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Abstract

Protein loop closure is a common problem in protein structure prediction. Re-
cently published results are an evidence for the progress in the accuracy of the
predictions and the efficiency of loop closure methods. Special attention is given to
the conformational sampling for closed loop conformations. We propose a completely
novel approach to this problem inspired from robotics using a mechanistic description
of the loop chain and a motion planning technique.

The Jacobian of a kinematic chain is exploited for the mechanistic description
of a protein loop. The transpose of the Jacobian relates end-effector forces to joint
torques and finally to angle increments. Self-motions of the kinematic chain due to
its redundancy in the number of degrees-of-freedom (DOF) are used to minimize an
energy function. An iterated motion scheme is derived based on that mechanistic
description.

The randomized motion planning technique that is applied to the problem of
protein loop closure is based on Rapidly-exploring Random Trees (RRT). A motion
planning algorithm combining a RRT with a local planner like the iterated motion
scheme presented is developed.

Zusammenfassung

“Loop closure” von Proteinen ist ein allgegenwärtiges Problem bei der Prote-
instrukturvorhersage. Kürzlich veröffentlichte Forschungsergebnisse belegen den
Fortschritt in der Genauigkeit von Vorhersagen und der Effizienz von “loop closure”-
Methoden. Besondere Aufmerksamkeit ist auf das “Sampling” von Konformationen
geschlossener “loops” gerichtet. Wir schlagen einen völlig neuartigen Ansatz für dieses
Problem vor, inspiriert von Methoden aus der Robotik, der auf einer mechanistischen
Beschreibung der “loop”-Kette und einer Pfadplanungsmethode basiert.

Die Jacobi-Matrix einer kinematischen Kette wird für eine mechanistische Be-
schreibung von “protein loops” benutzt. Die Transponierte der Jacobi-Matrix bringt
Kräfte, die auf den Endeffektor wirken, in Relation zu Drehmomenten und schließlich
zu Winkelinkrementen an den Gelenken. “Self-motions” der kinematischen Kette,
resultierend aus der Redundanz in der Anzahl an Freiheitsgraden, werden ausgenutzt,
um eine Energiefunktion zu minimieren. Ein iteratives Bewegungsschema basierend
auf dieser mechanistischen Beschreibung wird hergeleitet.

Die randomisierte Pfadplanungtechnik, die auf das “protein loop closure”-Problem
angewendet wird, basiert auf “Rapidly-exploring Random Trees (RRT)”. Ein Pfadpla-
nungsalgorithmus, der einen RRT mit einem lokalen Planer wie dem präsentierten
iterativen Bewegungsschema kombiniert, wird entwickelt.
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1 Introduction

During the last decade, several approaches have been published that apply methods
and techniques from robotics to problems arising in structural biology and especially
in protein structure prediction. The methodology that is presented in this thesis
is also inspired from robotics techniques that are applied to a widely encountered
problem in protein structure prediction, specifically to the problem of predicting
protein loop structures in a known environment. The so-called protein loop closure
problem has drawn a lot of interest by researchers world wide during the last years.
The approach presented in this thesis exploits methods from robotics to sample the
conformation space for feasible loop structures and to generate directed motions of
a perturbed protein loop chain for closing the gap between two fixed amino acid
residues.

At first, the protein loop closure problem is accurately defined and the relevance
of loop closure methods for protein structure prediction is discussed. Then, the
functional role of protein loops and the importance to accurately predict their
structures are exposed from a biological point of view. Finally, the motivation for
the presented methodology is outlined in the context of existing methods from
literature.

1.1 Biological relevance of Protein Loop Closure

The ability to predict the native three-dimensional structure of a protein from its
amino acid sequence is and will remain the most challenging problem in structural
biology. A vast amount of methods addressing this folding problem has been
developed so far, utilizing different computational approaches and information.

Comparative or homology modeling techniques search the Protein Data Bank homology modeling

(PDB) (Berman et al., 2000) of known protein structures for structures with an
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1 Introduction

amino acid sequence that is homologous to a target sequence by using sequence
alignment techniques. These can be used as templates in protein structure prediction
to determine the structure of the target sequence. However, homologous proteins
differ in regions where the structure has not been conserved during evolution,
corresponding to gaps or insertions in sequence. Theses sequences usually represent
loop regions connecting secondary structure elements or refer to highly flexible
regions of the protein. Often loop regions of protein structures determined by
X-ray crystallography or Nuclear Magnetic Resonance (NMR) are of poor resolution
due to the high conformational flexibility of the loop chains. In crystallography,
it is therefore necessary to refine loop structures that could not be determined
with sufficient accuracy. So, ab initio or de novo methods are used either if noab initio methods

template structure can be identified or to predict the structure of protein loops in
the common situation that the rest of the protein structure is known. Thus, theloop modeling

problem of modeling protein loops is a quite common task in crystallography and
homology modeling as well as in ab initio protein structure prediction.

Despite the short length of loops relative to the sequence length of the whole
protein, modeling protein loops is challenging not only because of the huge number
of feasible conformations, but mainly because of the geometric constraints imposed
on them by the fixed N - and C -terminal anchor residues of the protein backbonebackbone anchors

preceding and following the loop region in question. Thus, loop modeling requires to
connect protein backbone segments that are regarded fixed in space with a reasonable
loop segment that satisfies the so called loop closure constraints. The protein loopprotein loop closure problem

closure problem is then identified as closing the gap between two fixed backbone seg-
ments with a native-like loop structure that satisfies the closure constraints (Kolodny,
2005).

Many problems that arise in loop modeling are the same that protein structure
prediction has to cope with, it is just a matter of scaling, i. e. in each case extensive
conformational sampling for the most feasible structure and structure refinement
on the basis of energy or scoring functions are necessary. So, loop modeling can be
interpreted as a mini protein folding problem (Fiser et al., 2000). Like in protein
structure prediction, both ab initio and database-driven approaches are available that
try to solve the protein loop closure problem. Several hybrid methods have also
been described in literature that combine these two fundamental approaches. (Fiser
et al., 2000; Mönnigmann and Floudas, 2005; Soto et al., 2008, for an overview of
existing techniques)

Loops are not only of general interest for structure refinement in crystallography
and for protein structure prediction methods. They play also an important role for

10



1.2 Existing methods and motivation

protein docking by contributing to active and binding sites of proteins. Protein loops
are also relevant for surface recognition as loops are often exposed on the surface
of the structure, for designing antibodies or modeling ion channels. Furthermore,
studying the conformational changes of protein loops in atomic detail is important
to understand its contribution to functional changes of the whole protein in general
(Soto et al., 2008; Fiser et al., 2000).

1.2 Existing methods and motivation
Various methods for solving the protein loop closure problem originating from very
different research fields and disciplines have been developed over the last decade
(Cortés and Siméon, 2005; Zhu et al., 2006; Fiser et al., 2000; Canutescu and Dun-
brack, 2003; Mandell et al., 2009a; Lee et al., 2010; Kolodny, 2005). Among them
there are analytical and iterative closure approaches as well as database search tech-
niques that are capable of generating loop conformations that fulfill the loop closure
constraints imposed on initially perturbed loop structures.1

In order to find low-energy loop conformations close to the native state it is
necessary to sample the conformation space of the loop regions for appropriate closed-
chain structures. These structures are subsequently refined and filtered for the most
feasible conformations by energy or scoring functions. Ideally, the computational
sampling is performed until it is likely that structures close to the native state
could be found. Thus, a computational loop modeling approach that is able to
predict native-like conformations consists of efficient conformational sampling, a
closure technique to solve for the loop closure constraints and of refinement methods
(Monte Carlo Simulated Annealing (Kirkpatrick et al., 1983), relaxation by energy
minimization, . . . ).

The conformational sampling can be done either by exploiting the PDB database
of known protein structures or by choosing the dihedral angles φ, ψ of the protein
backbone according to a predefined probability distribution. To enforce the loop
closure constraints the conformational sampling is commonly accompanied by a
loop closure technique. The resulting conformations are further optimized and
ranked on the basis of an energy or scoring function.

The Cyclic Coordinate Descent (CCD) algorithm (Canutescu and Dunbrack, Cyclic Coordinate Descent

2003) as implemented in Rosetta (Rohl et al., 2004) repeatedly inserts small structure
fragments generated from the PDB to sample the conformation space and subse-

1so called loop decoy sets
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1 Introduction

quently closes the open loop by applying a robotics-inspired technique. This method
as well as other database-driven approaches depend on the quality and accuracy of
known protein and loop structures as the fragments are generated from them. Thus,
the conformational sampling as performed by CCD in Rosetta is restricted by the
accuracy of the assigned loop structures in the PDB.

The Kinematic Closure (KIC) approach (Mandell et al., 2009a) is claimed to be ofKinematic Closure

sub-angstrom accuracy in the rmsd value between a crystallographic and a predicted
loop structure. The prediction accuracy is achieved by a random perturbation of
small segments of the loop chain according to a Ramachandran map and an analytical
closure technique. The gain in accuracy when compared with CCD is claimed to
be the result of an enhancement of the conformational sampling (Mandell et al.,
2009b).1 However, the analytical closure method used by KIC is itself restricted to
loop segments of a fixed maximum size.

We propose a new approach that is neither restricted on the length of the loop
or of loop segments nor on the accuracy of extracted fragments from the PDB. Our
approach tries to improve the conformational sampling of feasible loop structures by
applying robot motion planning algorithms based on Rapidly-exploring Random
Trees (RRT) (LaValle, 1998) as a search method. The problem of finding loop
conformations that fulfill the loop closure constraints is interpreted as the problem
of finding trajectories of the end-effector of a robot manipulator2 moving step-wise
from an initial position to a goal position. Consequently, the end-effector of the
manipulator is represented by the C -terminal residue of the open loop chain, whereas
the N -terminal residue is considered as the base of the manipulator fixed in space.
The RRT is then build up incrementally by randomly sampling conformations
towards which the RRT is expanded. New nodes are added until the goal position
and orientation of the end-effector have been reached, i.e. a conformation has been
found that satisfies the loop closure constraints within a given tolerance. The protein
loop is then considered to be closed and further refinement of the structure may
follow.

Due to the property of a RRT to expand towards unexplored regions3 of the
search space and the application of a transition test (Jaillet et al., 2008) we suppose that
our new approach has the capabilities of generating native-like loop conformations in
a computationally efficient way. Hereby, the transition test restricts the exploration

1A direct comparison between these two methods is possible because both have been implemented
in Rosetta.

2in this context the manipulator is considered as a robot arm with revolute joints and rigid links
3a Voronoi bias as discussed later
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1.2 Existing methods and motivation

of the RRT to regions from where the goal can be reached with high probability in a
reasonable number of iterations.

The outlined methodology differs from other methods in the way how the
conformational sampling is biased. Both the conformational sampling of CCD and
KIC are biased by exploiting structural knowledge obtained from known structures
in the PDB. In contrast, the conformational sampling of our approach is biased
towards unexplored regions of the space and by an acceptance test based on the
evaluation of a knowledge-based energy function.

13





2 Methods & Techniques

First, the different representations of the protein structure are reviewed in order to
derive the representation of the protein loop as a kinematic chain. Then, several
important concepts from the field of robotics are introduced that are used later for
the derivation of the loop closure procedure. After defining the problem of loop
closure in detail, a short outline follows how our approach tries to solve it. The most
important protein loop closure methods and concepts reviewed from literature are
presented. Finally, the methodology on which our approach is based is elaborately
described and the final loop closure procedure is derived.

2.1 Representations of protein structure
The structure of a protein can be described in different ways. The representation
of all atom positions by Cartesian coordinates is convenient when a physical force
field is applied to the structure or electrostatic interactions are studied. Internal
coordinates, however, represent the protein structure in a chemical way in terms of
bond length and bond angles. The representations can also differ in the way how
the protein side chains are described: full-atom means that every atom of the side
chains is explicitly modeled, whereas the lollipop model interprets the side chains
as spheres of variable radii (Levitt, 1976). The latter is also known as the centroid
representation. In addition, even more course-grained representations have been
described in literature, from which the description by torsion angles is discussed in
detail below.

2.1.1 Cartesian coordinates
In Cartesian space each atom position is described by (x, y, z)-coordinates. Therefore,
the number of degrees-of-freedom (DOF) of a protein structure in Cartesian space is

15



2 Methods & Techniques

θ

d

φ

Fig. 2.1: The position of the rightmost atom is uniquely specified relative to the three previous
atoms by the three internal coordinates: bond length, bond angle and torsion angle.

three times the number of atoms. When distance-dependent energy functions are
applied in structure prediction methods the coordinates of the atom positions in
Cartesian space are required. Also many file formats used in the field of molecular
modeling like .pdb or .mol2 are based on Cartesian coordinates. Thus, conversion
into Cartesian coordinates from other structure representations is often mandatory,
e. g. for energy minimization of distance-dependent potentials, or due to relaxation
and folding methods that operate in Cartesian space like several “movers” as imple-
mented in the well-known protein modeling framework Rosetta (Schueler-Furman
et al., 2005).

2.1.2 Internal coordinates
Internal coordinates describe the position of each atom relative to the other atoms in
terms of a bond length, a bond angle and a torsion (dihedral) angle. So, the position
of an atom is uniquely defined by placing it in a distance of a bond length away
from the previous atom, rotating it around the bond angle formed by the atom
itself and two of the previous atoms and finally rotating it around the torsion angle
formed by the atom and three of the previous atoms, see Figure 2.1. The torsion
angle is thereby defined as the angle between the planes formed by the first three and
the last three atoms. Thus, each atom is represented by three internal coordinates,
except the first three atoms in a chain. The first atom in a chain does not have any
internal coordinates because it can freely placed in space, the second atom is placed
in a distance of a bond length with respect to the first, and the position of the third
atom is determined by a distance and a bond angle. From that, the total number of
degrees-of-freedom of a protein described by internal coordinates is three times the

16



2.1 Representations of protein structure

φ

φψ

ψ
ω

ω

χ1−χ4

Fig. 2.2: Torsion angles representation. Bond lengths and bond angles are kept fixed, so the φ, ψ
angles represent the DOF of the protein backbone.

total number of atoms reduced by six1. Internal coordinates are commonly written
as a Z-matrix (Leach, 2001).

2.1.3 Conversion from internal to Cartesian coordinates
It is a quite common task for molecular modeling applications to convert between a
torsion space representation given by the internal coordinates and Cartesian space.
If, for instance, a Rosetta mover perturbs the protein structure by altering torsion
angles, the Cartesian coordinates of atom positions are updated automatically so that
the in silico representation of the protein is always consistent. This instantaneous
conversion enables Rosetta to apply methods operating both in Cartesian space and
torsion space.

Many procedures are available to achieve this: the General Rotation method, the
Rodrigues-Gibbs-Formulation (RG), Quaternion Rotations, the Atomgroup Local

1three degrees-of-freedom each for the global position and orientation of the protein, that the
internal coordinates representation does not take account for

17



2 Methods & Techniques

Frames method and the Natural Extension Reference Frame (NeRF) method used
by Rosetta (Choi, 2006; Zhang and Kavraki, 2002; Parsons et al., 2005).

2.1.4 Torsion angles representation
A common way to represent proteins is by its torsion angles, where the bond lengths
and bond angles are kept fixed at an ideal value. Changes in the conformation of a
protein are then due to changes in the torsion angles only, i. e. by rotating around
covalent bonds. Considering the bond lengths and bond angles invariable is a good
approximation because changes in these parameters are usually very small (Engh and
Huber, 1991). Also, this representation is computationally very efficient.

From a structural point of view the protein is built up by “building blocks” of
peptide units (Brändén and Tooze, 1999; Cantor and Schimmel, 1980). A peptide
unit is formed by all atoms in the chain segment from one Cα atom to the next Cα
atom, without taking the side chains into account (see Figure 2.2). Thus, each Cα
atom is part of two peptide units, except the first and the last. Due to the partial
double-bond character of the peptide bond between the C ′ atom of one residue and
the N atom of the next residue, the peptide unit is considered to be plane. Eachφ, ψ angles

peptide unit can either rotate around the Cα −C ′ covalent bond, or around the
N −Cα covalent bond, where the first angle is denoted as φ and the latter as ψ
(Figure 2.2). So, every amino acid residue is associated with two angles φ and ψ.
For the sake of completeness, the third torsion angle by rotating around the C ′−N
covalent bond (peptide bond) is commonly denoted as ω and fixed to 180°1 due
to the plane character of the peptide unit. The torsion angles of the side chains
are termed χ1-χ4

2. In this notation, the conformation of a protein backbone is
completely described by the φ and ψ angles representing the degrees-of-freedom of
the protein. Thus, the total number of degrees-of-freedom of a protein in torsion
space representation is two times the number of amino acid residues.

2.1.5 Kinematic chain of protein backbone
As we have seen in Subsection 2.1.4, the torsion angles representation of a protein
structure explicitly underlines the chain-like properties of the protein backbone,
either as a sequence of amino acid residues or as a concatenation of peptide units.

1ω = 0° corresponds to the cis conformation, ω = 180° to the trans conformation of the peptide
bond, which is usually favored

2depending on the type of the amino acid there are one to four side chain torsion angles present
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2.1 Representations of protein structure

φ

φ

φ

φψ

ψ

ψ

ψ

Fig. 2.3: Kinematic chain of a protein backbone. Rigid atom groups or protein links are separated
by rotatable bonds representing revolute joints. The atoms are enumerated in order to easily
identify the rigid atom groups as defined.

For simplification, the ω angles are kept fixed in trans-conformation corresponding
to ω = 180°. We will keep this assumption for the remainder of this thesis.

The covalent bonds Cα−C ′ and N −Cα, around which the angles φ and ψ are
defined, cut the protein backbone into two types of rigid groups (protein links):
the peptide group includes the C ′i−1, Oi−1 and Ni atoms between the ψi−1 and φi peptide group

bonds, whereas the sidechain group consists of the Cα,i−1 and all attached side chain sidechain group

atoms except the hydrogen atoms between the φi and ψi bonds (Lotan, 2004). See
Figure 2.3 for an illustration. The side chain atoms are included in the sidechain
group though the χ angles are considered variable. However, variations to these
angles do not contribute to a conformational change of the protein backbone.

In terms of robotics notation the protein backbone can then be interpreted as a
serial linkage of rigid links connected by revolute joints forming a kinematic chain.
The rigid links correspond to either the peptide group or the sidechain group as
introduced above and the revolute joints are represented by the rotatable bonds
around the torsion angles φ and ψ. The mathematical aspects of a kinematic chain
are described in more detail later.

In the following, we will make extensive use of the properties of the kinematic kinematic chain

chain representation of a protein backbone. But first of all we will outline some
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2 Methods & Techniques

fundamentals of robotics that are necessary for the further understanding.

2.2 Robotics fundamentals

A robot arm, called manipulator, is composed of rigid links and variable joints
connecting the links. The robot hand is called end-effector and the mounting point
of the robot manipulator the base. The composition of links and joints forms a
kinematic chain as we have already seen in terms of the protein backbone. There are
two types of joints: prismatic and revolute (rotatory). Prismatic joints allow a linear
relative motion between two links, whereas revolute joints allow a relative rotation
between two links. No prismatic joints are modeled for the kinematic chain of a
protein backbone, so prismatic joints are not considered in the following. See Spong
et al. (2006) or Craig (2005) for a good introduction into the field of robotics and
for further information. In the next sections, we will mostly use the mathematical
notation from Spong et al. (2006).

2.2.1 Robot modeling

The configuration of a kinematic chain is specified by a set of values for the jointconfiguration of manipulator

variables, hence the angles by which two connected links are rotated relative to each
other around the joint axis. The term configuration commonly used in robotics is
equivalent to the term conformation used in a biological context when specified as
a set of torsion angles. For the remainder of the present thesis both terms are used
interchangeably. The configuration space is then the set of all possible configurations,configuration space

i.e. the permutation of all possible joint angle values. For conformations of proteins
this space is consequently called conformation space.

The vector of values of the joint variables is denoted by q . Then qi = θi is the
single joint angle value of the revolute joint i . Then, q has the dimension of the
number of joints n of the manipulator. Thus, the dimension of the configuration
space equals the number of degrees-of-freedom (DOF) of the kinematic chain and
hence the number of joints n. In the three-dimensional space, three DOF are
necessary for positioning and three DOF for the orientation of the manipulator.
Thus, a minimum of six DOF is required for a manipulator to reach every point in
a three-dimensional work space, the total volume that the end-effector is sweeping
when the manipulator executes all possible motions. A manipulator with more thanredundant manipulator

six DOF, i.e. composed of more than six links, is called redundant.
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2.2 Robotics fundamentals

In the following, the axis of rotation of a revolute joint is denoted by zi if the
joint connects links i and i + 1. The base of the manipulator is stationary fixed
throughout this study.

2.2.2 Manipulator Jacobian
Specifying the position and orientation of the end-effector given the joint variables, forward kinematics

is known as the forward kinematics problem. The forward kinematics equations
accomplish this task. To derive these equations a coordinate system oi (xi , yi , zi )
(local frame) is attached to each link i . The base frame o0(x0, y0, z0) refers to the local
frame of the base of the manipulator. Forward kinematics can then be expressed as
the problem of finding the homogeneous transformation matrix

Ai (θ) =
�

Ri−1
i o i−1

i
0 1

�

for each frame i . The matrices express the position and orientation of the frame i
with respect to frame i − 1 where

Ri
j = Ri

i+1 . . . R j−1
j

denotes to a 3× 3 rotation matrix and

o i
j = o i

j−1+Ri
j−1o j−1

j

to a coordinate vector. Multiplying them together yields then the homogeneous homogeneous transformation

transformation matrix

H = T 0
n =

�

R0
n o0

n
0 1

�

=A1(θ) . . .An(θ)

of the end-effector frame with respect to the base frame. The forward kinematics
equations define a function that relates the positions and orientations in Cartesian
space to the positions of the joints. As the manipulator executes a motion both the
joint angles θi and the end-effector position o0

n and orientation R0
n are functions of

time. Then, the Manipulator Jacobian1 J (θ) of this function relates the linear and manipulator Jacobian

angular velocities of the end-effector to the joint velocities

ξ = J (θ) · θ̇ (1)
1partial time derivatives
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with

ξ =
�

v0
n
ω0

n

�

and J 0
n =





Jv0
n

Jω0
n





where v0
n denotes the linear velocity and ω0

n the angular velocity vectors of the

end-effector with respect to the base frame. θ=
�

θ1, . . . ,θn
�T is the vector of joint

angles and, consequently, θ̇=
�

θ̇1, . . . , θ̇n

�T
the vector of joint velocities, Jv0

n
and Jω0

n
are 3× n matrices where n denotes the number of joints and hence the enumeration
number of the end-effector. The superscript indicates that the components of the
Jacobian and the velocities are expressed with respect to the base frame, whereas
the subscript relates the velocity reference point to a physically real point on the
end-effector (Orin and Schrader, 1984).

The Jacobian in the cross-product form (for revolute joints) is then derived as

J =
�

J1J2. . .Jn
�

=
�

Jv1
Jv2

. . . Jvn

Jω1
Jω2

. . .Jωn

�

where the i th column Ji is determined by

Ji =
�

Jvi

Jωi

�

=
�

zi−1× (on − oi−1)
zi−1

�

(2)

zi−1 is given by the third column of the rotation matrix of the forward kinematics
equations for joint i − 1 and is determined by

zi = Ri−1







0
0
1







Herein, the superscript denoting that the components of J are expressed with respect
to the base frame is omitted for simplicity. Note, that in this expression the velocity
reference point is implicitly related to the origin of the end-effector frame, so there
is no need for an additional subscript.

2.2.3 Motion Planning
In the context of protein loop closure we define the motion or path planning
problem as the search for a path in task space to move the end-effector of the robot
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manipulator to the goal position. A complete path describes then the motions of the
manipulator from the initial configuration qi ni t to the goal configuration qg oal by
discrete states. This path accounts for position and orientation of the end-effector
but not for time, and hence not for velocities and accelerations. This motion is
usually constrained because self-collisions have to be avoided and/or the motion
itself is limited in some way, e.g. due to joint limits restricting a rotation to a valuable
range of angles or other workspace constraints. The algorithms that are used in the
following are not guaranteed to find a path, but easy to implement and they require
only moderate computation time.

Various motion planning algorithms are available that all have pros and cons motion planning techniques

(LaValle, 2006). Among them there are methods using artificial potential fields
(Spong et al., 2006) and randomized methods like the Probabilistic Roadmap (PRM)
method (Latombe et al., 1996) or planners that use Rapidly-exploring Random Trees RRT

(RRT) (LaValle, 1998; LaValle and Kuffner, 2001).

2.3 Problem formulation

In ab initio protein structure prediction conformational sampling is regarded as a
bottleneck, especially for the prediction of large and complex structures (Kim et al.,
2009). It has also been stated in another study about protein structure prediction
using Rosetta that the energy function of Rosetta is probably good enough to sample
native structures. Generally spoken, conformational sampling can be seen as one of
the major drawbacks of most protein structure prediction methods.

Considering the protein loop closure problem as a mini protein folding problem,
we assume that improving the conformational sampling will yield potentially more
native-like protein loop structures. This assumption is also consistent with the
conclusion of Mandell et al. (2009b) where the authors reduce the gain in accuracy
of the calculated loop structures from improvements in conformational sampling
though scoring errors cannot be completely ruled out. However, sampling protein
loop conformations is even harder than sampling conformations of whole proteins
because of the loop closure constraints that always have to be satisfied.

We propose a motion planning approach from the field of robotics using Rapidly-
exploring Random Trees (RRT) for sampling conformations in the context of protein
loop closure. A recently published algorithm called transition-based RRT (T-RRT) T-RRT

(Jaillet et al., 2008, 2010) combines the classical RRT-approach with a cost function
that restricts the exploration of the configuration space by rejecting unfeasible
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configurations similar to the Metropolis test for Monte Carlo methods (Metropolis
et al., 1953).

The RRT is initialized with an initial loop conformation, e.g. a fully extended
loop chain. The position and orientation of the goal is specified by the position
and orientation of the fixed C -terminal anchor residue of the protein backbone.
When the moving C -terminal residue of the open loop chain approaches this anchor
residue up to a given tolerance, the loop is considered closed.

The motion of an open kinematic chain representing a protein loop conformation
is due to a virtual task force1 actuating on the end-effector pulling it into the desired
direction. Exploiting the operational space formulation (Khatib, 1987) the appliedoperational space formulation

virtual force results in torques on the joints and hence in changes to the angular
accelerations of the links about the joint axes. Integrating the angular accelerations
twice yields joint angle increments and finally a new conformation.

However, the representation of a loop as a kinematic chain is redundant in its
DOF as a loop chain usually has more than six DOF (a chain segment of three amino
acid residues has exactly six DOF if the torsion angles φ, ψ are variable andω is kept
fixed). In case of redundancy there is an infinite number of joint motions that do notself-motion manifold

alter the position and orientation of the end-effector spanning so-called self-motion
manifolds (Burdick, 1989). One of these self-motions can be selected in order to
minimize a potential function (Khatib, 1990). We exploit the redundancy in DOF of
the kinematic chain of a protein loop to minimize atom interactions with neighbor
atoms based on a van-der-Waals potential function. Differently spoken, self-collision
penalties of the protein loop chain can be minimized in this way.

An iterated motion due to applied task forces like described can then be used as
a local planner for expanding the RRT towards randomly sampled conformations.
The proposed conformation is added to the RRT as a new node if the transition test
succeeds.

Closed loop conformations, i.e. those that satisfy the loop closure constraints,
are added to a list. After the planner has stopped due to predefined stop conditions
the predicted loop structures are further refined by optimization methods.

2.4 Related work
A lot of research has been done to solve the loop closure problem and recently
published results indicate that it is going into the right direction (Shenkin et al., 1987;

1also termed operational force
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van Vlijmen and Karplus, 1997; Fiser et al., 2000; Canutescu and Dunbrack, 2003;
Cortés and Siméon, 2005; Zhu et al., 2006; Mandell et al., 2009a). For an overview,
the most successful and promising methods from literature are shortly reviewed next.
However, a thorough discussion of all methods proposed so far is beyond the scope
of this thesis. See also Mönnigmann and Floudas (2005) for a good overview of loop
prediction methods.

2.4.1 Randomized motion planning using Rapid Loop Generator
(RLG)

The algorithm presented in (Cortés et al., 2002; Cortés and Siméon, 2003, 2005) Rapid Loop Generator (RLG)

proposes an extension to randomized motion planning algorithms like PRM or RRT
that is able to sample closed chain configurations, i.e. configurations that satisfy
kinematic loop closure constraints. This is achieved by the Random Loop Generator
(RLG) algorithm. A subchain of the loop chain is chosen so that it is non-redundant,
called passive subchain. Consequently, the corresponding joint variables are called
passive. The remaining joint variables, called active, form one or two active subchains.
Then, the active joint variables span self-motion manifolds. RLG performs a random
sampling of the active joint variables in a way so that the loop closure equations
for the passive subchain could be solved. As the passive subchain is non-redundant,
solutions for the closure constraints can be analytically calculated by exact inverse
kinematics methods. The resultant configurations are then checked for collisions or
filtered to satisfy further constraints.

This approach shares with our method the idea to exploit the redundancy of
loop chains with more than six DOF. While this method samples self-motions for
the active subchains only, our method uses the self-motions of the whole chain to
minimize a potential function.

2.4.2 Tweak Methods

The Random Tweak method (Shenkin et al., 1987) starts with a random loop con- Random Tweak

formation and modifies all torsion angles of the open loop chain at once in each
iteration. The iteration proceeds until the distance constraints between the atoms of
the terminal residues of the loop chain have been satisfied, i.e., so that the chain can
be rotated into place to close the loop. Lagrange multipliers are used to minimize
the changes in the torsional angles while satisfying the distance constraints using
the Jacobian of the distances. Due to the use of the Jacobian and its inverse or
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pseudoinverse, the tweak methods tend to be numerically unstable.
The LOOPY algorithm (Xiang et al., 2002) uses Random Tweak and Direct

Tweak, a variant of Random Tweak that performs loop closure while additionally
avoiding steric clashes. LOOPY uses Random Tweak to perform loop closure and
Direct Tweak for minimization in torsion space. The LoopBuilder protocol (Soto
et al., 2008) combines LOOPY with a filter based on a scoring function and with an
all-atom energy minimization method to predict native-like protein loop structures.

2.4.3 Modeller

Modeller uses an optimization-based approach of modeling protein loops in a givenmodeller

environment (Fiser et al., 2000). This approach optimizes the positions of non-
hydrogen atoms of a loop chain by minimizing a pseudo energy function. The
optimization of the energy function is based on conjugate gradients combined with
molecular dynamics (MD) and simulated annealing. The pseudo energy function
exploits not only the physics of a loop chain in a fixed environment by using a
molecular mechanics force field but also statistical preferences for dihedral angles and
non-bonded atom interactions derived from known protein structures in the PDB.

2.4.4 Protein Local Optimization Program (PLOP)

The Protein Local Optimization Program (PLOP) (Zhu et al., 2006) builds up frag-PLOP

ments from the fixed N -terminal and C -terminal anchor residues of the protein
backbone that meet in the middle of the loop chain. The fragments are chosen from
rotamer libraries for the torsion angles of the backbone, taking crystal contacts deter-
mined from crystallographic data into account. The original hierarchical sampling
procedure is described in detail in Jacobson et al. (2004). When the fragments have
been built up completely the fragment geometries have to be adjusted to close the
loop chain. Those fragment pairs are identified that guarantee closure on basis of the
distance between the Cα atoms of the meeting residues. The sampled loop structures
are clustered to select the most feasible set that is being further optimized by using a
molecular mechanics force field and a continuum solvation model.

Several modifications to PLOP have been proposed in literature, varying the
force field, the solvation model or the sampling procedure. Zhu et al. (2006) added
an additional hydrophobic term to the force field used by Jacobson et al. (2004).
Sellers et al. (2008) augmented PLOP with a method to optimize the protein side
chains surrounding the loop region that is being closed. Felts et al. (2008) replaced
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the continuum solvation model used by PLOP by an alternative one including a
novel non-polar hydration free energy model.

2.4.5 Kinematic closure (KIC)

The Kinematic Closure (KIC) method (Mandell et al., 2009a) has been already Kinematic Closure (KIC)

introduced in Section 1.2. KIC randomly chooses three Cα atoms as pivots involving
six torsional angles. Consequently, the remaining Cα atoms are called non-pivot
atoms. The non-pivot torsional angles are randomly sampled from a Ramachandran
map, which opens the chain. KIC then determines analytically all values for the six
pivot torsions that close the loop (Go and Scheraga, 1970; Wedemeyer and Scheraga,
1999) while simultaneously sampling the non-pivot torsional angles using polynomial
resultants (Coutsias et al., 2004, 2006).

This method has been integrated into Rosetta and validated against different loop
decoy sets, yielding loop structures of sub-angstrom accuracy when compared to
crystallographic loop structures (Mandell et al., 2009b). We will also compare our
method with KIC, which is relatively easy because both have been implemented in
Rosetta.

(Lee et al., 2010) combined the analytical loop closure technique used by KIC
with conformational sampling based on fragment assembly of generated structure
fragments from the PDB. Furthermore, a torsional energy function is minimized
simultaneously to the loop closure procedure.

2.4.6 Cyclic Coordinate Descent (CCD)

The Cyclic Coordinate Descent (CCD) algorithm was originally developed in Cyclic Coordinate Descent

(CCD)robotics to solve the inverse kinematics problem. In (Canutescu and Dunbrack,
2003) CCD has been adopted to the protein loop closure problem. There is also
an implementation of CCD available in Rosetta which is used as the default loop
closure method for ab initio protein structure prediction (Rohl et al., 2004). The
CCD algorithm for protein loop closure (Canutescu and Dunbrack, 2003) starts with
an initial loop structure and iterates then over the torsion angles φ, ψ of the open
loop chain from the N -terminal to the C -terminal end of the loop. One torsion
angle is modified per iteration until the atoms of the moving C -terminal residue
of the loop chain are superimposed on the atoms of the fixed C -terminal anchor
residue of the backbone. Thereby, the angles are adjusted to minimize the sum of
the squared distances between the atoms of the loop residue and the corresponding
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anchor residue.
Usually, CCD is combined with a sampling and refinement procedure, e.g. a

Monte Carlo method. The CCD algorithm has several advantages over competing
methods: it is simple and hence easy to implement and relatively fast when compared
to methods that yield similar accuracy of the predicted loop structures.

2.5 Iterative loop closure exploiting Jacobian transpose
CCD performs stepwise displacements of an open protein loop chain where one
torsion angle is varied in each iteration as discussed in Subsection 2.4.6. We propose
an alternative iterated motion scheme that describes a displacement of an open loop
chain due to virtual task forces actuating on the end-effector of the corresponding
kinematic chain that pull the chain into the desired direction (Jagodzinski and Brock,
2007). The motion scheme described exploits the operational space formulation
introduced by Khatib (1987) to relate forces actuating on the end-effector to joint
torques. The joint torques are finally mapped to joint angle increments. Thus,
an elementary motion in the direction of the force corresponds to a variation of
all torsion angles at once. Furthermore, the redundancy of a kinematic chain
representing a protein loop can be used to perform a second task as discussed later.

2.5.1 Operational Space Formulation
Recall from Eq. 1 that the Jacobian relates the joint velocities to the operational or
end-effector velocities. This equation can also be written in terms of infinitesimal
small displacements of the end-effector δx and the joint angles δθ

δx = J (θ) ·δθ

A similar relationship can be derived (Khatib, 1987) between the generalizedgeneralized force

forces operating on the end-effector and the torques operating on the joints

τ = J T (θ) · F (3)

where τ denote the joint torques and F the generalized end-effector or operational
force. The end-effector force is also called task force if the force operating on thetask force

end-effector is due to the execution of a task.
The generalized force takes the position and orientation of the end-effector into

account so that it is not equivalent to a physical force. The generalized force can be
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written in the form

F =
�

n
f

�

(4)

where f and n denote the force moment couple of a physical force operating on a
rigid body as we will see in detail later.

2.5.2 Redundant manipulators
As we have seen the kinematic chain of a protein loop is usually redundant in its
DOF. This means that there is an infinite number of joint angle displacements that
can take place so that the configuration of the end-effector remains fixed. Differently
spoken, the configuration of the end-effector can be determined with an infinite
number of postures of the links composing the kinematic chain. This is equivalent
to the description by self-motion manifolds (Burdick, 1989).

It can be shown that the displacements take place in the nullspace of the associated
Jacobian. The matrix

h

I − J (θ)T ¯J (θ)T
i

defines the mapping to the nullspace associated with the transpose of the Jacobian

J (θ)T (Khatib, 1990). Here, ¯J (θ)T denotes the transpose of the generalized inverse pseudoinverse

or pseudoinverse of the Jacobian. Thus, applying torques of the form

h

I − J (θ)T ¯J (θ)T
i

τ0 (5)

to the joints of a kinematic chain do not alter the position and orientation of the end-
effector. There is an additional DOF associated with the nullspace of the Jacobian
which can be exploited to minimize a potential function V0(θ). This is done by
selecting τ0 as the gradient of this potential function

τ0 =−∇V0(θ) (6)

2.5.3 Iterated motion in task space while minimizing energy
Combining Eq. 3 and Eq. 5 yields

τ = J T (θ) · F +
h

I − J (θ)T ¯J (θ)T
i

τ0
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and with Eq. 6

τ = J T (θ) · F −
h

I − J (θ)T ¯J (θ)T
i

∇V0(θ) (7)

This relationship is exploited to derive an iterated motion scheme that will be applied
in a protein loop closure procedure. In reach iteration angle increments for the
torsion angles of a protein loop chain are calculated from the torques determined
by Eq. 7. Adding the increments to the torsion angles of the chain determines the
conformation of the protein loop after each iteration.

A protein loop is represented as a kinematic chain, where the base corresponds
to its first link and hence to the first rigid group of the N -terminal residue of the
loop. The choice of the end-effector link is arbitrary as long as a deviation to a goal
position and orientation can be specified. Here, the end-effector is represented by
the rigid atom group (protein link) formed of the C atom of the C -terminal residue
of the loop chain and virtual N and Cα atoms extending the chain.

The generalized task force F actuates on the end-effector and generates joint
torques τ according to the first term in Eq. 7. The main task is specified as moving
the end-effector from an initial position and orientation to a goal position and
orientation by applying an appropriate task force. Here, the position and orientation
of the goal is determined by the position and orientation of the rigid atom group
formed by the N , C and Cα atoms of the fixed C -terminal anchor residue of the
backbone.

The generalized task force F that actuates on the rigid atom group representing
the end-effector can be easily calculated. A position-dependent physical force f is
defined that acts on the individual atoms of the rigid group. A force that acts on aforce couples

rigid body can be replaced by a force and moment couple that acts on a arbitrarily
chosen origin (Tipler and Mosca, 2007). If that origin is chosen as the origin of the
global coordinate system, the generalized force F can be calculated by

F =
�

n
f

�

=









∑

i

ni
∑

i

fi









=
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i

oi × fi
∑

i

fi









(8)

where fi denote the force acting on the ith atom of the rigid group and oi the
position of the atom Kazerounian et al. (2005).

The Jacobian can be easily calculated by using Eq. 2. If the forward kinematics
equations are known, no further calculation will be needed. For computational
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efficiency, the Jacobian is calculated column-wise from the base out to the end-
effector.

The generalized task force F produces torques τ on the joints resulting in an
angular acceleration around the joint axis due to

τ = I ·α

where α is the angular acceleration and I denotes to the matrix of moments of inertia
which is considered to be identical to the identity matrix in course approximation.
Double integration for elementary time steps yields then a vector of angular incre-
ments that is added to the previous torsional angles which corresponds to a motion
of the end-effector in space.

This elementary move is accompanied by the minimization of an energy function
in terms of a penalty for atoms that are too close to nearby non-bonded atoms. The
second term in Eq. 7 corresponds to the minimization task which takes place in the
associated nullspace of the Jacobian as we have seen previously.

The potential function V0(θ) in Eq. 7 that is being minimized is represented by a
van-der-Waals energy term accounting for non-bonded atom interactions. Calculating
the negative gradients of the potential function yields joint torques τ0 that, being
projected onto the nullspace, do not alter the position and orientation of the end-
effector.

The van-der-Waals energy function is evaluated for all rigid atom groups repre-
senting the links of the kinematic chain. Thus, the negative gradients of the energy
function yield physical forces that act on the individual atoms of the protein links
(Abe et al., 1984; Wedemeyer and Baker, 2003). According to Eq. 8 these forces can
be replaced by force and moment couples. Summing up these couples yield the
generalized forces actuating on the protein links.

Joint torques in turn are calculated for each protein link due to Eq. 3 using the
Jacobian of the corresponding joint and the generalized force as calculated before.
Enumerating over all protein links, the torques actuating on each link are summed
up to calculate the equivalent total torques τ0 of the whole loop chain.

To calculate the self-motion of the loop chain due to the minimization task the self-motion

pseudoinverse or Moore-Penrose inverse ¯J (θ) of the Jacobian is needed. The pseu-
doinverse can be efficiently calculated by applying a Singular Value Decomposition
(SVD) on the Jacobian (Press, 2007). The second term in Eq. 8 projects the total
joint torques onto the nullspace of the Jacobian which results in a self-motion of the
protein loop chain minimizing the van-der-Waals energy function.
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2.6 Conformational sampling by robot motion planning

We use a robot motion planning approach to search the conformation space for loop
chains that satisfy the loop closure constraints. There are various randomized ap-
proaches available that are suited for motion planning problems in high-dimensional
spaces. We favor an approach based on Rapidly-exploring Random Trees (RRT) over
the potential field approach and the Probabilistic Roadmap Method (PRM).

The potential field method depends heavily on the definition of a potential func-
tion which can be extremely difficult to derive. PRM samples random configurations
and tries to connect pairs of nearby configurations by the use of a local planner.
However, connecting nearby configurations can be also a challenging problem. RRT
shares several of the advantages of PRM and other randomized planning techniques
but does not connect nearby configurations, so the RRT approach seems suitable
for a search in conformation space in the context of protein loop closure (Lee et al.,
2005).

2.6.1 Rapidly-exploring Random Tree (RRT)

The Rapidly-exploring Random Tree (RRT) is a randomized data structure for
motion planning that is capable of handling a broad range of path planning problems
including problems with high DOF (LaValle, 1998). The general applicability of
a RRT for path planning algorithms stems from its properties: (a) the expansion
is biased by a randomly selected configuration; (b) the distribution of RRT nodes
converges to the sampling distribution; (c) a RRT reaches uniform coverage of the
configuration space; (d) a RRT is probabilistically complete under very general
conditions and (e) a RRT is always connected. A further benefit of a RRT is that it
can be easily and efficiently implemented.

In each iteration, a random configuration is sampled towards which the RRT is
going to be expanded. The RRT is searched for the closest configuration with respect
to the random configuration. A local planner generates a new configuration on basis
of the closest configuration found in the tree towards the random configuration, e.g.
linear interpolation or a stepwise procedure like described in Subsection 2.5.3 can be
used. The new configuration is added as a new node to the tree.

By sampling random configurations and pulling the RRT towards them, theVoronoi bias

exploration of the RRT is biased toward unexplored regions of the search space
(Voronoi bias).
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Algorithm 1 RRT

input root node qi ni t
output tree T
begin

T ← InitTree(qi ni t);

while not StopCondition() do

qrand ← RandomConf();

qnea r ← NearestNeighbor(qrand, T );

qne w ← Extend(T , qrand, qnea r );

if qne w != NULL

AddNode(T , qne w);

end

RRT construction algorithm

In general, a RRT is initialized with an initial configuration, the root node of the tree.
The exploration of the search space proceeds until predefined stop conditions are
satisfied. Algorithm 1 shows in pseudo-code how the RRT is constructed (LaValle,
1998).

A RRT can be used to create an efficient path planning algorithm. A huge
amount of path planners using a RRT have been described in literature, differing
in detail. We use only a small subset of planners that seem to be most suitable for
our needs. In the next sections I will shortly describe the differences of the planners
we are considering for the conformational sampling in the context of protein loop
closure.

RRTGoalBias & RRTCon algorithms

In principle, the construction algorithm of a RRT as described in Algorithm 1
behaves like a planner. However, without any bias to a goal it will converge ex-
tremely slowly. A planner that is biased by the goal with a given probability
(RRTGoalBias) will converge much faster (LaValle and Kuffner, 2001). The pseudo- RRTGoalBias

code of RRTGoalBias differs from Algorithm 1 in the implementation of RandomConf()
which is not shown here explicitly.

In Algorithm 1 the Extend(T , qrand, qnea r ) procedure can be replaced by the
connect algorithm shown in pseudo-code in Algorithm 2 which iterates Extend(T ,
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Algorithm 2 connect algorithm

input tree T , qrand, qnea r
output qne w
begin

while not StopConnect() do

qne w ← Extend(T , qrand, qnea r );

return qne w;

end

qrand, qnea r ) until the random configuration has been reached or the tree cannot
be expanded any more at all. Consequently, a planner that uses Algorithm 2 is calledRRTCon

RRTCon (LaValle and Kuffner, 2001). RRTGoalBias combined with RRTCon results in a
greedy planner that tries to aggressively connect a configuration to the goal with a
given probability.

Transition-based RRT algorithm (T-RRT)

The Transition-based RRT (T-RRT) combines standard RRT algorithms with a
transition test similar to the Metropolis test (Metropolis et al., 1953) for Monte Carlo
methods used by stochastic optimization methods (Jaillet et al., 2008, 2010). The
T-RRT algorithm is shown in pseudo-code in Algorithm 3.

T-RRT shares the principle concepts with Algorithm 1 how new nodes are
sampled for the expansion of the tree. However, T-RRT does not add every sampled
configuration into the tree, but tests potential new configurations for acceptance
prior to inserting them as new nodes. Thus, unfeasible configurations are rejected
due to predefined criteria.

The acceptance test is based on the Metropolis criterion widely used in molecular
modeling. The probability of acceptance or the transition probability pi j is defined
as:

pi j =







exp
�

− (c j−ci )/di j

K ·T

�

(c j − ci )/di j > 0

1 otherwise
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2.6 Conformational sampling by robot motion planning

Algorithm 3 T-RRT

input root node qi ni t
output tree T
begin

T ← InitTree(qi ni t);

while not StopCondition() do

qrand ← RandomConf();

qnea r ← NearestNeighbor(qrand, T );

qne w ← Extend(T , qrand, qnea r );

if qne w 6= NULL

and TransitionTest(c(qnea r ), c(qrand ), dnea r−ne w)

and MinExpand(T , qnea r , qrand) then

AddNode(T , qne w);

end

Algorithm 4 TransitionTest(ci, c j , di j ) function

begin

if c j < ci then return true;

p = exp
�

−(c j−ci )/di j

K ·T

�

;

if rand(0, 1) < p then

T = T /α;
nF ai l = 0;
return true;

else

if nF ai l > nF ai lmax then

T = T ·α;
nF ai l = 0;

else

nF ai l = nF ai l + 1;

return false;

end



2 Methods & Techniques

Algorithm 5 MinExpand(T , qnea r , qrand) function

begin

if distance(qnea r , qrand) >δ then

nE x p l o rat i ons = nE x p l o rat i ons + 1;
return true;

else

if
nRe f i ne ment s+1
nE x p l o rat i ons+1 >ρ then

return false;

else

nRe f i ne ment s = nRe f i ne ment s + 1;
nE x p l o rat i ons = nE x p l o rat i ons + 1;
return true;

end

where ci is the cost of the new and c j the cost of the randomly sampled configuration.
di j denotes to the distance between the configurations. K is a normalizing factor
defined as K = (ci + c j )/2, T is the temperature similarly defined as for Monte Carlo
methods.

The strength of the acceptance filter is automatically controlled, see Algorithm 4
for the pseudo-code of the TransitionTest(ci, c j , di j ) function.

The MinExpand(T , qnea r , qrand) function controls the minimal rate of expan-
sion toward unexplored regions of the search space on the basis of the ratio between
exploration and refinement steps, see Algorithm 5 for pseudo-code.

Expansion steps of the RRT are classified into exploration and refinement stepsexploration vs. refinement

by the distance between the closest configuration in the tree and the randomly
sampled configuration. If this distance is greater than a given threshold value δ,
the new configuration is considered to participate in an exploration and the new
configuration is added as a new node to the tree in the assumption that the transition
test has been passed. Otherwise, the new configuration is considered to participate
in the tree refinement. No new nodes are added to the tree if the minimal expansion
test fails. This is the case if the ratio between the total numbers of refinement and
exploration steps exceeds a given maximum value ρ.
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2.6 Conformational sampling by robot motion planning

2.6.2 Transition-based Task Space RRT

We use a RRT-based motion planning approach to sample the conformation space
for feasible loop structures. Our approach combines features from T-RRT and
RRTGoalBias or respectively RRTCon with the iterated motion generation scheme
introduced in Subsection 2.5.3 as a local planner. It is called Transition-based Task
Space RRT because parts of the exploration procedure takes place in task space
rather than in configuration space, as we will see soon. Task space planners have
been already proposed in literature, but seem to be rarely used (Bertram et al., 2006;
Vande Weghe et al., 2007; Shkolnik and Tedrake, 2009).

The RRT is initialized with a random protein loop conformation, e.g. the fully
extended loop chain, after the bond lengths and angles have been idealized and
the torsion angles φ, ψ have been set to 150° and −150°, respectively. The initial
conformation is used as a template for torsion angle sampling. The goal conformation
of the motion planner cannot be specified so that the goal is represented by each
conformation that satisfies the loop closure constraints. The closure constraints are
formulated as the deviation in position and orientation between the end-effector link
and the rigid atom group formed by the N , C and Cα atoms of the fixed C -terminal
anchor residue of the backbone as defined in Subsection 2.5.3. We call the latter rigid anchor link

group of atoms the anchor link.
The randomly sampled loop conformations towards which the RRT is being

expanded are generated by applying a random sampling procedure on the torsional
angles of the template conformation. An uniform and a Gaussian sampler have been uniform sampling

implemented in our approach (Kuffner, 2004). A conformation is searched in the tree
closest to the random conformation by calculating the minimum of the Euclidean
norm of the angle displacements between the random conformation and each confor-
mation already added to the tree. Both the random sampling of conformations and
the distance calculation between two conformations are performed in conformation
space.

Then, the local planner on basis of the method derived in Subsection 2.5.3 is used
to pull the selected conformation towards the random conformation. This task is
expressed in terms of a virtual task force derived from a distance constraint between
the end-effector link of the selected loop conformation and the corresponding link of
the random conformation. After a sufficient number of steps the local planner stops
and returns the last iterated conformation which is afterwards checked for acceptance
by a transition test as defined for the T-RRT algorithm. Accepted conformations are
added to the tree.
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The acceptance test as discussed in Subsection 2.6.1 is based on a distance metric
and a cost function, denoted by di j and ci respectively c j in Algorithm 4. We use a
task space metric to estimate the distance between two loop conformations defined
as the deviation in position and orientation of two protein links. The cost of a
conformation is evaluated by an energy function defined by a specific set of energy
terms. A “chainbreak” energy term is included that accounts for the energetic penalty"chainbreak"

due to the opening of the loop chain.
With a predefined probability, the anchor link of the protein backbone is used

to derive the virtual task force pulling the closest conformation in the tree towards
closure. In this case, the closest conformation corresponds to the conformation
with lowest distance between the end-effector link and the anchor link. Thus, the
conformation in the tree with lowest deviation from closure is selected. The local
planner pulls the selected conformation then towards closure.

The protein loop is considered closed when the distance between the end-effector
and the anchor link is lower than a predefined convergence threshold. The explo-
ration of the conformation space continues until a maximum number of closed loop
structures has been found or the maximum number of exploration steps has been
reached.

2.7 RRT-guided Iterative Loop Closure algorithm

The motion planning algorithm described in Subsection 2.6.2 can be used as a com-
ponent for protein loop structure prediction. The key component of the presented
methodology is the representation of a protein loop as a kinematic chain of rigid
atom groups or protein links. So each protein structure prediction application that
implements the forward kinematics relationships for the backbone representation
of a protein could be easily enhanced with the algorithm derived in the previous
sections. Rosetta uses an atom-tree representation for the protein structure imple-
menting the forward kinematics equations (Parsons et al., 2005). In the next chapter
the implementation of the new “RRT-guided Iterative Loop Closure” algorithm in
Rosetta is briefly discussed.

It is also possible to use the algorithm within a Monte Carlo procedure where
the RRT is reinitialized with a different template conformation after a predefined
number of Monte Carlo steps. This changes the bias of the random sampling
procedure because of the shifted probability distribution by which the random
conformations are estimated. Predicted loop structures will finally be evaluated by a
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2.7 RRT-guided Iterative Loop Closure algorithm

scoring function and a Metropolis test. The best-scored loop structure may then be
further refined by repacking the amino acid side chains of the loop or of the whole
protein backbone.
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3 Application to protein
structure prediction

The implementation of the RRT-guided Iterative Loop Closure algorithm will be
done using the Rosetta protein modeling suite (Schueler-Furman et al., 2005). So the
algorithm can be directly compared with the already existing loop closure methods,
the Cyclic Coordinate Descent (CCD) and the Kinematic Closure (KIC) algorithms
(Canutescu and Dunbrack, 2003; Mandell et al., 2009a). The implementation is also Eigen

based on a linear algebra library called Eigen which is used for complex matrix
computations and linear algebra operations (Guennebaud et al., 2010).

3.1 Rosetta protein-modeling suite

Rosetta is a software package for protein structure prediction, protein docking and
protein design that performed excellently in the last CASP experiments. Many
conformational sampling and optimization methods have been implemented. For
evaluation and scoring Rosetta is based on a highly modular energy function that
is primarily classified on the basis of how the protein side chains are modeled, in
centroid or in all atom representation. The energy function itself is composed of
both physical and statistically derived energy terms. Rosetta unions a huge amount
of protocols where each is subject of a specific problem or task and each defines its
own specific energy function composed of energy terms that are predominant for
the modeled problem.

Various protocols have been implemented for specific problems in protein struc-
ture prediction, including protocols that address the protein loop closure problem
(Kaufmann et al., 2010). The loop closure protocols of Rosetta are associated with
the Rosetta LoopModel application specifically designed for protein loop closure.
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3 Application to protein structure prediction

Fig. 3.1: Various protein loop structures within the backbone environment. The ensemble of
loop structures has been determined by the Rosetta CCD protocol. The colored segments refer
to the sampled loop structures. A huge amount of such loops is usually generated to select the
best-scored.

Figure 3.1 shows closed protein loop structures generated by Rosetta CCD after
superimposing the remaining protein backbones.

3.2 Implementation details
The program code of all parts of the algorithm has been implemented within the
framework of Rosetta using existing methods and data structures whenever possible.
Consequently, the LoopModel application was chosen as an interface to low-level
functionality of the framework like I/O operations. A lot of care has been taken to
separate independent parts for general applicability.

KinematicMap The key data structure specifically developed for the loop closure
algorithm presented is called KinematicMap. It relates the DOF of a kinematic chain
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3.3 Validation

representation to the internal coordinates used in the atom-tree representation of
Rosetta. Thus, the two representations could be kept synchronized in an efficient
way. It is also responsible for computing the Jacobian and for adding angle increments
to the DOF.

Pseudoinverse (Moore-Penrose inverse) The Singular Value Decomposition
(SVD) for the Jacobian is operated by Eigen (Guennebaud et al., 2010). By using the
SVD matrices the pseudoinverse can be calculated with the algorithm described in
(Press, 2007).

Energy minimization by Steepest Descent and Line Search The energy min-
imization task by projecting gradients onto the nullspace is implemented as a steepest
descent search combined with a simple line search algorithm. The line search algo-
rithm widely used in optimization and molecular modeling calculates an optimal
step size to minimize the energy score as far as possible (Leach, 2001).

RRT The RRT used in the presented algorithm has been written from scratch.
However, the object-oriented design was inspired by the Motion Strategy Library
(MSL) (LaValle and Others, 2003). Furthermore, the RRT has been implemented
using Rosetta data structures and methods whenever appropriate. Though the RRT
is relatively easy to understand, it is not a trivial task to implement them (Sucan and
Kavraki, 2010).

3.3 Validation
For the validation of the predicted loop structures different loop model sets can
be used, e.g. from Fiser et al. (2000). Many of them were composed for previous
publications and several are freely available on the web or by request. Thus, available
loop model sets can be used to compare the accuracy of the different computational
loop closure approaches in predicting loop structures.

It is obvious to compare the “RRT-guided Iterative Loop Closure” algorithm to
both CCD and KIC as all of them have been implemented in Rosetta. So, as long as
all three methods make use of the same scoring function of Rosetta the accuracy of
the predicted loop structures could be directly compared by the rmsd value between
known crystallographic structures and the predicted ones.
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3 Application to protein structure prediction

3.4 Proof of concept
A thorough analysis of the efficiency and applicability of the presented method re-
quires a lot of computer power and a huge amount of simulation trials. Furthermore,
the experiments have to be evaluated and parameters eventually have to be adjusted.
Weeks and lots of computer power are necessary to perform comparable experimen-
tal results. Due to the complexity of implementing the presented algorithm in an
existing framework, no experimental results are available at the time of this writing.
Therefore, an objective evaluation by comparing different closure methods is not
possible.

However, the different components of the presented algorithm have been success-
fully tested with an example protein structure from the pdb. The algorithm was able
to sample the conformation space for closed loop structures up to a given threshold.
The correctness of the local planner has also been successfully evaluated.

So there is still no objection to assume that our algorithm has the potential to
reach the accuracy of most of the published methods. We hope that we can perform
a sufficient number of experiments with reasonable results in order to publish this
algorithmic approach at a later point in time.
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4 Conclusion

A lot of literature is available in the field of protein loop closure, but there is no
recent review of existing loop closure methods. So the original publications of the
most promising closure methods were elaborated beginning with the most recent.
Thus, the overview presented in this thesis is just a small subset, but covers at least
the most accurate methods.

4.1 Obstacles
When implementing, the main obstacle I had to cope with was the complexity of
the Rosetta code base in a whole.1 The existing loop closure protocols were hard to
read and even harder to understand which made it really difficult to find a way how
to start. Fortunately, Rosetta is designed in a sophisticated way so it is sufficient to
read the most basic code parts at first and to concentrate then on the higher-level
protocols. Irrelevant code must be rarely read due to the object-oriented design.
However, the general obstacles for a developer who is not familiar with programming
in Rosetta are extremely high.

4.2 Improvements & future work
The motion planning algorithm presented could be modified in many ways. For Expansive Space Tree (EST)

example, an Expansive Space Tree (EST) could be used instead of the RRT. It differs
from RRT mainly in the way how it is expanded. A task space planner based on an
EST has been recently reviewed in (Sucan and Kavraki, 2010).

The task space metrics used for calculating the distance of two kinematic chains
of a protein loop can be defined in various ways, e.g. by using quaternions or by

1a lines-of-code (LOC) calculator indicated 1.2 million lines of C/C++ code
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the weighted sum of position and orientation displacements (Kuffner, 2004). Thekd-tree search

implementation of the nearest neighbor search during the expansion step of a RRT
can be substantially improved by using kd-tree based search techniques (Atramentov
and LaValle, 2002; Yershova and LaValle, 2007). Alternatives could also be considered
for the Euclidean norm metric used to search the tree for the nearest neighbors or
for the random sampling procedure (Kuffner, 2004). Defining a flexible convergence
procedure for a motion that approaches a goal might be helpful to determine the
stop condition of the closure procedure. Various parameters have to be tested to find
their valuable range or replaced by others with a more suitable definition.

4.3 Final statement
Unfortunately, we do not have any experimental results yet, so any conclusion on a
basis of how good the method works and how good the predicted structures are is
impossible. Nevertheless, I am truly convinced that the presented methodology has
lots of potential, though this has to be verified yet.
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