp outcomes can be predicted correctly (Sec. VI-B).
We train classifiers with an automated machine learning
framework [29] and use grasp experiences in simulation and
on a real robot.

V. CHOOSING AMONG DIFFERENT STRATEGIES

Instead of simply using the classifiers trained above to de-
cide between the three grasping strategies, we would like to
continuously update them and make decisions that maximize
the expected long-term grasp success. This can be formulated



Fig. 4. Experimental setups with opportunities to do all three types of
grasp strategies: Left: Barrett WAM with RGB-D sensor and RBO Hand 2
in front of a table and a vertical structure (transparent). Right: Simulated
RBO Hand 2 in the SOFA simulation framework.

as a multi-armed bandit (MAB) problem [5]. Each arm
corresponds to one grasping strategy and the reward is
binary, indicating grasp success. Since the underlying reward
structure is unknown a MAB algorithm needs to balance
exploration (selecting a grasp it has not tried before) and
exploitation (choosing the grasp that performed best so far).
In our case, the contextual multi-armed bandit scenario is
even more appropriate, since the reward distribution depends
on the particular object that is grasped. In the contextual
MAB setting, the agent receives a context before making the
decision. We use the features calculated from RGB-D input
as context and estimate the grasp success for each strategy.
Popular algorithms for contextual MAB problems include
LinUCB, LinTS, and GP-UCB [30], which differ in the way
they model the estimated reward, how they are updated when
facing new information, and how actions are chosen based on
the estimated reward. We evaluate those algorithms including
one which models reward via a simple k-nearest neighbor
classifier and chooses actions in an ε-greedy fashion [6].

VI. EXPERIMENTAL RESULTS

We perform grasping experiments in simulation and on a
real robot to show that (a) the apparently limited set of the
three presented grasping strategies captures a wide variety of
objects; (b) selecting the best strategy can be learned from
data; (c) using our MAB formulation, the learning process
can happen efficiently in an incremental fashion.

Our simulation experiments are based on SOFA1 [31]. To
simulate the RBO Hand 2 [4], we use a compliance-based
constraint solver [32]. Each finger is modeled as a Cosserat
beam with empirically identified stiffnesses. Skinning is
used for determining the collision geometry. The simulation
includes the hand, an object, and environmental constraints
such as a table surface, wall, or edge (see Fig. 4). Object
meshes are used from the KIT object models database [33]
which contains mainly supermarket products. To find random
initial object poses that are in static equilibrium we run a
separate simulation in which the randomly oriented objects
fall on a planar surface until they come to rest. A depth
sensor is simulated using the intrinsic calibration parameters
derived from an Asus XTion Pro with added Gaussian noise

1http://www.sofa-framework.org

Fig. 5. The 22 objects used for the real-world experiments

whose standard deviation scales quadratically with measured
depth [34]. We run all three grasping strategies for ten poses
of each object, resulting in 4020 simulated grasps.

The real-world experiments are conducted on a 7-DoF
Barrett WAM platform, including an Asus XTion Pro RGB-D
camera on the robot’s forearm, a six-axis ATI Gamma force-
torque sensor on the wrist, and the RBO Hand 2 as an end-
effector. The experimental setup (see Fig. 4) contains a table
with a vertical structure that can be used as a wall constraint.
In each trial the robot first goes to a pre-defined viewing
configuration and uses the RGB-D input to plan a grasp.
The object set, shown in Fig. 5, contains 22 items that differ
widely in shape, rigidity, surface fricition and mass. For each
of the three strategies every object was randomly placed on
the table 10 times, totalling a number of 630 grasp attempts.

A. Coverage of Detected Grasping Strategies

Before focusing on the high-level decision between differ-
ent grasping strategies, we need to show that those options
actually solve a significant amount of problem settings. This
is done by looking at the performance of the most successful
grasping strategy for each problem scenario. We would like
to ensure that there are only very few objects/poses that
cannot be grasped by any of the three strategies.

The real-world results (see Fig. 6) show that for each
object there is at least one strategy that is able to grasp
it. The most problematic objects are the gamepad and the
marker. The geometry of the gamepad makes it most suitable
for a surface-constrained grasp. But since this grasp type
can only exert moderate forces that counteract gravity the
relatively heavy gamepad is lost 6/10 times. The thin long-
shaped marker is most suited for a wall grasp, but half the
times the fingertips fail to slip underneath it.

The simulated data shows a different picture, here
the strategies only cover 41 % of all problem scenar-
ios (see Fig. 6). This is due to multiple reasons. The
KIT object set contains a lot of cuboid-shaped supermarket
objects which are relatively large w.r.t. the hand. Twenty
large objects could not be grasped by any strategy. The con-
tribution of the edge-constrained grasp strategy is extremely
low (39/1340 successes) because of the lack of thin, easy to
slide objects that do not topple over (the most successful one
was a can of fish). Another problem was that the simulation
framework did not allow to differentiate between friction

http://www.sofa-framework.org


Fig. 6. Left: Success rate of the three different grasping strategies for 22 different objects: The success rate is based on ten grasp attempts per object
and strategy. Right: Each dot represents a successful grasp in simulation. Along the x-axis are the 134 objects and the y-axis depicts ten different poses.
The last row named ’max’ is the maximum over all strategies per object (and pose). It is an upper performance bound given the robot would choose the
optimal grasp in each situation. It also shows that the real-world data set is much better covered than the KIT object set used in simulation.

Data Set
Feature Shape

Distributions
Shape

Histograms
Point Feature
Histograms

Simulation (surface) 0.78 (0.56) 0.85 (0.70) 0.88 (0.76)
Simulation (edge) 0.97 (0.94) 0.97 (0.94) 0.97 (0.94)

Simulation (wall) 0.77 (0.53) 0.79 (0.58) 0.86 (0.64)
Real-World (surface) 0.72 (0.44) 0.81 (0.62) 0.86 (0.72)
Real-World (edge) 0.71 (0.42) 0.78 (0.57) 0.78 (0.57)
Real-World (wall) 0.62 (0.25) 0.65 (0.30) 0.79 (0.58)

TABLE I
ACCURACY (F0.5-SCORES) FOR DIFFERENT GRASP FEATURES

coefficients of table, hand and object, which affected mostly
the sliding phase of the edge grasp.

We have shown that on a real-world object set all objects
can be grasped by at least one strategy. But the data also
shows that the best strategy differs from object to object.
Being able to predict the match between strategy and object
is the focus of the next experiment.

B. Grasp Features to Predict Grasp Outcome

We compared the different grasp features presented in
Sec. IV based on the accuracy and F0.5 measure of the
trained classifiers. We include the F0.5 measure because it
weighs recall lower than precision and in grasp detection it is
favorable to find at least one robust grasp rather than finding
all possible grasps. The data sets for simulation contain
1340 samples for each grasp strategy while the real-world
sets contain 220 samples each. They were split into training
and test set 4 : 1 using stratified sampling. The ensem-
ble classifiers are trained via AUTO-SKLEARN [29] which
searches a structured hypothesis space including multiple
types of classifiers and preprocessing methods.

The results of the performance on the test set are listed in
Table I. In general, the point feature histograms are the most
suitable feature descriptor to predict grasp success for all
strategies in simulation and in the real-world. The high scores
for the edge strategy in simulation are misleading since it is
a highly unbalanced data set with very few successful grasps.

Fig. 7. Success rate of five different exploration strategies for grasping the
22 objects of the real-world data set, averaged over 2000 trials

C. Exploration-Exploitation Tradeoff

Since the last experiment showed that point feature his-
tograms are the most suited features to describe our grasp
strategies, we will use them going forward. In order to
efficiently and constantly learn from our grasp experience,
we evaluate multiple contextual MAB algorithms on our
problem. In each turn the robot faces a random object in
a random pose, the three planned candidate grasps and
their feature descriptors. The goal is to find a working
grasp for any object and pose as quickly as possible. The
results (see Fig. 7) show five different methods: A Thompson
sampling scheme which ignores context, LinTS, LinUCB,
GP-UCB, a k-NN (k = 3, L2 norm on point feature
histograms) reward model with an ε-greedy scheme, and
an oracle which represents the highest possible reward (the
accumulated difference w.r.t. the oracle is usually called the
regret). It can be seen that GP-UCB performs best, followed
by k-NN, while the context-less alternative stays constant.

In a second experiment, we modified the reward that is
observed by the robot. This resembles the scenario in which
a grasp failure was erroneously recognized as success and
vice-versa. The comparison between GP-UCB and the k-NN
method (Fig. 8) shows that the latter is better at dealing with
noise (only 10 % noise equalizes performance).

VII. LIMITATIONS

The simulation data set has shown that, especially for
larger objects, the proposed set of strategies might be too



Fig. 8. Success rate of GP-UCB and ε-greedy k-NN with varying degree
of noise in the observed rewards, averaged over 2000 trials

limited. Another strong assumption is the presence of envi-
ronmental opportunities such as edges and walls to detect
the proposed strategies. Both drawbacks can be mitigated
by expanding the set of grasp types and exploitable contact
structures. Additionally, the algorithm only modifies a few
grasp parameters such as the approach direction based on its
extracted representation of the environment; the geometric
description of the grasp itself has no influence (apart from re-
jecting it). Allowing modifications of grasp parameters would
increase the strategies’ applicability. Finally, the proposed
geometric features only depend on depth measurements.
They do not capture all relevant physical properties needed to
predict grasp success, e.g. the baseball was rolling away dur-
ing a wall grasp while the tennis ball succeeded (see Fig. 6).
RGB features could correlate with such properties [18].

VIII. CONCLUSION

We presented a grasp planner for unknown environments
capable of exploiting contact with the environment. To
develop our method, we relied on three contact-exploiting
grasping strategies. We showed that it is possible to learn
perceptual models that predict the success of these strategies
based on a single depth image alone. We formulated the
problem of deciding among this small number of grasping
strategies while improving the perceptual models’ predictive
power from experience as a contextual multi-armed bandit
problem. The quality of the decision improves by incorpo-
rating context in the form of perceptual information.
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